Genesis of **ETH** and **SETH**

Mohan Paturi

University of California, San Diego

19th Max Planck Advanced Course on the Foundations of Computer Science
August 2018, Saarbrücken, Germany
Outline

1. Satisfiability Algorithms
 - PPZ Algorithm
 - Satisfiability Coding Lemma

2. Sparsification Lemma

3. Preparation for Sparsification Algorithm

4. SNP

5. Exponential Time Hypothesis
 - Explanatory Value of ETH

6. Strong Exponential Time Hypothesis
 - Explanatory Value of SETH
Central Role of Satisfiability

- **Satisfiability problems** seem to play a central role in complexity theory due to their expressive power.
 - as complete problems
 - in terms of connection to lower bounds
- **Equally central** in fine-grained complexity.
 - Any problem in \(\textbf{NP} \) can be reduced to \(\textbf{Circuit Sat} \) preserving the natural complexity parameter.
 - Satisfiability conjectures are able to explain why we cannot improve algorithms for a wide variety of problems.
 - Reduction from the satisfiability problem of a more general circuit model to a given problem demonstrates the greater hardness of the problem.
Plan

- Satisfiability algorithms; PPZ algorithm
- Fine-grained reducibilities
- Completeness of 3-\textsc{Sat} under subexponential reductions
- Satisfiability conjectures and their explanatory power
Satisfiability Problems

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable.
- Examples for F: k-CNF, CNF, AC^0 circuit, NC^1 circuit, polynomial size circuit, or a formula.
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^n(1-\mu)$ bound for $\mu > 0$?
- μ is called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and n, the number of variables.
Improved Algorithms for **Circuit Sat**

Circuit Sat — split and list, random restrictions, dynamic programming, algebraization, matrix multiplication

- **\mathbf{AC}^0** Satisfiability for circuits of size cn and depth d — $2^{n(1 - 1/O(c^d))}$
- **\mathbf{ACC}** Satisfiability — $2^n - \Omega(n^\varepsilon)$
- Formula Satisfiability for formulas of size cn — $2^{n(1 - 1/O(c^2))}$
- Formula Satisfiability for formulas of size cn over the full binary basis — $2^{n(1 - 1/O(2c^2))}$
- Depth-2 Threshold Circuit Satisfiability for circuits with cn wires — $2^{n(1 - 1/O(c^c^2))}$
- Formula Satisfiability for formulas of size cn — $2^{n(1 - 1/O(c))}$
- Satisfiability for circuits of size cn and bounded treewidth ω — $2^{n(1 - 1/O(c\omega^4\omega))}$
Improved Exponential Time Algorithms for k-SAT

- k-SAT, number of variables as the complexity parameter — backtracking and local search
 - 3-SAT — $2^{0.386n}$
 - 4-SAT — $2^{0.554n}$
 - k-SAT — $2^{(1-\mu_k/(k-1))n}$ where $\mu_k \approx 1.6$ for large k.

- Paturi
- Genesis of ETH and SETH
Approaches to k-SAT

- Backtracking algorithms (also known as DPLL algorithms)
- Local search algorithms
- Polynomial method
- Earlier (to 1997) results showed that μ is $\Omega(1/2^k)$
- PPZ is a DPLL-style algorithm with random ordering of variables
PPZ Algorithm

Algorithm PPZ:

1. Let F be a k-CNF and σ a random permutation on variables
2. for $i = 1, \ldots, n$
3. if there is a unit clause for the variable $\sigma(i)$
4. then set the variable $\sigma(i)$ so that the clause true
5. else set the variable $\sigma(i)$ randomly
6. Simplify F
7. if F is satisfied, output the assignment

Theorem

There is a randomized algorithm for k-SAT that finds a satisfying
assignment in time $\text{poly}(n)2^n(1 - \frac{1}{k})$ with constant success
probability.
Isolated Solutions

- A satisfying solution for F is **isolated** if all its distance 1 neighbors are not solutions.
- What is the maximum number of isolated solutions for a k-CNF?
- We show that this number is at most $2^{n(1-1/k)}$.
Let F be a k-CNF and x be an isolated satisfying solution of x.
For each variable i and isolated solution x, F must have a clause with exactly one true literal corresponding to the variable i at solution x.
Such clause is called a critical clause for the variable i at the solution x.
Compressing Isolated Satisfying Solutions

Let F be a k-CNF and σ a permutation of $\{1, \cdots, n\}$. Let $x \in \{0, 1\}^n$ be an isolated satisfying solution of F.

Compression Function F_σ:

1. Permute the bits of x according to σ.
2. For each i, delete the i'th bit of x if all other variables in a critical clause $C_{x, \sigma(i)}$ (for the variable $\sigma(i)$ at x) occur before the variable $\sigma(i)$ in the order σ.
3. $F_\sigma(x)$ is the resulting compressed string.
F_σ is Lossless

- We can recover x from $y = F_\sigma(x)$, F, and σ. Decompression Algorithm:

1. $F_1 = F$
2. for $i = 1, \ldots, n$
3. if F_i has a clause of length one with the variable $\sigma(i)$,
4. then set the variable $\sigma(i)$ so that the clause is true
5. else set the variable $\sigma(i)$ to the next unused bit of y.
6. $F_{i+1} = \text{substitute for } \sigma(i) \text{ in } F \text{ and simplify}$
Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all permutations σ) compressed length $|F_\sigma(x)|$ is at most $n(1 - 1/k)$.

Proof Sketch: For each variable i with a critical clause at x, the probability (under a random permutation) i appears last among all the variables in its critical clause is at least $1/k$.

The compression algorithm deletes n/k bits on average.
Maximum Number of Isolated Solutions

Lemma

A k-CNF can have at most $2^n(1 - 1/k)$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most $n - n/k$.
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most $n - n/k$.
- Hence, the number of isolated solutions is at most $2^n(1 - 1/k)$ using a convexity argument.

Fact

If $\Phi : S \to \{0, 1\}^*$ is a prefix-free encoding (one-to-one function) with average code length l, the $|S| \leq 2^l$.

Satisfiability Algorithms Sparsification Lemma Preparation for PPZ Algorithm Satisfiability Coding Lemma

Paturi Genesis of ETH and SETH
Lower Bounds for Parity

Theorem

Computing the parity function requires $2^{n/k}$ *size* $\Sigma_\Pi \Sigma_k$ *circuits.*

Theorem

Computing the parity function requires $\Omega(n^{1/4}2^{\sqrt{n}})$ *size depth-3 circuits.*
k-SAT Algorithm

Algorithm **PPZ**:

1. Let F be a k-CNF and σ a random permutation on variables
2. for $i = 1, \ldots, n$
3. if there is a unit clause for the variable $\sigma(i)$
4. then set the variable $\sigma(i)$ so that the clause true
5. else set the variable $\sigma(i)$ randomly
6. Simplify F
7. if F is satisfied, output the assignment
Algorithm PPZ outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.

Proof Sketch:

- E_1 — for at least $I(x)/k$ variables, the critical variable appears as the last variable among the variables in the critical clause.
- E_2 — values assigned to the variables in the for loop agree with x.
- $P(E_1) \geq 1/n$
- $P(E_2|E_1) \geq 2^{-n+I(x)/k}$
- $P(x \text{ is output by } \text{PPZ}) \geq \frac{1}{n}2^{-n+I(x)/k}$
PPZ Analysis

- Let S be the set of satisfying solutions of F.
- For $x \in S$, define $value(x) = 2^{-n+I(x)}$
- Fact: $\sum_{x \in S} value(x) \geq 1$

$$P(x \text{ is output by PPZ}) \geq \sum_{x \in S} \frac{1}{n} 2^{-n+I(x)/k}$$

$$= \frac{1}{n} 2^{-n+n/k} \sum_{x \in S} 2^{(-n+I(x))/k}$$

$$\geq \frac{1}{n} 2^{-n+n/k}$$
Dense Case

Theorem

If $S \neq \emptyset$ is the set of satisfying solutions of a k-CNF F, then PPZ finds a satisfying assignment with probability at least $\frac{1}{n} \left(\frac{2^n}{|S|} \right)^{1-1/k}$.

Proof Sketch: Use the edge isoperimetric inequality for the hypercube to conclude that among all sets $S \subseteq \{0,1\}^n$ of a given size, the subcube of dimension $\log |S|$ minimizes the number of edges between S and \bar{S}.
Towards a Theory of Fine-Grained Complexity — Motivating Questions

- Can the improvements for 3-SAT extend to arbitrarily small exponents?
- Is 3-SAT solvable in subexponential-time?
- How about 3-Colorability? Do improved algorithms for 3-SAT imply improved algorithms for 3-Colorability or vice versa?
Lack of reductions that preserve the complexity parameter

In the least, we need reductions that preserve the complexity parameter linearly.
Example: An Obstacle for a Reduction from 3-SAT to 3-COLORABILITY

- If 3-COLORABILITY has a subexponential time ($2^{\varepsilon n}$ for arbitrarily small ε) algorithm, does it imply a subexponential time algorithms for 3-SAT?
- In the standard reduction from 3-SAT of n variables and m clauses to 3-COLORABILITY, we get a graph on $O(n + m)$ vertices and $O(n + m)$ edges.
- Complexity parameter increases polynomially, thus preventing any useful conclusion about 3-SAT.
Subexponential Time

Definition (Subexponential Time)

A problem is computable in time subexponential in the complexity parameter n if there is an effectively computable monotone increasing function $g(n) = \omega(1)$ such that the problem on instance x with complexity parameter n is computable in time $\text{poly}(|x|)2^{n/g(n)}$.
Subexponential Time Reductions

Definition (Subexponential Time Reductions)

Let \mathcal{P} and \mathcal{P}' be problems with complexity parameters p and p' respectively. \mathcal{P} is subexponential time reducible to \mathcal{P}' if there exists a collection of reductions $\{R_\varepsilon\}$ such that $\forall \varepsilon > 0$, $\exists c(\varepsilon)$ such that

1. R_ε takes an instance x of \mathcal{P} and outputs instances y_i of \mathcal{P}' for $1 \leq i \leq 2^{\varepsilon n}$ where $|y_i| \leq \text{poly}(|x_i|)$ and $p'(y_i) \leq c(\varepsilon)p(x)$.
2. $x \in \mathcal{L}(\mathcal{P})$ if and only if $y_i \in \mathcal{L}(\mathcal{P}')$ for some i.
3. R_ε runs in time $\text{poly}(|x|)2^{\varepsilon p(x)}$.
Theorem (Johnson and Szegedy, 1998)

Max Independent Set problem has a subexponential time algorithm (in the number of vertices) iff **Max Independent Set** problem when restricted to graphs of degree at most three has one.

In other words, graphs with maximum degree three are the worst-case instances for the **Max Independent Set** problem up to subexponential time reductions.
Proof Sketch for Johnson/Szegedy Theorem

- Let d be large enough. Given a graph G on n vertices, execute the following backtracking algorithm:
 1. As long as G has a vertex of degree more than d, select a vertex v such that $\text{deg}(v) > d$.
 2. Solve the instances $G - v$ (major branch) and $G - N[v]$ (minor branch) where $N[v]$ is the neighbourhood of v in G including v.

- Transform each G_i output by the previous algorithm to G'_i of degree at most 3 where $n(G'_i) \leq (2d - 1)n(G_i)$ and such that a maximum independent set of G_i can be recovered from a maximum independent set of G'_i in linear time.

- Number of root-leaf paths with i minor branches is at most $\binom{n}{i}$ since the maximum path length is at most n.

- $i \leq n/(d + 1)$. $\binom{n}{n/(d+1)} \approx 2^{h(1/(d+1))n}$ where h is the binary entropy function.
Let $g(n) = \omega(1)$ be a monotone function such that that maximum independent set can be computed in time $\text{poly}(|G|)2^n/g(n)$ on graphs G of degree at most 3 with n vertices.

We reduced G on n vertices to at most $2^{h(1/(d+1))n}$ many graph instances each with at most $(2d - 1)n$ vertices in time $2^{h(1/(d+1))n}$.

Total time for solving the \textbf{Max Independent Set} problem is bounded by

$$2^{h\left(\frac{1}{d+1}\right)n} + 2^{h\left(\frac{1}{d+1}\right)n}2^{\frac{(2d-1)n}{g((2d-1)n)}} \approx 2^n\left(h\left(\frac{1}{d+1}\right) + \frac{(2d-1)}{g((2d-1)n)}\right)$$

Choose d large enough so that the exponent is at most εn for all sufficiently large n.
Lemma (Sparsification Lemma)

\[\exists \text{ algorithm } A \forall k \geq 2, \epsilon \in (0, 1], \phi \in k\text{-CNF with } n \text{ variables}, A_{k, \epsilon}(\phi) \text{ outputs } \phi_1, \ldots, \phi_s \in k\text{-CNF in } 2^{\epsilon n} \text{ time such that} \]

1. \[s \leq 2^{\epsilon n}; \text{SAT}(\phi) = \bigcup_i \text{SAT}(\phi_i), \text{ where SAT}(\phi) \text{ is the set of satisfying assignments of } \phi \]

2. \[\forall i \in [s] \text{ each literal occurs } \leq O\left(\frac{k}{\epsilon}\right)^{3k} \text{ times in } \phi_i. \]

- Branching on variables alone would require setting almost all the variables resulting in a large tree.
- Branch on **frequently occurring subclauses** rather than just on variables.
- Clause branching results in **less information**, and as a result the tree **does not grow too much**.
- To control for the growth of **new** clauses, start with **small** clauses and look for longest subclauses with required
Reduced Clause Sets

- A k-clause is a clause of size (exactly) k. A k-CNF ϕ is a set of clauses each of size $\leq k$.
- View each clause as a set of literals.
- ϕ is reduced iff no clause is a subset of any other. The reduction of $\phi = \text{red} \phi = \{\subseteq\text{-minimal elements of } \phi\}$.
Frequency Parameters

- Define

\[
\beta_1 = 2, \quad \theta_0 = 2, \\
\beta_c = \sum_{h=1}^{c-1} 4\alpha \beta_{c-h} \beta_h \text{ for } c \geq 2 \\
\theta_c = \beta_c \alpha \text{ for } c \geq 1, \text{ and} \\
\alpha = \frac{2(k-1)^2}{\varepsilon \lg \frac{32(k-1)^2}{\varepsilon}}.
\]

- Solving the recurrence, we get

\[
\beta_i \leq 4(32\alpha)^{i-1} \text{ for } i \geq 2 \\
\theta_i = \alpha \beta_i \leq 4(32)^{i-1} \alpha^i \text{ for } i \geq 1.
\]

- Define \(\beta = \sum_{i=1}^{k-1} \beta_i \leq 4(32\alpha)^k \)
Sunflowers, Hearts, and Petals

- ϕ_c — set of c-clauses of ϕ;
- **Sunflower** \mathcal{F} of c-clauses — a collection of distinct c-clauses of size $\geq \theta_{c-h}$ that share a common subset H of size $h \geq 1$;
- Sunflowers consist of clauses of the same size.
- **Petals** of a sunflower \mathcal{F}: $\{C - H\}$ where C is a clause of \mathcal{F} and H its heart.
- All petals have the same size and they need not be disjoint.
Satisfiability Algorithms Sparsification Lemma Preparation for \('\)

Sparsification Algorithm

1. \(A_{k,\epsilon}(\phi \in k\text{-CNF}) \)
2. \(\phi \leftarrow \text{red} \phi \)
3. if \(\exists \) a sunflower \{
4. select a sunflower consisting of clauses of the smallest size \(c \) and among them one with a heart \(H \) of the largest size
5. \(P \leftarrow \{C - H \mid H \subseteq C \in \phi_c\} \) /* set of petals */
6. /* branch: if we set \(H \) to 1, we call this a heart branch */
7. /* if we set \(H \) to 0, we call this a petal branch */
8. \(A_{k,\epsilon}(\phi \cup \{H\}) \)
9. \(A_{k,\epsilon}(\phi \cup P) \)
10. \}
11. output \(\phi \) /* \(\phi \) is sparsified */

Figure: Sparsification Algorithm
Consider the binary tree T generated by the recursive calls of the algorithm.

Each node is associated with a reduced k-CNF.

Each leaf is sparse: No literal occurs with frequency more than $O\left(\frac{k}{\varepsilon}\right)^{3k}$. If a literal (heart of size 1) with frequency θ_{c-1} among c-clauses, we would have branched.

Goal: to bound the number of leaves of T.

Plan:

1. Bound the number of root-leaf paths.
2. Bound the maximum length $\left(\beta n\right)$ of any path
3. Bound the maximum number $\left(\frac{(k-1)n}{\alpha}\right)$ of petal branches along any path.
4. Conclude that the number of leaves $\leq \left(\frac{\beta n}{(k-1)n}\right) \leq 2^{\varepsilon n}$.

Paturi

Genesis of ETH and SETH
Bounding the Max Length of a Path in T

- A clause C is **new** at node u in T if C is either a petal or a heart in the branching at the parent of u.
- In other words, C is new at u if the parent of u introduced C along the branch leading to u.
- Consider the new clauses introduced along a path. Each branch introduces at least one new clause.
- Maximum path length is bounded by the maximum number of new clauses introduced along any path.
 1. Show that the number of new c-clauses $\leq \beta_c n$
 2. Conclude that the maximum path length $\leq \beta n = \sum_{c=1}^{k-1} \beta_c n$
Bounding the Number of New Clauses

- Petals are **compact**: no subclause of length h occurs more than $\theta_{c-h} - 1$ among petals of size c.

- Indirect argument to count new clauses: new clauses either remain till the leaf or get eliminated by another new clause.

- Number of new clauses along a path \leq number of clauses eliminated + number remaining at the leaf.

- Number of new clauses of length c at any leaf is at most $2n\theta_{c-1}/c$ since no variable occurs with frequency more than $\theta_{c-1} - 1$.

Paturi

Genesis of ETH and SETH
Bounding the Number of Eliminated New Clauses – I

- Only new clauses can eliminate new clauses.
- Any clauses eliminated by a new clause are eliminated at the time of its introduction.
- Argue that a new clause cannot eliminate many new clauses.
We will show that a newly introduced h-clause can eliminate at most $2(\theta_{c-h} - 1)$ new c-clauses.

Definition: A set of clauses of uniform length c is sparsified if no subclause of length $h \geq 1$ occurs with frequency more than $\theta_{c-h} - 1$. In other words, no sunflowers exist.
If the branching at a nonleaf node is made based on a sunflower of \(c \)-clauses, then all the clause sets of length less than \(c \) are sparsified at the node.

The set of petal clauses introduced by a petal branch is sparsified

At any node, new \(c \)-clauses are almost sparsified: no subclause of length \(h \) occurs more than \(2(\theta c - h - 1) \) times.

Therefore, a newly introduced \(h \)-clause can eliminate at most \(2(\theta c - h - 1) \) new \(c \)-clauses.
Bounding the Number of New Clauses

Number of new 1-clauses $\leq 2n = \beta_1 n$. For $c > 1$,

$\#$ of new $(\leq c)$-clauses

$\leq \sum_{h=1}^{c-1} \#$ of new c-clauses eliminated by a new h-clause

$+ \# c$-clauses at the leaf

$+ \#$ new clauses of length $\leq c - 1$

$\leq \sum_{h=1}^{c-1} \left(2\theta_{c-h} - 2\right)\beta_h n + \theta_{c-1} \frac{2n}{c} + \beta_{c-1} n$

$\leq \sum_{h=1}^{c-1} 4\alpha \beta_{c-h} \beta_h n = \beta_c n$
Bounding the Max Number of Petal Branches in T

- Each petal branch introduces at least θ_c new clauses for some c.
- Number of petal branches that introduce petals of size c
 \[\leq \frac{\text{number of new } c\text{-clauses}}{\theta_c} \leq \frac{\beta_c n}{\theta_c} \leq \frac{n}{\alpha} \]
- Total number of petal branches
 \[\leq \sum_{c=1}^{k-1} \beta_c n/\theta_c = (k-1)n/\alpha \]
- Conclusion: total number of leaves
 \[\leq \left(\frac{\beta^n}{(k-1)n/\alpha} \right) \leq 2^\varepsilon n \] by the choice of parameters
Satisfiability Algorithms Sparsification Lemma Preparation for

Open Problem

Lemma (Sparsification Lemma)

\[\exists \text{ algorithm } A \forall k \geq 2, \epsilon \in (0, 1], \phi \in k\text{-CNF} \text{ with } n \text{ variables, } \]
\[A_{k,\epsilon}(\phi) \text{ outputs } \phi_1, \ldots, \phi_s \in k\text{-CNF} \text{ in } 2^{\epsilon n} \text{ time such that } \]

1. \[s \leq 2^{\epsilon n}; \text{ SAT}(\phi) = \bigcup_i \text{ SAT}(\phi_i), \text{ where SAT}(\phi) \text{ is the set of satisfying assignments of } \phi \]
2. \[\forall i \in [s] \text{ each literal occurs } \leq O\left(\frac{k}{\epsilon}\right)^{3k} \text{ times in } \phi_i. \]

Can we improve the sparsification constant (for a given \(\epsilon \)) to \(O\left(\frac{\epsilon}{\epsilon}\right)^{O(k)} \) for some absolute constant \(c \)?
Random k-SAT

Conjecture (Satisfiability Threshold Conjecture)

For every $k \geq 3$, there exists a constant $r_k > 0$ such that,

$$\lim_{n \to \infty} \mathbb{P}[F_k(n, rn) \text{ is satisfiable}] = \begin{cases} 1, & \text{if } r < r_k \\ 0, & \text{if } r > r_k \end{cases}$$

It is known that $2^k \ln 2 - \Theta(k) \leq r_k \leq 2^k \ln 2 - \Theta(1)$ for $k \geq 3$.

Paturi

Genesis of ETH and SETH
Reducing 3-SAT to 3-COLORABILITY under SERF

- Apply Sparsification Lemma to the given 3-CNF ϕ.
- Consider each 3-CNF ϕ_i with linearly many clauses and reduce it to a graph with linearly many vertices.
- Now, a subexponential time algorithm for 3-COLORABILITY implies a subexponential time algorithm for 3-SAT.
SNP

- **SNP** — class of properties expressible by a series of second order existential quantifiers, followed by a series of first order universal quantifiers, followed by a basic formula —Papadimitriou and Yannakakis 1991

- **SNP** includes k-SAT and k-COLORABILITY for $k \geq 3$.

$\exists S \forall (y_1, \ldots, y_k) \forall (s_1, \ldots, s_k)[R(s_1, \ldots, s_k)(y_1, \ldots, y_k) \Rightarrow \bigwedge_{1 \leq i \leq k} S_{s_i}(y_i)$, where $s_i \in \{+,-\}$ and S is a subset of $[n]$.

- **Vertex Cover, Clique, Independent Set** and **k-Set Cover** are in size-constrained SNP.

- **Hamiltonian Path** is SNP-hard.
Completeness of 3-SAT in SNP

Theorem (IPZ 1997)

3-SAT admits a subexponential-time algorithm if and only if every problem in (size-constrained) SNP admits one.

- **Proof Sketch:** Show that every problem in SNP is strongly many-one reducible to k-SAT for some k. Complexity parameter is the number of Boolean existential quantifiers.
- Reduce k-SAT to the union of subexponentially many linear-size k-SAT using Sparsification Lemma.
- Reduce each linear-size k-SAT to 3-SAT with linearly many variables.
Exponential Time Hypothesis (ETH)

- Let \(s_k = \inf\{ \delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-SAT} \} \);
- Define \(s_\infty = \lim_{k \to \infty} s_k \);
- 3-SAT has a subexponential time algorithm \(\implies s_k = 0 \) for all \(k \) and \(s_\infty = 0 \). Moreover, all problems in SNP have subexponential time algorithms.
- Our plan is to make progress by assuming this statement
- Exponential Time Hypothesis (ETH) \(\implies s_3 > 0 \)
Explanatory Burden of **ETH**

- We have very little understanding of exponential time algorithms.
- For **ETH** to be useful,
 - it must be able to provide an explanation for the known complexities of various problems,
 - ideally, by providing lower bounds that match the upper bounds from the best known algorithms.
- **ETH** will be useful if it helps factor out the essential difficulty of dealing with exponential time algorithms for **NP**-complete problems.
Explanatory Value of ETH — I

- All the following results assume ETH.
- None of the problems in (size-constrained) SNP have a subexponential time algorithm.
- Furthermore, SNP-hard problems such as Hamiltonian Path cannot have a subexponential time algorithm.
We follow the nice summary provided by Lokshtanov, Marx and Saurabh (2011).

Subexponential time lower bounds: There is no $2^{o(\sqrt{n})}$ algorithm for **Vertex Cover**, **3-Colorability**, and **Hamiltonian Path** for planar graphs.

Lower bounds for FPT problems: There is no $2^{o(k)}n^{O(1)}$ algorithm to decide whether the graph has a vertex cover of size at most k. Similar results hold for the problems **Feedback Vertex Set** and **Longest Path**. Cai and Juedes (2003)

Lower bounds for W[1]-complete problems: There is no $f(k)n^{o(k)}$ algorithm for **Clique** or **Independent Set**. Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005, 2006)
Explanatory Value of ETH — III

- **Lower bounds for $W[2]$-complete problems:** There is no $f(k)n^{o(k)}$ algorithm for **Dominating Set**. Fellows (2011), Lokshtanov (2009)

- **Lower bounds for problems parameterized by treewidth**
 - **Chromatic Number** parameterized by treewidth t does not admit an algorithm that runs in time $2^{o(t \lg t)} n^{O(1)}$. Lokshtanov, Marx, and Saurabh (2011), Cygan, Nederlof, Pilipczuk, van Rooij, Wojtaszczyk (2011)

- **List Coloring** parameterized by treewidth does not admit algorithms that run in $f(t)n^{o(t)}$. Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, and Thomassen (2011)

- **Workflow Satisfiability Problem** parameterized by the number of steps k cannot have a $2^{o(k \lg k)} n^{O(1)}$ algorithm. Crampton, Cohen, Gutin, and Jones (2013)

- Many others ···
Explanatory Value of ETH — IV

- Can the ETH provide any information about the specific values of the constants in the exponents?
- Can we prove a specific non-zero constant lower bound on s_3 assuming ETH?
Practical experience with SAT heuristics shows that the performance degrades as the clause width increases.

Worst-case analysis of SAT algorithms also shows a degradation in performance with increasing clause width.

Can ETH explain this behavior?
SETH — Strong Exponential Time Hypothesis

Theorem (IP, 1999)

If ETH is true, s_k increases infinitely often

- Let $s_\infty = \lim_{k \to \infty} s_k$.
- Conjecture:
 Strong Exponential Time Hypothesis (SETH): $s_\infty = 1$
The following statements are equivalent:

- \(\forall \varepsilon < 1, \exists k, \text{k-sat}, \text{the satisfiability problems for } n\text{-variable } k\text{-CNF formulas, cannot be computed in time } O(2^{\varepsilon n}) \text{ time.} \)
- \(\forall \varepsilon < 1, \exists k, \text{k-Hitting Set, the Hitting Set problem for set systems over } [n] \text{ with sets of size at most } k, \text{ cannot be computed in time } O(2^{\varepsilon n}) \text{ time.} \)
- \(\forall \varepsilon < 1, \exists k, \text{k-Set Splitting, the Set Splitting problem for set systems over } [n] \text{ with sets of size at most } k, \text{ cannot be computed in time } O(2^{\varepsilon n}) \text{ time.} \)

— Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, P, Saurabh, Wahlstrom, 2012
If SETH holds, \(k\)-Dominating Set does not have a \(f(k)n^{k-\varepsilon}\) time algorithm. — Patrascu and Williams, 2009

SETH implies that Independent Set parameterized by treewidth cannot be solved faster than \(2^{tw}n^{O(1)}\) — Lokshtanov, Marx, and Saurabh 2010

SETH implies that Dominating Set parameterized by treewidth cannot be solved faster than \(3^{tw}n^{O(1)}\) — Lokshtanov, Marx, and Saurabh 2010

Many others ···
Theorem

SETH determines the exact complexities of the following problems in P.

- \(\forall \varepsilon > o, \text{the Orthogonal Vectors problem for } n \text{ binary vectors of dimension } \omega(\log n) \text{ cannot be solved in time } O(n^{2-\varepsilon}). \) — Williams - 2004

- \(\forall \varepsilon > o, \text{the Vector Domination problem for } n \text{ vectors of dimension } \omega \log n \text{ cannot be solved in time } O(n^{2-\varepsilon}). \) — Williams - 2004, Impagliazzo, Paturi, Schneider - 2013

- \(\forall \varepsilon > o, \text{the Fréchet Distance problem for two piece-wise linear curves with } n \text{ pieces } n \text{ cannot be solved in time } O(n^{2-\varepsilon}). \) — Bringmann - 2014

- Many others · · · — Borassi, Crescenzi, Habib - 2014, Abboud, Vassilevska Williams, 2014
Explanatory Value of SETH - III

- Assuming SETH, can we prove a 2^n lower bound on Chromatic Number?
- Assuming SETH, can we prove that $s_3 > c$ for some $c > 0$?
Open Problems

- Assuming ETH or other suitable assumption, prove
 - a specific lower bound on s_3
 - $s_\infty = 1$ (SETH)
- Assuming SETH, can we prove a 2^n lower bound on Colorability?
- Are there better non-OPP algorithms for k-SAT or Circuit Sat?
- Does there exist a c^{-n} success probability OPP algorithm for Hamiltonian Path?
Thank You