Chapter 2, Cont.

OMv Conjecture implies OuMv Conjecture

Danupon Nanongkai
KTH, Sweden

Notice:
Technique similar to APSP
→ Negative Triangle
RECAP FROM LAST TIME
OMv Conjecture

(Online Matrix-Vector Multiplication) [Henzinger, Krinninger, N, Saranurak, STOC’15]

Input: $n \times n$ Boolean matrix M
Then: n Boolean vectors v_i

Output: Mv_1 Mv_2 Mv_n

Conjecture: No algorithms with total time $O(n^{3-\epsilon})$

Current Best: $O(n^3 / 2^{\sqrt{\log n}})$ [Larson-Williams SODA’17]
OuMv Conjecture (Matrix Form)

Input: \(n \times n \) Boolean matrix \(M \)

Then: \(n \) pairs of Boolean vectors \((u_i, v_i) \)

Output: \(u_i^T M v_i \)

Conjecture: No algorithms with total time \(O(n^{3-\epsilon}) \) even with polynomial time to process \(M \)!
Theorem 1: O\(Mv\) conjecture holds with polynomial preprocessing time.

Details:

- **OMv Conjecture (recall):** No algorithms with total time \(O(n^{3-\epsilon})\).

- **OMv’ Conjecture:** No algorithms with total time \(O(n^{3-\epsilon})\), *even with polynomial time to process M!*

Claim: O\(Mv\) Conjecture implies O\(Mv’\) Conjecture

Idea: Partition M!
Theorem 1: OMv conjecture holds with polynomial preprocessing time.

Main Idea: Divide M into submatrices of small dimension n'
- Preprocessing time $\text{poly}(n') \ll n^2$ per element in M (when n' small enough)
- Time for each multiplication is still better than the trivial $(n')^3$ time if n' is not too small.

Proof (sketched):
1. Suppose algorithm A can solve OMv with n^{10} time for preprocessing M and $O(n^{2.9})$ time after that. We will construct an algorithm with $O(n^{2.99})$ time in total.
2. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/20}$.

For each submatrix M':
 a. Preprocess in $(n')^{10} = n^{1/2}$ time.
 - There are at most n^2 submatrices $\Rightarrow O(n^{2.5})$ total preprocessing time
 b. Handle every group of n' vectors v_i in $(n')^{2.9}$ time.
 - Details: “Roll-back” to the preprocessing stage after every n' pairs.
 - Time over n/n' groups and $\left(\frac{n}{n'}\right)^2 : (n')^{2.9} \times \left(\frac{n}{n'}\right)^3 = n^{3-1/200}$
Claim 2: OMv’ conjecture implies OuMv conjecture
OMv’ conjecture implies OuMv conjecture

Idea: Suppose we can compute each uMv in $n^{1.9}$ time. For each vector v, use u to binary search for i s.t. $(Mv)_i = 1$.

- Problem: To find all 1’s in Mv needs to compute uMv up to n times $\rightarrow n^{2.9}$ to compute one Mv.
- Fix: Partition M!
OMv’ conjecture implies OuMv conjecture

Algorithm Sketch:
1. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/2}$.
2. To find $i \leq \sqrt{n}$ s.t. $(Mv)_i = 1$, compute $u'M'v'$ with $u' = (1, 1, \ldots)$ on each submatrix M' on top \sqrt{n} rows.
3. $u'M'v' = 0 \rightarrow$ Ignore M' from now on.
4. $u'M'v' = 1 \rightarrow$ Continue binary search within M'.
5. Repeat with coordinate i ignored. Do the same for other rows.
Analysis

Algorithm Sketch:
1. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/2}$.
2. To find $i \leq \sqrt{n}$ s.t. $(Mv)_i = 1$, compute $u'M'v'$ with $u' = (1, 1, ...)$ on each submatrix M' on top \sqrt{n} rows.
3. $u'M'v' = 0 \rightarrow$ Ignore M' from now on
4. $u'M'v' = 1 \rightarrow$ Continue binary search within M'
5. Repeat with coordinate i ignored. Do the same for other rows.

Time to compute each Mv: Suppose $u'M'v'$ takes $(n')^{1.9}$. For each matrix M':
1. $u'M'v' = 0 \rightarrow$ Ignore M' from now on \rightarrow Happens only once for each M', total time $= (n')^{1.9} \times \left(\frac{n}{n'}\right)^2 \ll n^2$
2. $u'M'v' = 1 \rightarrow$ Continue binary search within M' \rightarrow Will find new coordinate, thus happens only once for each coordinate. Total time $= (n')^{1.9} \times n \ll n^2$.
Questions?

Thanks to co-authors:
Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak