Solution for Exercise 4 (Wednesday Session)

- Let $\boldsymbol{e}_{\boldsymbol{i}} \in \mathbb{R}^{n}$ denotes the vector with a 1 in component i and zeros in the remaining components, and let $\boldsymbol{e} \in \mathbb{R}^{n}$ denote the all-ones vector.
- Let $W \in \mathbb{R}^{n}$ denote the random vector that takes value $\boldsymbol{e}_{\boldsymbol{i}}$ with probability $\mu_{i}>0$, and let C denote the covariance matrix of W.
We assume that (after reordering if necessary) $\mu_{1} \geq \mu_{2} \geq \cdots \geq$ μ_{n}. The following result is obtained by an easy calculation (omitted in this abstract):
Lemma 1. $\mathbb{E}[W]=\mu$ and the covariance matrix C of W is of the form

$$
C[i, j]= \begin{cases}\mu_{i}\left(1-\mu_{i}\right) & \text { if } i=j \\ -\mu_{i} \mu_{j} & \text { if } i \neq j\end{cases}
$$

Lemma 2. The eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$ of C are as follows:

1. $\lambda_{n}=0$ (with eigenvector \boldsymbol{e}).
2. Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1}$ are the zeros of the function

$$
\begin{equation*}
h(\lambda):=\sum_{i=1}^{n} \mu_{i} \prod_{j: j \neq i}\left(\lambda-\mu_{j}\right) \tag{1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\forall k=1, \ldots, n-1: \mu_{k} \geq \lambda_{k} \geq \mu_{k+1} \tag{2}
\end{equation*}
$$

Proof. Observe that C can be written in the form

$$
\begin{equation*}
C=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)-\mu \mu^{\top} \tag{3}
\end{equation*}
$$

The sub-additivity of the rank implies that C has rank at least $n-1$. Obviously, \boldsymbol{e} is an eigenvector for eigenvalue $\lambda_{n}=0$. Thus, the rank of C is exactly $n-1$. Furthermore, each of the $n-1$ remaining eigenvectors u must be orthogonal to \boldsymbol{e} :

$$
\begin{equation*}
\boldsymbol{e}^{\top} u=\sum_{i=1}^{n} u_{i}=0 . \tag{4}
\end{equation*}
$$

According to (3), equation $C u=\lambda u$ can be written in the following form:

$$
\begin{equation*}
\forall i=1, \ldots, n: \mu_{i} u_{i}-\mu_{i} \mu^{\top} u=\lambda u_{i} \tag{5}
\end{equation*}
$$

We proceed by case analysis.

Case 1: $\mu_{1}=\cdots=\mu_{n}=1 / n$.
Then we can choose as eigenvectors an orthonormal base of the subspace induced by $\boldsymbol{e}^{\top} u=\mu^{\top} u=0$ with eigenvalues

$$
\lambda_{1}=\cdots=\lambda_{n-1}=\frac{1}{n} .
$$

For equal probability parameters, (1) collapses to

$$
\begin{equation*}
h(\lambda)=\left(\lambda-\frac{1}{n}\right)^{n-1} \tag{6}
\end{equation*}
$$

Note that $1 / n$ is a zero of h with multiplicity $n-1$. This shows that $\lambda_{1}=\cdots=\lambda_{n-1}=1 / n$ are indeed the zeros of h.
Case $2 \exists i, j \in\{1, \ldots, n\}: \mu_{i} \neq \mu_{j}$.
Inspection of (5) reveals that no vector u satisfying $\mu^{\top} u=0$ can be an eigenvector. Thus we can assume w.l.o.g. that an eigenvector u satisfies $\mu^{\top} u=-1$. Now (5) collapses to

$$
\begin{equation*}
\forall i=1, \ldots, n: \mu_{i} u_{i}+\mu_{i}=\lambda u_{i} \tag{7}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
u_{i} \prod_{j=1}^{n}\left(\lambda-\mu_{j}\right)=u_{i}\left(\lambda-\mu_{i}\right) \prod_{j: j \neq i}\left(\lambda-\mu_{j}\right) \stackrel{(7)}{=} \mu_{i} \prod_{j: j \neq i}\left(\lambda-\mu_{j}\right) \tag{8}
\end{equation*}
$$

holds for $i=1, \ldots, n$. Now, we get

$$
0 \stackrel{(4)}{=} \sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} u_{i} \prod_{j=1}^{n}\left(\lambda-\mu_{j}\right) \stackrel{(8)}{=} \sum_{i=1}^{n} \mu_{i} \prod_{j: j \neq i}\left(\lambda-\mu_{j}\right) \stackrel{(1)}{=} h(\lambda) .
$$

As in case 1 , the strictly positive eigenvalues coincide with the zeros of h.

Finally (2) is obtained by observing that

$$
\forall i=k, \ldots, n-1: h\left(\mu_{k}\right)=\mu_{k} \prod_{j: j \neq k}\left(\mu_{k}-\mu_{j}\right) .
$$

This implies that, for $k=1, \ldots, n-2$,

$$
h\left(\mu_{k}\right)=h\left(\mu_{k+1}\right)=0 \text { or } \operatorname{sign}\left(h\left(\mu_{k}\right)\right) \neq \operatorname{sign}\left(h\left(\mu_{k+1}\right)\right)
$$

and a simple continuity argument shows that the k-th zero of h is found in the interval $\left[\mu_{k+1}, \mu_{k}\right.$].

