Solution for the Exercise on Page 27 (Thursday Session)

Lemma 1 (Hessian determines Clustering). Let R be the k means risk function. Then the following holds for clusterings \mathcal{C}, \mathcal{D}. If the Hesse matrices of the risk functions $R_{\mathcal{C}}(w)$ and $R_{\mathcal{D}}(w)$, respectively, coincide at μ, then $\mathcal{C}=\mathcal{D}$.
Proof. For sake of brevity, let

$$
A_{p, q}:=\left.\frac{\partial^{2} R_{\mathcal{C}}(w)}{\partial w_{p} \partial w_{q}}\right|_{w=\mu}=\left(C_{p}=C_{q}\right) \cdot \frac{-2\left\langle x_{p}-z_{C}(w), x_{q}-z_{C}(w)\right\rangle}{S_{C}(w)}
$$

It suffices to show that centers $z_{1}, z_{2}, \ldots, z_{k}$ of partition \mathcal{C} are uniquely determined by matrix A. To this end, we view A as the adjacency matrix of a graph G with nodes $x_{1}, x_{2}, \ldots, x_{n}$, where nodes x_{p}, x_{q} are connected by an edge if and only if $A_{p, q} \neq 0$. Let $K_{1}, K_{2}, \ldots, K_{\ell}$ be the connected components of G. Note that there is an edge between x_{p} and x_{q} only if p and q belong to the same cluster in \mathcal{C}. Thus, the connected components of G represent a refinement of partition \mathcal{C}. Consider a fixed cluster C_{j} in \mathcal{C} with center z_{j}. Recall that

$$
\begin{equation*}
z_{j}=\sum_{x_{i} \in C_{j}} \mu_{i} x_{i} \tag{1}
\end{equation*}
$$

Let $K \subseteq C_{j}$ be any connected component of G that is contained in C_{j} and define, for sake of brevity, $\mu(K):=\sum_{x_{i} \in C} \mu_{i}$ and $K^{\prime}=C_{j} \backslash K$. We claim that

$$
\begin{equation*}
z_{j}=\frac{1}{\mu(K)} \sum_{x_{i} \in K} \mu_{i} x_{i} \tag{2}
\end{equation*}
$$

that is, z_{j} is determined by any component $K \subseteq C_{j}$. Since this is obvious for $K=C_{j}$, we assume that $K \subset C_{j}$. We can rewrite (1) as

$$
\begin{equation*}
0=\left(\sum_{x_{i} \in K} \mu_{i}\left(x_{i}-z_{j}\right)\right)+\left(\sum_{x_{i^{\prime}} \in K^{\prime}} \mu_{i^{\prime}}\left(x_{i^{\prime}}-z_{j}\right)\right) \tag{3}
\end{equation*}
$$

Pick any pair i, i^{\prime} such that $x_{i} \in K$ and $x_{i^{\prime}} \in K^{\prime}$. Since x_{i} and $x_{i^{\prime}}$ are not neighbors in $G, A_{i, i^{\prime}}=0$, which means that $x_{i}-z_{j}$ is orthogonal to $x_{i^{\prime}}-z_{j}$. Thus the vector represented by the first sum in (3) is orthogonal on the vector represented by the second sum. It follows that both sums yield zero, respectively. Rewriting this for the first sum, we obtain (2).

