Solution for Exercise 5 (Wednesday Session)

Lemma 0.1 If f(w) is homogeneous of degree α , then, for every $k \geq 0$ and every sequence $1 \leq i_1, \ldots, i_k \leq n$, function $(\nabla^k f(w))_{i_1, \ldots, i_k}$ is homogeneous of degree $\alpha - k$.

Proof According to Euler's Homogeneity Relation, it suffices to show that

$$(\nabla (\nabla^k f(w))_{i_1,\dots,i_k})^\top w = (\alpha - k) (\nabla^k f(w))_{i_1,\dots,i_k}$$
(1)

To this end, we proceed by induction. For k = 0, (1) collapses to Euler's Homogeneity Relation that holds because f is assumed to be homogeneous of order α . Consider now $k \ge 1$. We may assume inductively that

$$\sum_{i=1}^{n} w_i (\nabla^k f(w))_{i_1,\dots,i_{k-1},i} = (\nabla (\nabla^{k-1} f(w))_{i_1,\dots,i_{k-1}})^\top w = (\alpha - k + 1) (\nabla^{k-1} f(w))_{i_1,\dots,i_{k-1}}$$

Applying operator $\frac{\partial}{\partial w_{i_k}}$ to both sides of this equation, we get

$$\sum_{i=1}^{n} w_i (\nabla^{k+1} f(w))_{i_1,\dots,i_k,i} + (\nabla^k f(w))_{i_1,\dots,i_k} = (\nabla (\nabla^k f(w))_{i_1,\dots,i_k})^\top w + (\nabla^k f(w))_{i_1,\dots,i_k}$$
$$= (\alpha - k + 1)(\nabla^k f(w))_{i_1,\dots,i_k} .$$

The proof is completed by solving the last equation for $(\nabla(\nabla^k f(w))_{i_1,\ldots,i_k})^{\top} w$.