François Le Gall

Graduate School of Informatics
Kyoto University

ADFOCS17 - Lecture 3
24 August 2017
Overview of the Lectures

- Fundamental techniques for fast matrix multiplication (1969~1987)
 - Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen’s algorithm, bilinear algorithms
 - First technique: tensor rank and recursion
 - Second technique: border rank
 - Third technique: the asymptotic sum inequality
 - Fourth technique: the laser method

- Recent progress on matrix multiplication (1987~)
 - Laser method on powers of tensors
 - Other approaches
 - Lower bounds
 - Rectangular matrix multiplication

- Applications of matrix multiplications, open problems
Overview of the Lectures

- Fundamental techniques for fast matrix multiplication (1969~1987)
 - Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen’s algorithm, bilinear algorithms
 - First technique: tensor rank and recursion
 - Second technique: border rank
 - Third technique: the asymptotic sum inequality
 - Fourth technique: the laser method

- Recent progress on matrix multiplication (1987~)
 - Laser method on powers of tensors
 - Other approaches
 - Lower bounds
 - Rectangular matrix multiplication

- Applications of matrix multiplications, open problems
Lower Bounds for Matrix Multiplication

\(R(\langle 2,2,2 \rangle) \geq 7 \) [Hopcroft and Kerr 1971] [Winograd 1971]
\(R(\langle 2,2,2 \rangle) \geq 7 \) [Landsberg 2005]

\[
R(\langle n, n, n \rangle) \geq \frac{3}{2} n^2 \quad [\text{Strassen 1983}]
\]

\[
R(\langle n, n, n \rangle) \geq \frac{3}{2} n^2 + \frac{1}{2} n - 1 \quad [\text{Lickteig 1984}]
\]

\[
R(\langle n, n, n \rangle) \geq \frac{3}{2} n^2 - 2 \quad [\text{Bürgisser, Ikenmeyer 2011}]
\]

\[
R(\langle n, n, n \rangle) \geq 2n^2 - n \quad [\text{Landsberg, Ottaviani 2011}]
\]

\[
R(\langle n, n, n \rangle) \geq \frac{5}{2} n^2 - 3n \quad [\text{Bläser 1999}]
\]

\[
R(\langle n, n, n \rangle) \geq 3n^2 - 4n^{2/3} - n \quad [\text{Landsberg 2012}]
\]

\[
R(\langle n, n, n \rangle) \geq 3n^2 - 2\sqrt{2}n^{2/3} - 3n \quad [\text{Massaranti, Raviolo 2012}]
\]
Theorem ([Raz 2002])

Any arithmetic circuit that computes the product of two $n \times n$ real matrices has size $\Omega(n^2 \log n)$, as long as the circuit does not use products with field elements of absolute value larger than 1.

Space-Time tradeoff (see, e.g., [Abrahamson 1991])

For any algebraic algorithm computing the product of two $n \times n$ matrices using S space and T time we have $ST = \Omega(n^3)$.

Any subcubic-time algorithm for matrix multiplication has superlogarithmic space complexity.

Trivial algorithm: $T = O(n^3)$ $S = O(\log n)$

Strassen algorithm: $T = O(n^{2.81})$ $S = O(n^2)$

same quadratic space complexity for all the other fast algorithms we studied
Overview of the Lectures

- Fundamental techniques for fast matrix multiplication (1969~1987)
 - Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen’s algorithm, bilinear algorithms
 - First technique: tensor rank and recursion
 - Second technique: border rank
 - Third technique: the asymptotic sum inequality
 - Fourth technique: the laser method

- Recent progress on matrix multiplication (1987~)
 - Laser method on powers of tensors
 - Other approaches
 - Lower bounds
 - Rectangular matrix multiplication

- Applications of matrix multiplications, open problems
Rectangular Matrix Multiplication

Compute the product of an $n \times m$ matrix A and an $m \times n$ matrix B

\[
\begin{align*}
&\begin{bmatrix}
 \vdots & \vdots & \vdots \\
 a_{ij} & & \\
 \vdots & \ddots & \vdots \\
 \end{bmatrix} \times \\
&\begin{bmatrix}
 \vdots & \vdots & \vdots \\
 b_{ij} & & \\
 \vdots & \ddots & \vdots \\
 \end{bmatrix} = \\
&\begin{bmatrix}
 \vdots & \vdots & \vdots \\
 c_{ij} & & \\
 \vdots & \ddots & \vdots \\
 \end{bmatrix}
\end{align*}
\]

m multiplications and $(m-1)$ additions

\[
c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}
\]

for all $1 \leq i \leq n$ and $1 \leq j \leq n$

Trivial algorithm: $n^2(2m-1)=O(mn^2)$ arithmetic operations
Rectangular Matrix Multiplication

Compute the product of an $n \times m$ matrix A and an $m \times n$ matrix B

Compute the product of an $m \times n$ matrix A and an $n \times n$ matrix B

Compute the product of an $n \times n$ matrix A and an $n \times m$ matrix B

same algebraic complexity (as seen yesterday)

✓ The problem (with $m \neq n$) appears as the bottleneck in many applications:

- linear algebra problems
- all-pairs shortest path problems
- dynamic computation of the transitive closure of a graph
- detecting directed cycles in a graph
- computational geometry (colored intersection searching)
- computational complexity (circuit lower bounds)
Compute the product of an \(n \times n^k \) matrix \(A \) and an \(n^k \times n \) matrix \(B \) for any fixed \(k \geq 0 \)

Exponent of rectangular matrix multiplication

\[
\omega(1,1,k) = \inf \{ \tau \mid \text{this product can be computed using } O(n^\tau) \text{ arithmetic operations} \}
\]

Exponent of rectangular matrix multiplication

\[
\omega(1,1,k) = \inf \{ \tau \mid R(\langle n, n, nk \rangle) = O(n^\tau) \}
\]

trivial algorithm: \(O(n^{2+k}) \) arithmetic operations

\(\omega(1,1,k) \leq 2 + k \)

square matrices: \(\omega(1,1,1) = \omega \leq 2.38 \)

trivial lower bounds: \(\omega(1,1,k) \geq 2 \)

\(\omega(1,1,k) \geq 1 + k \)
Exponent of Rectangular Matrix Multiplication

Property [Lotti 83]

\(\omega(1,1,k) \) is a convex function

upper bounds on \(\omega(1,1,k) \)

trivial algorithm: \(O(n^{2+k}) \) arithmetic operations

\(\omega(1,1,k) \leq 2 + k \)

square matrices: \(\omega(1,1,1) = \omega \leq 2.38 \)

trivial lower bounds: \(\omega(1,1,k) \geq 2 \)

\(\omega(1,1,k) \geq 1 + k \)
Exponent of Rectangular Matrix Multiplication

Property [Lotti 83]

$\omega(1,1,k)$ is a convex function

Upper bounds on $\omega(1,1,k)$

$\omega(1,1,0.172) = 2$

$\omega(1,1,0.294) = 2$

The product of an $n \times n^{0.172}$ matrix by an $n^{0.172} \times n$ matrix can be computed using $O(n^{2+\varepsilon})$ arithmetic operations for any $\varepsilon > 0$

$[\text{Coppersmith 1982}]: \omega(1,1,0.172) = 2$

$[\text{Coppersmith 1997}]: \omega(1,1,0.294) = 2$
[Coppersmith 1982]: \(\omega(1,1,0.172) = 2 \)

The product of an \(n \times n^{0.172} \) matrix by an \(n^{0.172} \times n \) matrix can be computed using \(O(n^{2+\varepsilon}) \) arithmetic operations for any \(\varepsilon > 0 \).

Proof outline

Remember Tuesday’s exercise

Consider the computation of the product of two matrices \(A \) and \(B \) of the following form:

\[
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23}
\end{pmatrix}, \quad B = \begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & 0 \\
b_{31} & 0
\end{pmatrix}
\]

(i) Write the tensor corresponding to this computational task.

(ii) Show that the border rank of this tensor is at most 5.

Taking power \(N \) of this tensor and combining it with power \(N \) of the same tensor with permuted variables we can show:

\[
R(\langle M, 4^{N/5}, M \rangle) \leq 5^{2N} \text{ with } M \approx 5^N
\]

\[
4^{N/5} = M^\alpha \text{ with } \alpha = \frac{1}{5} \log_5 4 = 0.1722 ...
\]
Exponent of Rectangular Matrix Multiplication

[Coppersmith 1997]: \(\omega(1,1,0.294) = 2 \)

Idea: Analyze the first power of the CW tensor in an asymmetric way

Tool: Rectangular version of the asymptotic sum inequality

As in the square case, it is enough to create a direct sum of matrix products of the desired format
Exponent of Rectangular Matrix Multiplication

Idea: Analyze the first power of the CW tensor in an asymmetric way

\[T_{CW} = T_{CW}^{011} + T_{CW}^{101} + T_{CW}^{110} + T_{CW}^{002} + T_{CW}^{020} + T_{CW}^{200} \]

\[T_{CW}^{011} \cong \langle 1, 1, q \rangle \]
\[T_{CW}^{101} \cong \langle q, 1, 1 \rangle \]
\[T_{CW}^{110} \cong \langle 1, q, 1 \rangle \]

\[T_{CW}^{002} \cong \langle 1, 1, 1 \rangle \]
\[T_{CW}^{020} \cong \langle 1, 1, 1 \rangle \]
\[T_{CW}^{200} \cong \langle 1, 1, 1 \rangle \]

square case

rectangular case

Analysis of the second construction

Theorem 5

For any \(0 \leq \alpha \leq 1/3 \) and for \(N \) large enough, the tensor \(T_{CW}^{\otimes N} \) can be converted into a direct sum of

\(2(\frac{2}{3} - \alpha, 2\alpha, \frac{1}{3} - \alpha) - o(1) \) terms, each isomorphic to

\[\langle q^{\alpha N}, q^{\alpha N}, q^{\alpha' N} \rangle \]

more variables

recalculate

adjust

adjust

adjust

conjecture
Exponent of Rectangular Matrix Multiplication

Upper bounds on $\omega(1,1,k)$

- $\omega(1,1,0) = 2$
- $\omega(1,1,0.172) = 2$
- $\omega(1,1,0.294) = 2$
- $\omega(1,1,0.5356) < 2.0712$
- $\omega(1,1,0.8) < 2.2356$
- $\omega(1,1,2) < 3.2699$

This curve has been used in most applications of rectangular matrix multiplication.

Property [Lotti 83]: $\omega(1,1,k)$ is a convex function.

Curve obtained by doing the same analysis for any value of k.

[Coppersmith 1982]: $\omega(1,1,0.172) = 2$
[Coppersmith 1997]: $\omega(1,1,0.294) = 2$

[Ke, Zeng, Han, Pan 2008]: $\omega(1,1,0.5356) < 2.0712$
- $\omega(1,1,0.8) < 2.2356$
- $\omega(1,1,2) < 3.2699$

(slightly improving a bound from [Huang, Pan 1998]).

Obtained by a similar asymmetric analysis of the first power of the CW tensor.
Exponent of Rectangular Matrix Multiplication

Upper bounds on \(\omega(1,1,k) \)

\[\omega(1,1,0.294) = 2 \]
\[\alpha > 0.294 \]
proving that \(\alpha = 1 \) is equivalent to proving that \(\omega = 2 \)

- Coppersmith 1997: \(\omega(1,1,0.294) = 2 \)
- LG 2012: \(\omega(1,1,0.302) = 2 \)

Dual exponent of matrix multiplication

\[\alpha = \sup \{ k \mid \omega(1,1,k) = 2 \} \]

- from the analysis of the first power of the CW tensor
- from the analysis of the second power of the CW tensor

This curve has been used in most applications of rectangular matrix multiplication.
from [LG 2012]

<table>
<thead>
<tr>
<th>k</th>
<th>upper bound on ω(1, 1, k)</th>
<th>k</th>
<th>upper bound on ω(1, 1, k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30298</td>
<td>2</td>
<td>0.60</td>
<td>2.096571</td>
</tr>
<tr>
<td>0.31</td>
<td>2.000063</td>
<td>0.65</td>
<td>2.125676</td>
</tr>
<tr>
<td>0.32</td>
<td>2.000371</td>
<td>0.70</td>
<td>2.156959</td>
</tr>
<tr>
<td>0.33</td>
<td>2.000939</td>
<td>0.75</td>
<td>2.190087</td>
</tr>
<tr>
<td>0.34</td>
<td>2.001771</td>
<td>0.80</td>
<td>2.224790</td>
</tr>
<tr>
<td>0.35</td>
<td>2.002870</td>
<td>0.85</td>
<td>2.260830</td>
</tr>
<tr>
<td>0.40</td>
<td>2.012175</td>
<td>0.90</td>
<td>2.298048</td>
</tr>
<tr>
<td>0.45</td>
<td>2.027102</td>
<td>0.95</td>
<td>2.336306</td>
</tr>
<tr>
<td>0.50</td>
<td>2.046681</td>
<td>1.00</td>
<td>2.375477</td>
</tr>
<tr>
<td>0.60</td>
<td>2.086936</td>
<td>1.05</td>
<td>2.456151</td>
</tr>
<tr>
<td>0.55</td>
<td>2.070063</td>
<td>1.20</td>
<td>2.539392</td>
</tr>
</tbody>
</table>

Table 1: Our upper bounds on the exponent of the multiplication matrix.

- exactly the same bound as the one obtained by Coppersmith and Winograd for square matrix multiplication
- better than all previous bounds for k≠1
- curve of the same shape, but slightly below the previous curve

[LG 2012]: ω(1,1,0.302) = 2 → α > 0.302

from the analysis of the second power of the CW tensor
Exponent of Rectangular Matrix Multiplication

The dual exponent of matrix multiplication is defined as:

\[\alpha = \sup \{ k \mid \omega(1,1,k) = 2 \} \]

<table>
<thead>
<tr>
<th>Power of the CW Tensor</th>
<th>Upper Bound of (\omega)</th>
<th>Lower Bound of (\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>(\omega < 2.3872)</td>
<td>(\alpha > 0.294)</td>
</tr>
<tr>
<td>Second</td>
<td>(\omega < 2.3755)</td>
<td>(\alpha > 0.302)</td>
</tr>
<tr>
<td>Fourth</td>
<td>(\omega < 2.3730)</td>
<td>(\alpha > 0.313)</td>
</tr>
<tr>
<td>Eighth</td>
<td>(\omega < 2.3729)</td>
<td>???</td>
</tr>
</tbody>
</table>

The gap increases with higher powers. What will happen with higher powers?
Overview of the Lectures

- Fundamental techniques for fast matrix multiplication (1969~1987)
 - Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen’s algorithm, bilinear algorithms
 - First technique: tensor rank and recursion
 - Second technique: border rank
 - Third technique: the asymptotic sum inequality
 - Fourth technique: the laser method

- Recent progress on matrix multiplication (1987~)
 - Laser method on powers of tensors
 - Other approaches
 - Lower bounds
 - Rectangular matrix multiplication

- Applications of matrix multiplications, open problems