Approximating distances in graphs

Uri Zwick Tel Aviv University

The 6th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS)

All-Pairs Shortest Paths

Input: A weighted undirected graph $G=(V, E)$, where $|E|=m$ and $|V|=n$.

Output: An $n \times n$ distance matrix.

Approximate Shortest Paths

Let $\delta(u, v)$ be the distance from u to v.

An estimated distance $\delta^{\prime}(u, v)$

Multiplicative error

Additive
error

$$
\left(\delta(u, v) \leq \delta^{\prime}(u, v) \leq t \cdot \delta(u, v\right.
$$

An estimated distance $\delta^{\prime}(u, v)$ is of surplus t iff

$$
\delta(u, v) \leq \delta^{\prime}(u, v) \leq \delta(u, v)+\mathrm{t}
$$

Multiplicative and additive spanners

Let $G=(V, E)$ be a weighted undirected graph on n vertices. A subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ is a
\underline{t}-spanner of G iff for every $u, v \in V$ we have

$$
\delta_{G^{\prime}}(u, v) \leq t \delta_{G}(u, v) .
$$

Let $G=(V, E)$ be a unweighted undirected graph on n vertices. A subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ is an additive t-spanner of G iff for every $u, v \in V$ we have

$$
\delta_{G^{\prime}}(u, v) \leq \delta_{G}(u, v)+t
$$

Approximate Distance Oracles

n by n distance
 matrix

Stretch-Space tradeoff is
$u, v \quad \mathbf{O}(1)$ query time $\delta^{\prime}(u, v($ essentially optimal!

1. All-pairs almost shortest paths (unweighted)
b. An $\mathrm{O}\left(n^{5 / 2}\right)$-time surplus-2 algorithm (ACIM'96)
c. Additive 2 -spanners with $\mathrm{O}\left(n^{3 / 2}\right)$ edges.
d. An $\mathrm{O}\left(n^{3 / 2} m^{1 / 2}\right)$-time surplus-2 algorithm (DHZ'96)
2. Multiplicative spanners (weighted graphs)
b. ($2 k-1$)-spanners with $n^{1+1 / k}$ edges (ADDJS'93)
c. Linear time construction ($\mathrm{BS}^{\prime} 03$)
3. Approximate distance oracles (weighted graphs)
b. Stretch $=2 k-1$ query time $=\mathrm{O}(1)$ space $=\mathrm{O}\left(k n^{1+1 / k}\right)\left(\mathrm{TZ}^{\prime} 01\right)$
4. Spanners with sublinear distance errors (unweighted)
b. Additive error $\mathrm{O}\left(d^{1 /(k-1)}\right)$ with $\mathrm{O}\left(k n^{1+1 / k}\right)$ edges (TZ'05)

All-Pairs Almost Shortest Paths unweighted, undirected graphs

Surplus	Time	Authors
0	$m n$	folklore
2	$n^{5 / 2}$	Aingworth-Chekuri- Indyk-Motwani '96
2	$n^{3 / 2} m^{1 / 2}$	Dor-Halperin-Zwick '96
2	$n^{7 / 3}$	$"$
$2(k-1)$	$n^{2-1 / k} m^{1 / k}$	$"$
$2(k-1)$	$n^{2+1 /(3 k-4)}$	$"$

$O\left(n^{5 / 2}\right)$-time surplus-2 algorithm unweighted, undirected graphs

1) Add each vertex v to A, independently, with probability $n^{-1 / 2}$. (Elements of A are "centers".)
2) From every center $v \in A$, find a tree of shortest paths from v and add its edges to E^{\prime}. $=\mathrm{O}\left(n^{5 / 2}\right)$
3) For every non-center $v \notin A$:
a) If v has a neighbor $u \in A$, then add the single edge (u, v) to E^{\prime}.
b) Otherwise, add all the edges incident to v to E^{\prime}.
4) Solve the APSP problem on the subgraph $G^{\prime}=\left(V, E^{\prime}\right)$.
$\mathrm{O}\left(n\left|E^{\prime}\right|\right)$
$=\mathrm{O}\left(n^{5 / 2}\right)$

Number of edges in E^{\prime}

- The expected \# of edges added to E^{\prime} in 2$)$ is $\mathrm{O}\left(n^{3 / 2}\right)$.
- The expected \# of edges added to E^{\prime} in 3) is also $\mathrm{O}\left(n^{3 / 2}\right)$.

Consider a vertex v of degree d
If one of the neighbors of v is
placed in A, then E ' will contain only one edge incident on v.

Hence, the expected number of edges incident to v added to E^{\prime} is at most

$$
d\left(1-n^{-1 / 2}\right)^{d}+1 \leq n^{1 / 2}
$$

The surplus-2 algorithm Correctness - Case 1

Case 1: No vertex on a shortest path from u to v has a neighboring center.

All the edges on the path are in E^{\prime}.
We find a shortest path from u to v.

The surplus-2 algorithm Correctness - Case 2

Case 2: At least one vertex on a shortest path from u to v has a neighboring center.

We find a path from u to v of surplus at most 2

Additive 2-spanners

Every unweighted undirected graph $G=(V, E)$ on n vertices has a subgraph $G^{\prime}=$ $\left(V, E^{\prime}\right)$ with $\mathrm{O}\left(n^{3 / 2}\right)$ edges such that for every $u, v \in V$ we have $\delta_{G}(u, v) \leq \delta_{G}(u, v)+2$.

$O\left(n^{3 / 2} m^{1 / 2}\right)$-time surplus-2 algorithm

 unweighted, undirected graphs1) Add each vertex v to A, independently, with probability $(n / m)^{1 / 2}$. (Elements of A are "centers".)
2) From every center $v \in A$, find distances to all other vertices in the graph. (Do not add edges to E^{\prime}.)
3) For every non-center $v \notin A$:
a) If v has a neighbor $u \in A$, then add the single edge (u, v) to E^{\prime}.
b) Otherwise, add all the edges incident to v to E^{\prime}.
4) For every non-center vertex $v \notin A$:
a) Construct a set $F(v)=\{(v, w) \mid w \in A\}$ of weighted edges. The weight of an edge (v, w) is $\delta(w, v)$.
b) Find distances from v to all other vertices in the weighted graph $G^{\prime}(v)=\left(V, E^{\prime} \cup F(v)\right)$.

$O\left(n^{3 / 2} m^{1 / 2}\right)$-time surplus-2 algorithm

 Correctness - Case 2Case 2: At least one vertex on a shortest path from u to v has a neighboring center.

Consider the last vertex with a neighboring center.
We find a path from u to v of surplus at most 2

All-Pairs Almost Shortest Paths

 weighted undirected graphs| Stretch | Time | Reference |
| :---: | :---: | :---: |
| 1 | $m n$ | Dijkstra '59 |
| 2 | $n^{3 / 2} m^{1 / 2}$ | Cohen-Zwick '97 |
| $7 / 3$ | $n^{7 / 3}$ | $"$ |
| 3 | n^{2} | $"$ |

Some log factors ignores

Spanners

Given an arbitrary dense graph, can we always find a relatively sparse subgraph that approximates all distances fairly well?

Spanners [PU'89,PS'89]

Let $G=(V, E)$ be a weighted undirected graph.
A subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G is said to be a t-spanner of G iff $\delta_{G^{\prime}}(u, v) \leq t \delta_{G}(u, v)$ for every $u, v \in V$.

Theorem:

Every weighted undirected graph has a ($2 k-1$) -spanner of size $\mathrm{O}\left(n^{1+1 / k}\right)$. [ADDJS'93]

Furthermore, such spanners can be constructed deterministically in linear time. [BS'03] [RTZ'05]

The size-stretch trade-off is optimal if there are graphs with $\Omega\left(n^{1+1 / k}\right)$ edges and girth $2 k+2$, as conjectured by Erdös and others.

A simple spanner construction algorithm [Althöfer, Das, Dobkin, Joseph, Soares ‘93]

- Consider the edges of the graph in non-decreasing order of weight.
- Add each edge to the spanner if it does not close a cycle of size at most $2 k$.
- The resulting graph is a ($2 k-1$)-spanner.
- The resulting graph has girth $\geq 2 k$. Hence the number of edges in it is at most $n^{1+1 / k}$.

If \mid cycle $\mid \leq 2 k$, then red edge can be removed.

Linear time spanner construction [BS'03]

- The algorithm is composed of k iterations.
- At each iteration some edges are added to the spanner and some edges and vertices are removed from the graph.
- At the end of the i-th iteration we have a collection of about $n^{1-\mathrm{i} / k}$ trees of depth at most i that contain all the remaining vertices of the graph.

Tree properties

- The edges of the trees are spanner edges.
- The weights of the edges along every leaf-root path are non-increasing.
- For every surviving edge (u, v) we have $w(u, v) \geq w(u, p(u))$, where $p(u)$ is the parent of u.

$$
w_{1} \geq w_{2} \geq w_{3}
$$

$$
w_{4} \geq w_{2}
$$

Notation

A_{i} - roots of trees of the i-th iteration

 $T(v)$ - the tree rooted at v

The i-th iteration

Each vertex $v \in A_{i-1}$ is added to A_{i} with probability $n^{-1 / k}$.
In the last iteration $A_{k} \leftarrow \varnothing$.

Let v_{1}, v_{2}, \ldots be the vertices of A_{i-1} such that

$$
w\left(u, T\left(v_{1}\right)\right) \leq w\left(u, T\left(v_{2}\right)\right) \leq \ldots
$$

Let $r=r(u)$ be the minimal index for which $v_{r} \in A_{i}$.
If there is no such index, let $r(u)=\left|A_{i-1}\right|$.

The i-th iteration (cont.)

For every vertex u that belongs to a tree whose root is in $A_{i-1}-A_{i}$:

For every $1 \leq j \leq r$:
Add $e\left(u, T\left(v_{i}\right)\right.$) to the spanner.
Remove $E\left(u, T\left(v_{i}\right)\right)$ from the graph

Remove edges that connect vertices in the same tree.

Remove vertices that have no remaining edges.

How many edges are added to the spanner?

$$
\mathrm{E}[r(u)] \leq n^{1 / k}
$$

Hence, the expected number of edges added to the spanner in each iteration is at most $n^{1+1 / k}$.

What is the stretch?

Let e be an edge deleted in the i-th iteration.

The spanner contains a path of at most $2(i-1)+1$ edges between the endpoints of e.

The edges of the path are not heavier than e

Hence, stretch $\leq 2 k-1$

Approximate Distance Oracles (TZ’01)

n by n distance
 matrix

 essentially optimal!$\mathbf{O}(1)$ query time $\delta^{\prime}(u, v($ stretch $2 k-1$

Approximate Distance Oracles [TZ'01] A hierarchy of centers

$B(v) \leftarrow \bigcup_{i}\left\{w \in A_{i}-A_{i+1} \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}$

Lemma: $\mathrm{E}[|B(v)|] \leq k n^{1 / k}$

Proof: $\left|B(v) \cap A_{i}\right|$ is stochastically
dominated by a geometric random variable with parameter $p=n^{-1 / k}$.

The data structure

Keep for every vertex $\boldsymbol{v} \in V$:

- The centers $p_{I}(v), p_{2}(v), \ldots, p_{k-1}(v)$
- A hash table holding $B(v)$

For every $\boldsymbol{w} \in V$, we can check, in constant time, whether $\boldsymbol{w} \in \boldsymbol{B}(v)$, and if so, what is $\delta(v, w)$.

Query answering algorithm

Algorithm $\operatorname{dist}_{k}(u, v)$

$w \leftarrow u, i \leftarrow 0$
while $w \notin B(v)$
$\{\quad i \leftarrow i+1$
$(u, v) \leftarrow(v, u)$
$\left.w \leftarrow p_{i}(u) \quad\right\}$
return $\delta(u, w)+\delta(w, v)$

Query answering algorithm

Analysis

$$
w_{i}=p_{i}(u) \in A_{i}
$$

Claim 1:

$\delta\left(u, w_{i}\right) \leq i \Delta, i_{\text {even }}$ $\delta\left(v, w_{i}\right) \leq i \Delta, i_{\text {odd }}$

Claim 2:

$$
\begin{gathered}
\delta\left(u, w_{i}\right)+\delta\left(w_{i}, v\right) \\
\leq(2 i+1) \Delta \\
\leq(2 k-1) \Delta
\end{gathered}
$$

Where are the spanners?

Define clusters, the "duals" of bunches.

For every $u \in V$, put in the spanner a tree of shortest paths from u to all the vertices in the cluster of u.

$C(w) \leftarrow\left\{v \in V \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\} \quad, \quad w \in A_{i}-A_{i+1}$

Bunches and clusters

$$
w \in B(v) \Leftrightarrow v \in C(w)
$$

$$
\begin{gathered}
C(w) \leftarrow\left\{v \in V \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}, \\
\text { if } w \in A_{i}-A_{i+1}
\end{gathered}
$$

$B(v) \leftarrow \bigcup_{i}\left\{w \in A_{i}-A_{i+1} \mid \delta(w, v)<\delta\left(A_{i+1}, v\right)\right\}$

Additive Spanners

Let $G=(V, E)$ be a unweighted undirected graph.
A subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G is said to be an additive t-spanner of G iff $\delta_{G^{\prime}}(u, v) \leq \delta_{G}(u, v)+t$ for every $u, v \in V$.

Theorem: Every unweighted undirected graph has an additive 2 -spanner of size $O\left(n^{3 / 2}\right)$. [ACIM '96] [DHZ '96]

Theorem: Every unweighted undirected graph has an additive 6-spanner of size $O\left(n^{4 / 3}\right)$. [BKMP '04]

Major open problem

Do all graphs have additive spanners with only $\mathrm{O}\left(n^{1+\varepsilon}\right)$ edges, for every $\varepsilon>0$?

Spanners with sublinear surplus

Theorem:

For every $k>1$, every undirected graph $G=(V, E)$ on n vertices has a subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\mathrm{O}\left(n^{1+1 / k}\right)$ edges such that for every $u, v \in V$, if $\delta_{G}(u, v)=d$, then $\delta_{G}(u, v)=d+\mathrm{O}\left(d^{1-1 /(k-1)}\right)$.

$$
d \quad d+\mathrm{O}\left(d^{1-1 /(k-1)}\right)
$$

Extends and simplifies a result of Elkin and Peleg (2001)

All sorts of spanners

A subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G is said to be a functional f-spanner if G iff $\delta_{G^{\prime}}(u, v) \leq f\left(\delta_{G}(u, v)\right)$ for every $u, v \in V$.

size	$f(d)$	reference
$n^{1+1 / k}$	$(2 k-1) d$	[ADDJS '93]
$n^{3 / 2}$	$d+2$	[ACIM '96] [DHZ '96]
$n^{4 / 3}$	$d+6$	[BKMP '04]
$\beta n^{1+\delta}$	$(1+\varepsilon) d+\beta(\varepsilon, \delta)$	[EP '01]
$n^{1+1 / k}$	$d+O\left(d^{1-1 /(k-l)}\right)$	[TZ '05]

The construction of the

 approximate distance oracles,when applied to unweighted graphs, produces spanners with sublinear surplus!

We present a slightly modified construction with a slightly simpler analysis.

$\operatorname{Ball}(u)=\left\{v \in V \mid \delta(u, v)<\delta\left(u, A_{i+1}\right)\right\}, u \in A_{i}-A_{i+1}$ $\operatorname{Ball}[u]=\operatorname{Ball}(u) \cup\left\{p_{i+1}(u)\right\}, u \in A_{i}-A_{i+1}$

Spanners with sublinear surplus

Select a hierarchy of centers $A_{0} \supset A_{1} \supset \ldots \supset A_{k-1}$.
For every $u \in V$, add to the spanner a shortest paths tree of Ball $[u]$.

The path-finding strategy

Suppose we are at $u \in A_{i}$ and want to go to ν.
Let Δ be an integer parameter.
If the first $x_{i}=\Delta^{i}-\Delta^{i-1}$ edges of a shortest path from u to v are in the spanner, then use them.
Otherwise, head for the $(i+1)$-center u_{i+1} nearest to u.

- The distance to u_{i+1} is at most x_{i}. (As $u^{\prime} \notin \operatorname{Ball}(u)$.)

The path-finding strategy

We either reach v, or at least make $x_{i}=\Delta^{i}-\Delta^{i-1}$ steps in the right direction.
Or, make at most $x_{i}=\Delta^{i}-\Delta^{i-1}$ steps, possibly in a wrong direction, but reach a center of level $i+1$. If $i=k-1$, we will be able to reach v.

The path-finding strategy

After at most Δ^{i} steps:

The path-finding strategy

After at most Δ^{i} steps:

either we reach v
or distance to v decreased by
$\Delta^{i}-2 \Delta^{i-1}$ The surplus is incurred only once!
$\delta^{\prime}(u, v) \leq\left(1+\frac{2}{\Delta-2}\right) \cdot \boldsymbol{\delta}(u, v)+2 \Delta^{k-2}$
$2 \Delta^{i-1}$

Sublinear surplus

$$
\begin{gathered}
\delta^{\prime}(u, v) \leq\left(1+\frac{2}{\Delta-2}\right) \cdot \delta(u, v)+2 \Delta^{k-2} \\
\delta(u, v)=d \quad \Delta=\left\lceil d^{\prime /(k-1)}+2\right\rceil \\
\\
\delta^{\prime}(u, v) \leq d+O\left(d^{1-\frac{1}{k-1}}\right)
\end{gathered}
$$

