
Solution for Exercise 4 (Wednesday Session)

– Let ei ∈ R
n denotes the vector with a 1 in component i and zeros

in the remaining components, and let e ∈ R
n denote the all-ones

vector.
– Let W ∈ R

n denote the random vector that takes value ei with
probability µi > 0, and let C denote the covariance matrix of W .

We assume that (after reordering if necessary) µ1 ≥ µ2 ≥ · · · ≥
µn. The following result is obtained by an easy calculation (omitted
in this abstract):

Lemma 1. E[W ] = µ and the covariance matrix C of W is of the
form

C[i, j] =

{

µi(1 − µi) if i = j
−µiµj if i 6= j

Lemma 2. The eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of C are as follows:

1. λn = 0 (with eigenvector e).
2. Eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn−1 are the zeros of the function

h(λ) :=
n

∑

i=1

µi

∏

j:j 6=i

(λ − µj) (1)

so that
∀k = 1, . . . , n − 1 : µk ≥ λk ≥ µk+1 . (2)

Proof. Observe that C can be written in the form

C = diag(µ1, . . . , µn) − µµ> . (3)

The sub-additivity of the rank implies that C has rank at least n−1.
Obviously, e is an eigenvector for eigenvalue λn = 0. Thus, the rank
of C is exactly n − 1. Furthermore, each of the n − 1 remaining
eigenvectors u must be orthogonal to e:

e
>u =

n
∑

i=1

ui = 0 . (4)

According to (3), equation Cu = λu can be written in the fol-
lowing form:

∀i = 1, . . . , n : µiui − µiµ
>u = λui . (5)

We proceed by case analysis.



Case 1: µ1 = · · · = µn = 1/n.
Then we can choose as eigenvectors an orthonormal base of the
subspace induced by e

>u = µ>u = 0 with eigenvalues

λ1 = · · · = λn−1 =
1

n
.

For equal probability parameters, (1) collapses to

h(λ) =

(

λ −
1

n

)n−1

. (6)

Note that 1/n is a zero of h with multiplicity n − 1. This shows
that λ1 = · · · = λn−1 = 1/n are indeed the zeros of h.

Case 2 ∃i, j ∈ {1, . . . , n} : µi 6= µj.
Inspection of (5) reveals that no vector u satisfying µ>u = 0 can
be an eigenvector. Thus we can assume w.l.o.g. that an eigenvec-
tor u satisfies µ>u = −1. Now (5) collapses to

∀i = 1, . . . , n : µiui + µi = λui , (7)

which implies that

ui

n
∏

j=1

(λ − µj) = ui(λ − µi)
∏

j:j 6=i

(λ − µj)
(7)
= µi

∏

j:j 6=i

(λ − µj) . (8)

holds for i = 1, . . . , n. Now, we get

0
(4)
=

n
∑

i=1

ui =
n

∑

i=1

ui

n
∏

j=1

(λ − µj)
(8)
=

n
∑

i=1

µi

∏

j:j 6=i

(λ − µj)
(1)
= h(λ) .

As in case 1, the strictly positive eigenvalues coincide with the
zeros of h.

Finally (2) is obtained by observing that

∀i = k, . . . , n − 1 : h(µk) = µk

∏

j:j 6=k

(µk − µj) .

This implies that, for k = 1, . . . , n − 2,

h(µk) = h(µk+1) = 0 or sign (h(µk)) 6= sign (h(µk+1))

and a simple continuity argument shows that the k-th zero of h is
found in the interval [µk+1, µk]. ut


