Solution for the Exercise on Page 26 (Thursday Session)

Example 1. Consider the dissimilarity matrix

$$
D=\left[\begin{array}{cccccc}
0 & 1 & 1 / 4 & \infty & \infty & 1 / 4 \\
1 & 0 & 1 / 4 & \infty & \infty & 1 / 4 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 & \infty \\
\infty & \infty & 1 / 4 & 0 & 1 & 1 / 4 \\
\infty & \infty & 1 / 4 & 1 & 0 & 1 / 4 \\
1 / 4 & 1 / 4 & \infty & 1 / 4 & 1 / 4 & 0
\end{array}\right],
$$

where ∞ could be replaced by a sufficiently large value. Since D is an (6×6)-matrix, we may identify clusterings with partitions of [6]. Let μ represent the uniform distribution on [6]. It is easy to see that there are precisely two optimal 2-partitions,

$$
\mathcal{C}=\{\{1,2,3\},\{4,5,6\}\} \text { and } \mathcal{C}^{\prime}=\{\{1,2,6\},\{4,5,3\}\},
$$

each-one leading to risk $1 / 6$. The gradients of $R(\mu, \mathcal{C})$ and $R\left(\mu, \mathcal{C}^{\prime}\right)$ satisfy

$$
\nabla R(\mu, \mathcal{C})=\nabla R\left(\mu, \mathcal{C}^{\prime}\right)=(1 / 4,1 / 4,0,1 / 4,1 / 4,0)^{\top}
$$

The Hessians satisfy

$$
\nabla^{2} R(\mu, \mathcal{C})=\nabla^{2} R\left(\mu, \mathcal{C}^{\prime}\right)=\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Furthermore,

$$
(\nabla R(\mu, \mathcal{C}))_{1,2,3}=-2 \neq 0=\left(\nabla R\left(\mu, \mathcal{C}^{\prime}\right)\right)_{1,2,3}
$$

Thus the decision function $f(w)=R_{\mathcal{C}}(w)-R_{\mathcal{C}^{\prime}}(w)$ has a vanishing gradient and a vanishing Hessian at $w=\mu$, but (as implied by our general discussion) the third-order term in the Taylor-expansion of f around μ does not vanish. For example, $(\nabla f(\mu))_{1,2,3}=-2$.

