# Approximating distances in graphs

# Uri Zwick Tel Aviv University

The 6th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS)

# **All-Pairs Shortest Paths**



**Input:** A weighted **undirected** graph G=(V,E), where |E|=m and |V|=n.

**<u>Output:</u>** An  $n \times n$  distance matrix.

**Approximate Shortest Paths** Let  $\delta(u, v)$  be the distance from u to v. An estimated distance  $\delta'(u,v)$ is of stretch t iff Multiplicative error  $(\delta(u,v) \leq \delta'(u,v) \leq t \cdot \delta(u,v)$ An estimated distance  $\delta'(u,v)$ Additive is of surplus *t* iff error  $\delta(u,v) \leq \delta'(u,v) \leq \delta(u,v) + t$ 

### **Multiplicative and additive spanners**

Let G=(V, E) be a weighted undirected graph on *n* vertices. A subgraph G'=(V, E') is a *t*-spanner of *G* iff for every  $u, v \in V$  we have  $\delta_{G'}(u,v) \leq t \, \delta_G(u,v).$ 

Let G=(V, E) be a **unweighted** undirected graph on *n* vertices. A subgraph G'=(V, E') is an **additive** *t*-spanner of *G* iff for every  $u,v \in V$  we have

 $\delta_{G'}(u,v) \leq \delta_{G}(u,v) + t.$ 

# **Approximate Distance Oracles**



- 1. All-pairs almost shortest paths (unweighted)
  - b. An  $O(n^{5/2})$ -time surplus-2 algorithm (ACIM'96)
  - c. Additive 2-spanners with  $O(n^{3/2})$  edges.
  - d. An  $O(n^{3/2}m^{1/2})$ -time surplus-2 algorithm (DHZ'96)
- 2. Multiplicative spanners (weighted graphs)
  - b. (2k-1)-spanners with  $n^{1+1/k}$  edges (ADDJS'93)
  - c. Linear time construction (BS'03)
- 3. Approximate distance oracles (weighted graphs)
  - b. Stretch=2k-1 query time=O(1) space= $O(kn^{1+1/k})$  (TZ'01)
- 5. Spanners with sublinear distance errors (unweighted)
  - b. Additive error  $O(d^{1/(k-1)})$  with  $O(kn^{1+1/k})$  edges (TZ'05)

### All-Pairs Almost Shortest Paths unweighted, undirected graphs

| Surplus | Time                    | Authors                                 |
|---------|-------------------------|-----------------------------------------|
| 0       | mn                      | folklore                                |
| 2       | $n^{5/2}$               | Aingworth-Chekuri-<br>Indyk-Motwani '96 |
| 2       | $n^{3/2}m^{1/2}$        | Dor-Halperin-Zwick '96                  |
| 2       | <i>n</i> <sup>7/3</sup> | >>                                      |
| 2(k-1)  | $n^{2-1/k}m^{1/k}$      | "                                       |
| 2(k-1)  | $n^{2+1/(3k-4)}$        | "                                       |

# **O**(*n*<sup>5/2</sup>)-time surplus-2 algorithm unweighted, undirected graphs

- 1) Add each vertex v to A, independently, with probability  $n^{-1/2}$ . (Elements of A are "centers".)
- 2) From every center  $v \in A$ , find a tree of O(m|A|)shortest paths from v and add its edges to E'.  $= O(n^{5/2})$
- 3) For every non-center  $v \notin A$ :
  - a) If *v* has a neighbor  $u \in A$ , then add the single edge (u,v) to *E*'.
  - b) Otherwise, add all the edges incident to v to E'.
- 4) Solve the APSP problem on the subgraph G'=(V, E').

 $O(n|E'|) = O(n^{5/2})$ 

O(n)

O(m)

# Number of edges in E'

- The expected # of edges added to E' in 2) is  $O(n^{3/2})$ .
- The expected # of edges added to E' in 3) is also  $O(n^{3/2})$ .

Consider a vertex v of degree d

If one of the neighbors of v is placed in A, then E' will contain only one edge incident on v.

Hence, the expected number of edges incident to v added to E' is at most

$$d(1-n^{-1/2})^d+1 \leq n^{1/2}$$



### The surplus-2 algorithm Correctness – Case 1

Case 1: No vertex on a shortest path from *u* to *v* has a neighboring center.



All the edges on the path are in E'.

We find a shortest path from u to v.

### The surplus-2 algorithm Correctness – Case 2

Case 2: At least one vertex on a shortest path from *u* to *v* has a neighboring center.



We find a path from u to v of surplus at most 2

# **Additive 2-spanners**

Every unweighted undirected graph G=(V, E) on *n* vertices has a subgraph G'=(V, E') with  $O(n^{3/2})$  edges such that for every  $u, v \in V$  we have  $\delta_{G'}(u, v) \leq \delta_{G}(u, v) + 2$ .

### O(n<sup>3/2</sup>m<sup>1/2</sup>)-time surplus-2 algorithm

unweighted, undirected graphs

- 1) Add each vertex v to A, independently, with probability  $(n/m)^{1/2}$ . (Elements of A are "centers".)
- 2) From every center  $v \in A$ , find distances to all other vertices in the graph. (Do not add edges to *E*'.)
- 3) For every non-center  $v \notin A$ :
  - a) If v has a neighbor  $u \in A$ , then add the single edge (u,v) to E'.
  - b) Otherwise, add all the edges incident to v to E'.
- 4) For every non-center vertex  $v \notin A$ :
  - a) Construct a set  $F(v) = \{ (v,w) | w \in A \}$  of weighted edges. The weight of an edge (v,w) is  $\delta(w,v)$ .
  - b) Find distances from v to all other vertices in the weighted graph  $G'(v)=(V, E' \cup F(v))$ .

### O(n<sup>3/2</sup>m<sup>1/2</sup>)-time surplus-2 algorithm Correctness – Case 2

<u>Case 2:</u> At least one vertex on a shortest path from u to v has a neighboring center.



Consider the last vertex with a neighboring center. We find a path from u to v of surplus at most 2

# **All-Pairs Almost Shortest Paths**

#### weighted undirected graphs

| Stretch | Time                    | Reference       |
|---------|-------------------------|-----------------|
| 1       | mn                      | Dijkstra '59    |
| 2       | $n^{3/2}m^{1/2}$        | Cohen-Zwick '97 |
| 7/3     | <i>n</i> <sup>7/3</sup> | >>              |
| 3       | <i>n</i> <sup>2</sup>   | >>              |

### Some log factors ignores





Given an **arbitrary** dense graph, can we always find a relatively **sparse subgraph** that approximates **all** distances fairly well?

## Spanners [PU'89,PS'89]

Let G = (V, E) be a weighted undirected graph.

A subgraph G' = (V, E') of G is said to be a *t*-spanner of G iff  $\delta_{G'}(u, v) \le t \delta_G(u, v)$  for every  $u, v \in V$ .

#### **Theorem:**

Every weighted undirected graph has a

(2k-1)-spanner of size O $(n^{1+1/k})$ . [ADDJS'93]

Furthermore, such spanners can be constructed deterministically in linear time. [BS'03] [RTZ'05]

The size-stretch trade-off is optimal if there are graphs with  $\Omega(n^{1+1/k})$  edges and girth 2k+2, as conjectured by Erdös and others.

A simple spanner construction algorithm [Althöfer, Das, Dobkin, Joseph, Soares '93]

- Consider the edges of the graph in non-decreasing order of weight.
- Add each edge to the spanner if it does not close a cycle of size at most 2*k*.
- The resulting graph is a (2k-1)-spanner.
- The resulting graph has girth  $\geq 2k$ . Hence the number of edges in it is at most  $n^{1+1/k}$ .



### If $|cycle| \leq 2k$ , then red edge can be removed.

### Linear time spanner construction [BS'03]

- The algorithm is composed of *k* iterations.
- At each iteration some edges are added to the spanner and some edges and vertices are removed from the graph.
- At the end of the *i*-th iteration we have a collection of about n<sup>1-i/k</sup> trees of depth at most *i* that contain all the remaining vertices of the graph.

# Tree properties

- The edges of the trees are spanner edges.
- The weights of the edges along every leaf-root path are non-increasing.
- For every surviving edge (u,v)we have  $w(u,v) \ge w(u,p(u))$ , where p(u) is the parent of u.



## Notation

 $A_i$  – roots of trees of the *i*-th iteration T(v) – the tree rooted at v



### The *i*-th iteration

Each vertex  $v \in A_{i-1}$  is added to  $A_i$  with probability  $n^{-1/k}$ . In the last iteration  $A_k \leftarrow \emptyset$ .



Let  $v_1, v_2, \dots$  be the vertices of  $A_{i-1}$  such that  $w(u, T(v_1)) \le w(u, T(v_2)) \le \dots$ 

Let r=r(u) be the minimal index for which  $v_r \in A_i$ . If there is no such index, let  $r(u) = |A_{i-1}|$ .

# The *i*-th iteration (cont.)



For every vertex *u* that belongs to a tree whose root is in  $A_{i-1}-A_i$ :

For every  $1 \le j \le r$ : Add  $e(u,T(v_i))$  to the spanner. Remove  $E(u,T(v_i))$  from the graph Remove edges that connect vertices in the same tree.

Remove vertices that have no remaining edges.

# How many edges are added to the spanner?



 $\mathrm{E}[r(u)] \leq n^{1/k}$ 

Hence, the expected number of edges added to the spanner in each iteration is at most  $n^{1+1/k}$ .

# What is the stretch?

Let *e* be an edge deleted in the *i*-th iteration.

The spanner contains a path of at most 2(i-1)+1edges between the endpoints of *e*. The edges of the path are not heavier than *e* 

Hence, stretch  $\leq 2k-1$ 



# Approximate Distance Oracles (TZ'01)



Approximate Distance Oracles [TZ'01] A hierarchy of centers





# Lemma: $E[|B(v)|] \leq kn^{1/k}$

Proof:  $|B(v) \cap A_i|$  is stochastically dominated by a geometric random variable with parameter  $p = n^{-1/k}$ .

# The data structure

Keep for every vertex  $v \in V$ :

- The centers  $p_1(v), p_2(v), ..., p_{k-1}(v)$
- A hash table holding **B**(v)

For every  $w \in V$ , we can check, in **constant time**, whether  $w \in B(v)$ , and if so, what is  $\delta(v, w)$ .

# Query answering algorithm





# Analysis



Where are the spanners?

Define clusters, the "duals" of bunches.

For every  $u \in V$ , put in the spanner a tree of shortest paths from u to all the vertices in the cluster of u.



 $C(w) \leftarrow \{v \in V \mid \delta(w, v) < \delta(A_{i+1}, v)\} \quad , \quad w \in A_i - A_{i+1}$ 

# **Bunches and clusters**

### $w \in B(v) \iff v \in C(w)$

# $C(w) \leftarrow \{v \in V \mid \delta(w,v) < \delta(A_{i+1},v)\},$ if $w \in A_i - A_{i+1}$

 $B(v) \leftarrow \bigcup_{i} \{ w \in A_i - A_{i+1} | \delta(w, v) < \delta(A_{i+1}, v) \}$ 

# Additive Spanners

Let G = (V, E) be a unweighted undirected graph.

A subgraph G' = (V, E') of G is said to be an additive *t*-spanner of G iff  $\delta_{G'}(u, v) \le \delta_G(u, v) + t$  for every  $u, v \in V$ .

**Theorem:** Every unweighted undirected graph has an additive 2-spanner of size  $O(n^{3/2})$ . [ACIM '96] [DHZ '96]

**Theorem:** Every unweighted undirected graph has an additive 6-spanner of size  $O(n^{4/3})$ . [BKMP '04]

### Major open problem

Do all graphs have additive spanners with only  $O(n^{1+\epsilon})$  edges, for every  $\epsilon > 0$ ?

# Spanners with sublinear surplus

#### **Theorem:**

For every k > 1, every undirected graph G=(V,E)on *n* vertices has a subgraph G'=(V,E') with  $O(n^{1+1/k})$ edges such that for every  $u,v \in V$ , if  $\delta_G(u,v)=d$ , then  $\delta_{G'}(u,v)=d+O(d^{1-1/(k-1)})$ .

$$d \quad \Longrightarrow \quad d + \mathcal{O}(d^{1-1/(k-1)})$$

Extends and simplifies a result of Elkin and Peleg (2001)

# All sorts of spanners

A subgraph G' = (V, E') of G is said to be a functional *f*-spanner if G iff  $\delta_{G'}(u, v) \leq f(\delta_G(u, v))$  for every  $u, v \in V$ .

| size                 | f(d)                                           | reference            |
|----------------------|------------------------------------------------|----------------------|
| $n^{1+1/k}$          | (2k-1)d                                        | [ADDJS '93]          |
| $n^{3/2}$            | <i>d</i> + <i>2</i>                            | [ACIM '96] [DHZ '96] |
| $n^{4/3}$            | d+6                                            | [BKMP '04]           |
| $\beta n^{1+\delta}$ | $(1+\varepsilon)d + \beta(\varepsilon,\delta)$ | [EP '01]             |
| $n^{1+1/k}$          | $d + O(d^{1-1/(k-1)})$                         | [TZ '05]             |

The construction of the approximate distance oracles, when applied to unweighted graphs, produces spanners with sublinear surplus!

We present a slightly modified construction with a slightly simpler analysis.



# Spanners with sublinear surplus

Select a hierarchy of centers  $A_0 \supset A_1 \supset \ldots \supset A_{k-1}$ .

For every  $u \in V$ , add to the spanner a shortest paths tree of Ball[u].

Suppose we are at  $u \in A_i$  and want to go to v. Let  $\Delta$  be an integer parameter.

If the first  $x_i = \Delta^i - \Delta^{i-1}$  edges of a shortest path from *u* to *v* are in the spanner, then use them. Otherwise, head for the (*i*+1)-center  $u_{i+1}$  nearest to *u*.

► The distance to  $u_{i+1}$  is at most  $x_i$ . (As  $u' \notin \text{Ball}(u)$ .)



We either reach *v*, or at least make  $x_i = \Delta^i - \Delta^{i-1}$  steps in the right direction.

Or, make at most  $x_i = \Delta^i - \Delta^{i-1}$  steps, possibly in a wrong direction, but reach a center of level *i*+1. If *i*=*k*-1, we will be able to reach *v*.



After at most  $\Delta^i$  steps:



After at most  $\Delta^i$  steps:



# Sublinear surplus

 $\delta'(u,v) \leq (1+\frac{2}{\Lambda-2}) \cdot \delta(u,v) + 2\Delta^{k-2}$  $\delta(u,v) = d$ ,  $\Delta = \left[ d^{1/(k-1)} + 2 \right]$  $\delta'(u,v) \leq d + O(d^{1-\frac{1}{k-1}})$