Lecture 3
 Algorithms with Predictions

Warm-up

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

2	4	7	11	16	22	37	38	44	88	89	93	94	95	96	97	98

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

Motivating Example

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

- Look up time: $O(\log n)$

Finding a book in the library...

Finding a book in the library...

Finding a book in the library...

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

2	4	7	11	16	22	37	38	44	88	89	93	94	95	96	97	98

7

- Train a predictor h to learn where q should appear. [Kraska et al.'18]
- Then proceed via doubling binary search

Motivating Example

Given a sorted array of integers A[1...n], and a query q check if q is in the array.

- Train a predictor h to learn where q should appear. [Kraska et al.'18]
- Then proceed via doubling binary search

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

- Train a predictor h to learn where q should appear. [Kraska et al.'18]
- Then proceed via doubling binary search

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

- Train a predictor h to learn where q should appear. [Kraska et al.'18]
- Then proceed via doubling binary search

Motivating Example

Given a sorted array of integers $A[1 \ldots n]$, and a query q check if q is in the array.

Analysis:

- Let $\eta_{1}=|h(q)-\operatorname{OPT}(q)|$ be the absolute error of the predicted position
- Running time: $O\left(\log \eta_{1}\right)$
- Can be made practical (must worry about speed \& accuracy of predictions)

More on the analysis

Comparing

- Classical: $O(\log n)$
- Learning augmented: $O\left(\log \eta_{1}\right)$

Results:

- Consistent: perfect predictions recover optimal (constant) lookup times.
- Robust: even if predictions are bad, not (much) worse than classical

How it started...

The Case for Learned Index Structures

Tim Kraska*
MIT
Cambridge, MA
kraska@mit.edu

Alex Beutel
Google, Inc.
Mountain View, CA
alexbeutel@google.com

Ed H. Chi
Google, Inc.
Mountain View, CA edchi@google.com

Jeffrey Dean
Google, Inc.
Mountain View, CA
jeff@google.com

Neoklis Polyzotis Google, Inc.
Mountain View, CA
npolyzotis@aooale.com

Abstract

Indexes are models: a B-Tree-Index can be seen as a mode within a sorted array, a Hash-Index as a model to map a key to array, and a BitMap-Index as a model to indicate if a data record paper, we start from this premise and posit that all existing ind types of models, including deep-learning models, which we ter a model can learn the sort order or structure of lookup keys a the position or existence of records. We theoretically analyze outperform traditional index structures and describe the main structures. Our initial results show, that by using neural nets we B-Trees by up to 70% in speed while saving an order-of-magni

Slides from my talk in yesterday's ML Systems workshop are now up at learningsys.org/nips17/assets/... \#NIPS2017

 B-Trees by up to 70% in speed while saving an order-of-magn
11:34 AM - Dec 9, 2017

 management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible.
An inauspicious start.

```
[deleted] . 5 yr. ago
```

So essentially, tailor made indexes are better than generic data structures.......

- anonacct37 on Dec 11, 2017 | prev | next [-]

This seems interesting but to me there is a flaw near the beginning. They state a btree assumes worst case distribution. That's a feature . Much better than a "this will be fast, if you're lucky" distribution.
But who knows, maybe for read heavy analytical workloads this will be an interesting wav of improving performance or reducing space usage.
[deleted] 55 yr. ago • edited 5 yr. ago
This is not a new idea at all. When you start learning about topology and the

Indexes are models: a B within a sorted array, a Hash array, and a BitMap-Index as paper, we start from this pre types of models, including a model can learn the sort the position or existence of outperform traditional inde problem of taking high dimensional spaces equipped with a metric, and mapping them into low dimensional spaces that respect the metric, you realize this idea is not only not new, but is a really important motif in all of mathematics. The neural networks have an added bonus that they can map seemingly related objects to "nearby" indexes. The fun part is you really don't even need a neural network, as there are plenty of methods that exist to embed high dimensional spaces into low dimensionalindexes equinned with a metric
© Asdfbla on Dec 11, 2017 | prev | next [-]
Sounds like an interesting approach, but just that I understand the scope or impact of the paper right: Surely data-aware indexing can't be the novel part, right? Or was it always so complicated to model the data distribution that no one managed to do it until now? It seems natural to try to adapt your index to the type of data you see more often than not.
Very cool idea though.

More on the analysis

Comparing

- Classical: $O(\log n)$
- Learning augmented: $O\left(\log \eta_{1}\right)$

Results:

- Consistent: perfect predictions recover optimal (constant) lookup times.
- Robust: even if predictions are bad, not (much) worse than classical

Algorithms with Predictions

```
Donald on Dec 11, 2017 | parent | prev | next [-]
```

This is the exact point of view they are rejecting. You want spectacular average-case performance at the cost of a slow but not catastrophic worst-case.

This is the premise of "Algorithms with Predictions"

- Aka 'Learning Augmented Algorithms’

Today:

- Over 100 interesting papers. Hard to keep up!
- See https://algorithms-with-predictions.github.io/
- No way to do justice to all the papers, or all the ideas, or all the authors...

How it's going...

$\leftarrow \rightarrow \mathrm{C}$ algorithms-with-predictions.github.io

Agorithms with Predictions PAPER LIST FURTHER MATERIAL HOW TO CONTRIBUTE ABOUT

Learning-Augmented Online Algorithms and the Primal-Dual Method

Ola Svensson
Joint work with Etienne Bamas and Andreas Maggiori

Outline

- Learning-augmented online algorithms
- Case study: set cover
- Instantiating PDLA for other problems
- Future directions

Outline

- Learning-augmented online algorithms
- Case study: set cover
- Instantiating PDLA for other problems
- Future directions

Online algorithms

Google

Google
best graduate school

Google best graduate school

Web Images Maps Shopping More 7 Search tools

About 377,000,000 results (0.34 seconds)

Doctorate Program at BSL - BSL-Lausanne.ch

Annonce www.bsl-lausanne.ch/DBA -
DBA in Business Sustainability (CH) Enroll in a Global Research Project
Doctorate of Business Adm - Programs for Executives - MBA \& EMBA Programs

EPFL | École polytechnique fédérale de Lausanne

 www.epfl.ch/ - Traduire cette page... une influence sur le fonctionnement de nos organismes. Grâce à des techniques d'optique très novatrices, des chercheurs de l'EPFL ont pu les observer.
$4,7 \star \star \star \star \star 58$ avis de Google Ponner un avis

École polytechnique fédérale de Lausanne - Wikipédia

fr.wikipedia.org/wiki/École_polytechnique_fédérale_de_Lausanne *
L'École polytechnique fédérale de Lausanne (EPFL) est une institution universitaire spécialisée dans le domaine de la science et de la technologie, située à ...

École Polytechnique Fédérale de Lausanne - Wikipedia, the fr.. en.wikipedia.org/.../École_Polytechnique_Fédérale_d... - Traduire cette page The École polytechnique fédérale de Lausanne (EPFL, English: Swiss Federal Institute of Technology in Lausanne) is one of the two Swiss Federal Institutes of ...

Google best graduate school

Web Images Maps Shopping More v Search tools

About 377,000,000 results (0.34 seconds)

Doctorate Program at BSL - BSL-Lausanne.ch

Annonce www.bsl-lausanne.ch/DBA -
DBA in Business Sustainability (CH) Enroll in a Global Research Project
Doctorate of Business Adm - Programs for Executives - MBA \& EMBA Programs
EPFL | École polytechnique fédérale de Lausanne www.epfl.ch/ - Traduire cette page
... une influence sur le fonctionnement de nos organismes. Grâce à des techniques d'optique très novatrices, des chercheurs de l'EPFL ont pu les observer.
$4,7 \star \star \star \star \star 58$ avis de Google Ponner un avis

École polytechnique fédérale de Lausanne - Wikipédia

fr.wikipedia.org/wiki/École_polytechnique_fédérale_de_Lausanne *
L'École polytechnique fédérale de Lausanne (EPFL) est une institution universitaire spécialisée dans le domaine de la science et de la technologie, située à ...

École Polytechnique Fédérale de Lausanne - Wikipedia, the fr.. en.wikipedia.org/.../École_Polytechnique_Fédérale_d... - Traduire cette page The École polytechnique fédérale de Lausanne (EPFL, English: Swiss Federal Institute of Technology in Lausanne) is one of the two Swiss Federal Institutes of ...

Ad allocated by online matching algorithm (matching ads to search results)

Cocabola

fivilla

rivella

IKEA

rivella

IKEA

LKEA

LKEA

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\operatorname{cost}(\text { solution }) \leq c \cdot \text { OPT } \quad \text { if minimization }
$$

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of \mathbf{B} or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Strategy:

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Strategy: Rent for the first $B-1$ days and buy at the beginning of day B

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Strategy: Rent for the first B-1 days and buy at the beginning of day B

- If we ski at most B-1 days, we are optimal

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Strategy: Rent for the first B-1 days and buy at the beginning of day B

- If we ski at most $B-1$ days, we are optimal
- If we ski at least B days, we pay 2B-1 whereas OPT pays B

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing

Strategy: Rent for the first B-1 days and buy at the beginning of day B

- If we ski at most B-1 days, we are optimal
- If we ski at least B days, we pay $2 B-1$ whereas OPT pays B
- Strategy is 2-competitive which is optimal for deterministic algorithms. (e/(e-1) is optimal with randomization)

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value(solution) } & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value }(\text { solution }) & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Folklore Theorem:
Greedy is $\mathbf{1 / 2}$-competitive
This is best possible for deterministic strategies

Theorem [KVV'90 + BC08, DJK13...]:

Ranking is ($1-1 / \mathrm{e}$)-competitive
This is best possible for (randomized) strategies

Evaluating online algorithms Competitive ratio

An algorithm is c-competitive if, for any input sequence, it finds a solution with

$$
\begin{aligned}
\operatorname{cost}(\text { solution }) & \leq c \cdot \mathrm{OPT} & & \text { if minimization } \\
\text { value }(\text { solution }) & \geq c \cdot \mathrm{OPT} & & \text { if maximization }
\end{aligned}
$$

Folklore Theorem:
Greedy is $\mathbf{1 / 2}$-competitive
This is best possible for deterministic strategies

Theorem [KVV'90 + BC08, DJK13...]:

Ranking is ($1-1 / \mathrm{e}$)-competitive
This is best possible for (randomized) strategies

"Premier league" searches in UK

"Premier league" searches in UK

ML Algorithms

Gcalola

ML Algorithm
Excellent guarantee normal days

ML Algorithm

Excellent guarantee normal days

But no worst-case guarantees

"Premier league" searches in UK

International fixtures

World-cup qualifiers in Europe

Learning-Augmented Online Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Online Algorithms \cap ML = Learning Augmented Algorithms

Learning-Augmented Online Algorithms

- Online algorithm with access to predictions about the future
- No assumptions on the predictor

Three Desiderata

Three Desiderata

- Consistency: if predictions are correct, algorithm gives close to optimal solution

Three Desiderata

- Consistency: if predictions are correct, algorithm gives close to optimal solution
- Robustness: Even under adversarial predictions, algorithm maintains a worstcase guarantee (ideally comparable to best known online algorithm)

Three Desiderata

- Consistency: if predictions are correct, algorithm gives close to optimal solution
- Robustness: Even under adversarial predictions, algorithm maintains a worstcase guarantee (ideally comparable to best known online algorithm)
- Smoothness: Performance degrades nicely in the error of the predictor

Consistency vs Robustness

 Example: Ski rental- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing
- Prediction P of number of days

Consistency vs Robustness Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing
- Prediction P of number of days

No trust

Can't do better than standard online algorithms

Bad consistency

Consistency vs Robustness Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of \mathbf{B} or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing
- Prediction P of number of days

No trust

Can't do better than standard online algorithms

Bad consistency

Complete trust

Excellent consistency but what if Prediction is 10B and reality is 1

Bad robustness

Consistency vs Robustness Example: Ski rental

- At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for that day at a cost of 1
- The difficulty is that we do not know the total number of days we will be skiing
- Prediction P of number of days
No trust
Can't do better than
standard online algorithms
Bad consistency

Complete trust

Excellent consistency but what if Prediction is 10B and reality is 1

Bad robustness

Balanced trust $\lambda \in(0,1)$
Wait λB days to buy if prediction is to buy

Consistency: $(1+\lambda)$ Robustness: $O(1 / \lambda)$

Emerging and quickly growing line of work

Emerging and quickly growing line of work

- Ad allocation by Mahdian, Nazerzadeh, Saberi, EC'07

Emerging and quickly growing line of work

- Ad allocation by Mahdian, Nazerzadeh, Saberi, EC'07
- Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)

Emerging and quickly growing line of work

- Ad allocation by Mahdian, Nazerzadeh, Saberi, EC'07
- Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)
- Ski rental (Kumar et al. NeurIPS 2018, Gollapudi and Panigrahi ICML 2019)
- Bloom filters (Mitzenmacher NeurIPS 2018)
- Metrical task systems (Antoniadis et al. ICML 2020)
- Frequency estimation in data streams (Hsu et al. ICLR 2019)
- Scheduling (Lattanzi et al. SODA 2020, Bamas et al. NeurIPS 2020)
- + courses, workshops...

Emerging and quickly growing line of work

https://algorithms-with-predictions.github.io

Can we adapt powerful frameworks such as the primaldual approach to the learning augmented setting?

Outline

- Learning-augmented online algorithms
- Case study: set cover
- Instantiating PDLA for other problems
- Future directions

Fractional Online Set Cover

Fractional online set cover problem

Fractional online set cover problem

Fractional online set cover problem

Goal:

Fractional online set cover problem

Goal: - cover fractionally every newly arrived element

Fractional online set cover problem

Goal: - cover fractionally every newly arrived element

- decisions are irrevocable = cannot decrease current fractional solution

Fractional online set cover problem

Goal: - cover fractionally every newly arrived element

- decisions are irrevocable = cannot decrease current fractional solution
- minimize the sum of fractionally selected sets

Fractional online set cover problem

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

$$
x_{S_{1}}+x_{S_{2}} \geq 1
$$

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

$$
x_{S_{1}}+x_{S_{2}} \geq 1
$$

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

$$
x_{S_{1}}+x_{S_{2}} \geq 1
$$

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

$$
\begin{aligned}
x_{S_{1}}+x_{S_{2}} & \geq 1 \\
x_{S_{2}} & \geq 1
\end{aligned}
$$

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Fractional online set cover problem

$$
\begin{aligned}
x_{S_{1}}+x_{S_{2}} & \geq 1 \\
x_{S_{2}} & \geq 1
\end{aligned}
$$

LP formulation:

- each set has a corresponding variable
- at every new element e arrival a new constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ needs to be satisfied
- minimize $\sum_{i} x_{S_{i}}$

Difficult instance

Difficult instance

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

Difficult instance

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 / m \quad x_{S_{3}}=1 / m \quad \ldots \quad x_{S_{m}}=1 / m$

Constraints

$$
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 / m \quad x_{S_{3}}=1 / m \quad \ldots \quad x_{S_{m}}=1 / m$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-1) \quad \ldots \quad x_{S_{m}}=1 /(m-1)$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-1) \quad \ldots \quad x_{S_{m}}=1 /(m-1)$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2) \quad \ldots \quad x_{S_{m}}=1 /(m-2)$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2) \quad \ldots \quad x_{S_{m}}=1 /(m-2)$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution

$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2) \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution
$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2) \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution
$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2) \quad \ldots \quad x_{S_{m}}=1 \square O P T=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance

Current solution
$x_{S_{1}}=1 / m \quad x_{S_{2}}=1 /(m-1) \quad x_{S_{3}}=1 /(m-2)$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Which can be shown to be a lower bound on the performance of any online algorithm

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints
$x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution
$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution
$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution
$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=1$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=0 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

Difficult instance with a prediction

Current solution

$x_{S_{1}}=1 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

Difficult instance with a prediction

Current solution

$x_{S_{1}}=1 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

Difficult instance with a prediction

Current solution

$x_{S_{1}}=1 \quad x_{S_{2}}=0 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0$
Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=0 \quad \ldots \quad x_{S_{m}}=0
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=1 \quad \ldots \quad x_{S_{m}}=0
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=1 \quad \ldots \quad x_{S_{m}}=1
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
\cos t=m
$$

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=1 \quad \ldots \quad x_{S_{m}}=1
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=1 \quad \ldots \quad x_{S_{m}}=1
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Difficult instance with a prediction

Current solution

$$
x_{S_{1}}=1 \quad x_{S_{2}}=1 \quad x_{S_{3}}=1 \quad \ldots \quad x_{S_{m}}=1
$$

Constraints

$$
\begin{array}{r}
x_{S_{1}}+x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{2}}+x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
x_{S_{3}}+\ldots+x_{S_{m}} \geq 1 \\
\vdots \\
x_{S_{m}} \geq 1
\end{array}
$$

Completely trusting predictor has terrible robustness

Interesting tradeoff between consistency and robustness

The Primal-Dual Approach

Primal

```
minimize }\mp@subsup{\sum}{i}{}\mp@subsup{x}{\mp@subsup{S}{i}{}}{
subject to }\mp@subsup{\sum}{i:e\in\mp@subsup{S}{i}{}}{}\mp@subsup{x}{\mp@subsup{S}{i}{}}{}\geq1\mathrm{ for every element e
```

$$
\begin{aligned}
& \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: o \in ؟} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

Dual

$$
\begin{aligned}
& \text { maximize } \sum_{e} y_{e} \\
& \text { subject to } \sum_{e \in S_{i}} y_{e} \leq 1 \text { for every set } S_{i}
\end{aligned}
$$

> Primal minimize $\sum_{i} x_{S_{i}}$ subject to $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ for every element e

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \# s e t s \text { covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

> Primal minimize $\sum_{i} x_{S_{i}}$ subject to $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Example

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the
corresponding dual variable y_{e} corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \# s e t s \text { covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Primal

$$
\text { minimize } \sum x_{S_{i}}
$$

subject to $\sum x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
e
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \# s e t s \text { covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Example

Primal

$$
\operatorname{minimize} \sum x_{S_{i}}
$$

subject to $\sum x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
e
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{|\# s e t s ~ c o v e r i n g ~ e| ~}$
$-y_{e} \leftarrow y_{e}+1$

Primal

$$
\operatorname{minimize} \sum x_{S_{i}}
$$

subject to $\sum x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
e
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{|\# s e t s ~ c o v e r i n g ~ e| ~}$
$-y_{e} \leftarrow y_{e}+1$

Primal

$$
\operatorname{minimize} \sum x_{S_{i}}
$$

subject to $\sum x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
e
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{|\# s e t s ~ c o v e r i n g ~ e| ~}$
$-y_{e} \leftarrow y_{e}+1$

Primal

$$
\operatorname{minimize} \sum x_{S_{i}}
$$

subject to $\sum x_{S_{i}} \geq 1$ for every element e

Dual

maximize $\sum y_{e}$
e
subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{|\# s e t s ~ c o v e r i n g ~ e| ~}$
$-y_{e} \leftarrow y_{e}+1$

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Analysis

$$
\begin{aligned}
& \qquad \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

Dual
 maximize $\sum_{e} y_{e}$
 subject to $\sum_{e \in S_{i}} y_{e} \leq 1$ for every set S_{i}
 \qquad

```
Algorithm
Upon arrival of a new primal constraint \(\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1\) and the
corresponding dual variable \(y_{e}\)
- If \(\sum_{i: e \in S_{i}} x_{S_{i}}<1\) then
- For each \(i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}\)
    \(-y_{e} \leftarrow y_{e}+1\)
```


Analysis

$$
\begin{aligned}
& \quad \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dual } \\
& \text { maximize } \sum_{e} y_{e} \\
& \text { subject to } \sum_{e \in S_{i}} y_{e} \leq 1 \text { for every set } S_{i}
\end{aligned}
$$

1. At each step the increase of primal is $\sum_{i: e \in S_{i}}\left(x_{i}+1 / \mid \#\right.$ sets covering e $\left.\mid\right) \leq 2$ whereas increase in dual is 1
```
Algorithm
Upon arrival of a new primal constraint \(\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1\) and the
corresponding dual variable \(y_{e}\)
- If \(\sum_{i: e \in S_{i}} x_{S_{i}}<1\) then
- For each \(i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}\)
    \(-y_{e} \leftarrow y_{e}+1\)
```


Analysis

$$
\begin{aligned}
& \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

Dual

$\operatorname{maximize} \sum_{e} y_{e}$

 subject to \(\sum_{e \in S_{i}} y_{e} \leq 1\) for every set \(S_{i}\)
 1. At each step the increase of primal is $\sum_{i: e \in S_{i}}\left(x_{i}+1 / \mid \#\right.$ sets covering e $\left.\mid\right) \leq 2$ whereas increase in dual is 1
2. $y / \log (m)$ is a feasible dual solution:

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

$$
\begin{aligned}
& \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

```
        Dual
    maximize }\mp@subsup{\sum}{e}{}\mp@subsup{y}{e}{
    subject to }\mp@subsup{\sum}{e\in\mp@subsup{S}{i}{}}{}\mp@subsup{y}{e}{}\leq1\mathrm{ for every set }\mp@subsup{S}{i}{
```


Analysis

1. At each step the increase of primal is $\sum_{i: e \in S_{i}}\left(x_{i}+1 / \mid \#\right.$ sets covering e $\left.\mid\right) \leq 2$ whereas increase in dual is 1
2. $y / \log (m)$ is a feasible dual solution:

- every time a y_{e} variable is updated in a constraint $\sum_{e \in S_{i}} y_{e} \leq 1$

> Algorithm Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e} - If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then $\quad-$ For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \# s e t s \text { covering e| }}$ $\quad-y_{e} \leftarrow y_{e}+1$

$$
\begin{aligned}
& \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dual } \\
& \text { maximize } \sum_{e} y_{e} \\
& \text { subject to } \sum_{e \in S_{i}} y_{e} \leq 1 \text { for every set } S_{i}
\end{aligned}
$$

Analysis

1. At each step the increase of primal is $\sum_{i: e \in S_{i}}\left(x_{i}+1 / \mid \#\right.$ sets covering e $\left.\mid\right) \leq 2$ whereas increase in dual is 1
2. $y / \log (m)$ is a feasible dual solution:

- every time a y_{e} variable is updated in a constraint $\sum_{e \in S_{i}} y_{e} \leq 1$
- The variable $x_{S_{i}}$ is doubled in primal which can happen at most $\log (m)$ times as its starting value is $1 / \mathrm{m}$

> Algorithm Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e} - If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then \quad - For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \# s e t s \text { covering e| }}$ $\quad-y_{e} \leftarrow y_{e}+1$

$$
\begin{aligned}
& \text { Primal } \\
& \text { minimize } \sum_{i} x_{S_{i}} \\
& \text { subject to } \sum_{i: e \in S_{i}} x_{S_{i}} \geq 1 \text { for every element e }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dual } \\
& \text { maximize } \sum_{e} y_{e} \\
& \text { subject to } \sum_{e \in S_{i}} y_{e} \leq 1 \text { for every set } S_{i}
\end{aligned}
$$

Analysis

1. At each step the increase of primal is $\sum_{i: e \in S_{i}}\left(x_{i}+1 / \mid\right.$ \#sets covering e $\left.\mid\right) \leq 2$ whereas increase in dual is 1
2. $y / \log (m)$ is a feasible dual solution:

- every time a y_{e} variable is updated in a constraint $\sum_{e \in S_{i}} y_{e} \leq 1$
- The variable $x_{S_{i}}$ is doubled in primal which can happen at most $\log (m)$ times as its starting value is $1 / \mathrm{m}$
$1+2$ together with LP-duality implies that algorithm is $O(\log m)$-competitive

Making it Learning-Augmented

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Without prediction all sets are equally likely to be good => hedge uniformly

$$
x_{S_{1}}=x_{S_{2}}=x_{S_{3}}=x_{S_{4}}=1 / 4
$$

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#sets covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Algorithm

Upon arrival of a new primal constraint $\sum x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: e \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{}{\text { |\#setf covering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Learning Augmented

$\frac{\lambda}{\mid \# \text { sets covering e } \mid}+\frac{1-\lambda}{\mid \# \text { sets covering e in prediction } \mid}$

Algorithm

Upon arrival of a new primal constraint $\sum_{i: e \in S_{i}} x_{S_{i}} \geq 1$ and the corresponding dual variable y_{e}

- If $\sum_{i: \in \in S_{i}} x_{S_{i}}<1$ then
- For each $i: e \in S_{i}, X_{S_{i}} \leftarrow 2 \cdot x_{S_{i}}+\frac{1}{\mid \text { \#settcovering e| }}$
$-y_{e} \leftarrow y_{e}+1$

Learning Augmented

$\frac{\lambda}{\mid \# \text { sets covering e } \mid}+\frac{1-\lambda}{\mid \# \text { sets covering e in prediction } \mid}$

With prediction, say S_{3}, should increase that variable more aggressively depending on our trust $\lambda=[0,1]$
$x_{S_{1}}=x_{S_{2}}=x_{S_{4}}=\lambda / 4$
$x_{S_{3}}=\lambda / 4+1-\lambda$

Analysis and guarantees

Analysis and guarantees

Good prediction 0 合: $O\left(\frac{1}{1-\lambda}\right)$ competitive
proof via a charging argument + increase of correct primal variables >> increase of incorrect primal variables

Analysis and guarantees

Good prediction \& $O\left(\frac{1}{1-\lambda}\right)$ competitive
proof via a charging argument + increase of correct primal variables >> increase of incorrect primal variables

proof via a primal-dual argument essentially the same proof as in the purely online case

Analysis and guarantees

Good prediction \& $O\left(\frac{1}{1-\lambda}\right)$ competitive
proof via a charging argument + increase of correct primal variables >> increase of incorrect primal variables

vs $O(\log m)$ competitive with no prediction
proof via a primal-dual argument essentially the same proof as in the purely online case

Analysis and guarantees

Good prediction \& $0\left(\frac{1}{1-\lambda}\right)$ competitive
proof via a charging argument + increase of correct primal variables >> increase of incorrect primal variables

vs $O(\log m)$ competitive with no prediction
proof via a primal-dual argument essentially the same proof as in the purely online case

Analysis and guarantees

Good prediction \& $O\left(\frac{1}{1-\lambda}\right)$ competitive
proof via a charging argument + increase of correct primal variables >> increase of incorrect primal variables

vs $O(\log m)$ competitive with no prediction
proof via a primal-dual argument essentially the same proof as in the purely online case

PDLA

General recipe

PDLA

General recipe

- formulate the LP relaxation of the problem
- solve the problem using the Primal-Dual method
- tweak the rate to which primal variables increase to incorporate predictions

PDLA

General recipe

- formulate the LP relaxation of the problem
- solve the problem using the Primal-Dual method
- tweak the rate to which primal variables increase to incorporate predictions

Simple analysis

Consistency via a charging argument
Robustness mimicking the original PD method proof

PDLA

General recipe

- formulate the LP relaxation of the problem
- solve the problem using the Primal-Dual method
- tweak the rate to which primal variables increase to incorporate predictions

Simple analysis

Consistency via a charging argument
Robustness mimicking the original PD method proof

PDLA

General recipe

- formulate the LP relaxation of the problem
- solve the problem using the Primal-Dual method
- tweak the rate to which primal variables increase to incorporate predictions

Simple analysis

Consistency via a charging argument
Robustness mimicking the original PD method proof

Easy to implement (TCP-ack)

Good prediction: beat online algorithms
Bad prediction: maintain robustness

Outline

- Learning-augmented online algorithms
- Case study: set cover
- Instantiating PDLA for other problems
- Future directions

Ski Rental

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
        /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
        /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
    /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

\Rightarrow

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

Recovering the results of Kumar et al. NeurIPS 2018

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
\(\Rightarrow\)
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
        /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

Recovering the results of Kumar et al. NeurIPS 2018

Best possible robustnessconsistency tradeoff

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
\(\Rightarrow\)
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
    /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

Recovering the results of Kumar et al. NeurIPS 2018

```
Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    \(c \leftarrow e(1), c^{\prime} \leftarrow 1\)
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
\(\Rightarrow\)
```

```
Algorithm 4 PDLA FOR SKI-RENTAL.
    Input: \(\lambda, N^{\text {pred }}\)
    Initialize: \(x \leftarrow 0, f_{j} \leftarrow 0, \forall j\)
    if \(N^{\text {pred }} \geqslant B\) then
        /* Prediction suggests buying
        \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1\)
    else
    /* Prediction suggests renting
        \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda\)
    end if
    for each new day \(j\) s.t. \(x+f_{j}<1\) do
        /* Primal Update
        \(f_{j} \leftarrow 1-x\)
        \(x \leftarrow\left(1+\frac{1}{B}\right) x+\frac{1}{(c-1) \cdot B}\)
        /* Dual Update
        \(y_{j} \leftarrow c^{\prime}\)
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

Recovering the results of Kumar et al. NeurIPS 2018

TCP Acknowledgement

TCP-ack problem definition:

TCP-ack problem definition: A server receives a stream of packets

TCP-ack problem definition: A server receives a stream of packets

TCP-ack problem definition: A server receives a stream of packets

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender
immediately

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender
immediately
M
ack

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender
immediately

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender
immediately

$$
\begin{aligned}
& \text { ack } \\
& \text { ack }
\end{aligned}
$$

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender
immediately

$$
\begin{aligned}
& \text { ack } \\
& \text { ack }
\end{aligned}
$$

Cost $=($ cost of ack $)+($ cost of ack $)$

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender immediately

```
ack
ack
```

- Cost $=($ cost of ack $)+($ cost of ack $)$

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender immediately

```
ack
ack
```

- Cost $=($ cost of ack $)+($ cost of ack $)$

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender immediately

The server sends an ack to the sender after he received enough packets

ack

Cost $=($ cost of ack $)+($ cost of ack $)$

TCP-ack problem definition: A server receives a stream of packets

The server sends an ack to the sender immediately

\square

Cost $=($ cost of ack $)+($ cost of ack $)$

The server sends an ack to the sender after he received enough packets


```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        /* Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        /* Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        /* Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
Algorithm 6 PDLA FOR TCP ACKNOWLEDGEMENT
Input: \(\lambda, \mathcal{A}\)
Initialize: \(x \leftarrow 0, y \leftarrow 0\)
for all times \(t\) do
        for all packages \(j\) such that \(\sum_{k=t(j)}^{t} x_{k}<1\) do
\(\Rightarrow \quad\) if \(t \geqslant \alpha(t(j))\) then
                                    /* Prediction already acknowledged packet \(j\)
                \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1 / d\)
            else
                /* Prediction did not acknowledge packet \(j\) yet
                \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda / d\)
            end if
            ** Primal Update
            \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
            \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
            /* Dual Update
            \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        /* Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

```
Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
```

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT
MENT
Input: λ, \mathcal{A}
Input: λ, \mathcal{A}
Initialize: $x \leftarrow 0, y \leftarrow 0$
Initialize: $x \leftarrow 0, y \leftarrow 0$
for all times t do
for all times t do
for all packages j such that $\sum_{k=t(j)}^{t} x_{k}<1$ do
for all packages j such that $\sum_{k=t(j)}^{t} x_{k}<1$ do
$\Rightarrow \quad$ if $t \geqslant \alpha(t(j))$ then
$\Rightarrow \quad$ if $t \geqslant \alpha(t(j))$ then
/* Prediction already acknowledged packet j
/* Prediction already acknowledged packet j
$c \leftarrow e(\lambda), c^{\prime} \leftarrow 1 / d$
$c \leftarrow e(\lambda), c^{\prime} \leftarrow 1 / d$
else
else
/* Prediction did not acknowledge packet j yet
/* Prediction did not acknowledge packet j yet
$c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda / d$
$c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda / d$
end if
end if
** Primal Update
** Primal Update
$f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}$
$f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}$
$x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)$
$x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)$
* Dual Update
* Dual Update
$y_{j t} \leftarrow c^{\prime}$
$y_{j t} \leftarrow c^{\prime}$
end for
end for
end for

```
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$
- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        /* Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```


Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-

``` MENT
Input: \(\lambda, \mathcal{A}\)
Initialize: \(x \leftarrow 0, y \leftarrow 0\)
for all times \(t\) do
        for all packages \(j\) such that \(\sum_{k=t(j)}^{t} x_{k}<1\) do
\(\Rightarrow \quad\) if \(t \geqslant \alpha(t(j))\) then
                                    /* Prediction already acknowledged packet j
            \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1 / d\)
        else
            /* Prediction did not acknowledge packet \(j\) yet
                \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda / d\)
            end if
            ** Primal Update
            \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
            \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
            /* Dual Update
            \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$

PDLA for TCP Ack:

- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

```
Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].
    Initialize: \(x \leftarrow 0, y \leftarrow 0\)
    for all times \(t\) do
        for all packages \(j\) such that
        \(\sum_{k=t(j)}^{t} x_{k}<1\) do
        \(c \leftarrow e(1), c^{\prime} \leftarrow 1 / d\)
        * Primal Update
        \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
        \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
        /* Dual Update
        \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```


Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-

``` MENT
Input: \(\lambda, \mathcal{A}\)
Initialize: \(x \leftarrow 0, y \leftarrow 0\)
for all times \(t\) do
        for all packages \(j\) such that \(\sum_{k=t(j)}^{t} x_{k}<1\) do
\(\Rightarrow \quad\) if \(t \geqslant \alpha(t(j))\) then
                                    /* Prediction already acknowledged packet \(j\)
            \(c \leftarrow e(\lambda), c^{\prime} \leftarrow 1 / d\)
        else
            /* Prediction did not acknowledge packet \(j\) yet
                \(c \leftarrow e(1 / \lambda), c^{\prime} \leftarrow \lambda / d\)
            end if
            ** Primal Update
            \(f_{j t} \leftarrow 1-\sum_{k=t(j)}^{t} x_{k}\)
            \(x_{t} \leftarrow x_{t}+\frac{1}{d} \cdot\left(\sum_{k=t(j)}^{t} x_{k}+\frac{1}{c-1}\right)\)
            * Dual Update
            \(y_{j t} \leftarrow c^{\prime}\)
        end for
    end for
```

- Robustness $\frac{e^{\lambda}}{e^{\lambda}-1}$

PDLA for TCP Ack:

- Consistency $\frac{\lambda e^{\lambda}}{e^{\lambda}-1}$

PDLA in Action for TCP Ack

PDLA in Action for TCP Ack

Experimental setting:

PDLA in Action for TCP Ack

Experimental setting:

- $I \rightarrow$ number of packets at each time step follows a Lomax distribution
- $I_{\text {pred }} \rightarrow$ (perturbed I) at each time step with probability p we delete the packets of the true instance I, and with probability p we add an independent instance

PDLA in Action for TCP Ack

Experimental setting:

- $I \rightarrow$ number of packets at each time step follows a Lomax distribution
- $I_{\text {pred }} \rightarrow($ perturbed $I)$ at each time step with probability p we delete the packets of the true instance I, and with probability p we add an independent instance

PDLA in Action for TCP Ack

Experimental setting:

- $I \rightarrow$ number of packets at each time step follows a Lomax distribution
- $I_{\text {pred }} \rightarrow$ (perturbed I) at each time step with probability p we delete the packets of the true instance I, and with probability p we add an independent instance

Bad prediction: maintain robustness

Good prediction: beat online algorithms

Outline

- Learning-augmented online algorithms
- Case study: set cover
- Instantiating PDLA for other problems
- Future directions

Summary

- PDLA gives a principled way of extending the primal-dual approach to incorporate new predictions
- Simple proofs (using old analysis)
- Unifies and some new results

Future directions

- Apply PDLA to problems with packing constraints (e.g. revenue maximization in ad-auctions)
- Apply PDLA to problems with covering constraints and non-linear objective functions (e.g. speed scaling for energy minimization scheduling)
- Learning augment and try to get tight consistency/robustness guarantees for many more covering problems (e.g. load balancing, weighted caching etc.)
- Good advice doesn't come for free

Thank You!

