Solution for Exercise 6 (Wednesday Session)

Lemma 0.1 Assume that \mathcal{U} is a linear subspace of \mathbb{R}^n of dimension n-1, $\mu \notin \mathcal{U}$, and f is homogeneous (say of degree α). Then, $k(\mathcal{U}) = k(\mathbb{R}^n)$. Moreover, for $k := k(\mathcal{U}) = k(\mathbb{R}^n)$, T_k is positive semidefinite (or negative semidefinite, indefinite, respectively) on \mathcal{U} if and only T_k is positive semidefinite (or negative semidefinite, indefinite, respectively) on \mathbb{R}^n .

Proof $T_0 = T_0(h)$ is the constant function with value $f(\mu)$. If $f(\mu) \neq 0$, then $k(\mathcal{U}) = k(\mathbb{R}^n) = 0$. We can therefore assume that $f(\mu) = 0$ (which implies that $k(\mathbb{R}^n) \geq 1$).

Let $k := k(\mathcal{U})$. Clearly, $k(\mathbb{R}^n) \leq k$. In order to prove that $k(\mathbb{R}^n) \geq k$, it suffices to show that T_0, \ldots, T_{k-1} vanish on \mathbb{R}^n . For $T_0 = f(\mu) = 0$, this holds. Assume inductively that, for some $l \in \{1, \ldots, k-1\}, T_{l-1}$ vanishes on \mathbb{R}^n . This implies that $(\nabla^{l-1}f(\mu))_{i_1,\ldots,i_{l-1}} = 0$ for every sequence $1 \leq i_1, \ldots, i_{l-1} \leq n$. Since \mathcal{U} is (n-1)-dimensional and $\mu \notin \mathcal{U}$, an arbitrary vector from \mathbb{R}^n can be written in the form $u + \xi$ where $u \in \mathcal{U}$ and $\xi = \gamma \mu$ is a scalar multiple of μ . We proceed with a calculation which demonstrates that $T_l(u + \xi) = 0$:

$$\begin{split} l!T_{l}(u+\xi) &= \sum_{i_{1},...,i_{l}} (\nabla^{l}f(\mu))_{i_{1},...,i_{l}}(u_{i_{1}}+\xi_{i_{1}})\cdots(u_{i_{l}}+\xi_{i_{l}}) \\ &\stackrel{*}{=} l!T_{l}(u) + \sum_{i_{1},...,i_{l-1}} (u_{i_{1}}+\xi_{i_{1}})\cdots(u_{i_{l-1}}+\xi_{i_{l-1}}) \sum_{i_{l}} (\nabla^{l}f(\mu))_{i_{1},...,i_{l}}\xi_{i_{l}} \\ &+ \sum_{i_{1},...,i_{l-2},i_{l}} (u_{i_{1}}+\xi_{i_{1}})\cdots(u_{i_{l-2}}+\xi_{i_{l-2}})u_{i_{l}} \sum_{i_{l-1}} (\nabla^{l}f(\mu))_{i_{1},...,i_{l}}\xi_{i_{l-1}} \\ &+ \cdots + \sum_{i_{2},...,i_{l}} u_{i_{2}}\cdots u_{i_{l}} \sum_{i_{1}} (\nabla^{l}f(\mu))_{i_{1},...,i_{l}}\xi_{i_{1}} \\ &= l!T_{l}(u) + \gamma \cdot \sum_{i_{1},...,i_{l-1}} (u_{i_{1}}+\xi_{i_{1}})\cdots(u_{i_{l-2}}+\xi_{i_{l-2}})u_{i_{l}} (\nabla(\nabla^{l-1}f(\mu))_{i_{1},...,i_{l-2},i_{l}})^{\top}\mu \\ &+ \gamma \cdot \sum_{i_{1},...,i_{l-2},i_{l}} (u_{i_{1}}+\xi_{i_{1}})\cdots(u_{i_{l-2}}+\xi_{i_{l-2}})u_{i_{l}} (\nabla(\nabla^{l-1}f(\mu))_{i_{1},...,i_{l-2},i_{l}})^{\top}\mu \\ &+ \cdots + \gamma \cdot \sum_{i_{2},...,i_{l}} u_{i_{2}}\cdots u_{i_{l}} (\nabla(\nabla^{l-1}f(\mu))_{i_{2},...,i_{l}})^{\top}\mu \\ &= l!T_{l}(u) = 0 \end{split}$$

Here, all indices i_1, \ldots, i_l range from 1 to n. In the equation marked "*", we simply applied the distributive law to the product $(u_{i_1} + \xi_{i_1}) \cdots (u_{i_l} + \xi_{i_l})$. In the final equations (claiming that the whole sum collapses to zero), we made use of the following facts:

- $T_l(u) = 0$ because T_l vanishes on \mathcal{U} and $u \in \mathcal{U}$.
- According to Exercise 5, $(\nabla^{l-1} f(w))_{i_1,\dots,i_{l-1}}$ is homogeneous of degree $\alpha l + 1$. Euler's homogeneity relation (with w set to μ) then yields

$$(\nabla (\nabla^{l-1} f(\mu))_{i_1,\dots,i_{l-1}})^\top \mu = (\alpha - l + 1)(\nabla^{l-1} f(\mu))_{i_1,\dots,i_{l-1}} = 0 ,$$

where the last equation holds because, by our induction hypothesis, T_{l-1} vanishes on \mathbb{R}^n .

These observations complete the inductive proof for $k := k(\mathcal{U}) = k(\mathbb{R}^n)$. In order to complete the proof, let us inspect the initial part of the above calculation which showed that $T_l(u + \xi) = T_l(u)$. This part is not only valid for l = 1, ..., k - 1 but also for l = k. Thus, $T_k(u+\xi) = T_k(u)$. Therefore, positive semi-definiteness of T_k on \mathcal{U} implies positive semi-definiteness of T_k on \mathbb{R}^n . Analogously for negative semi-definiteness. Clearly, indefiniteness of T_k on \mathcal{U} implies indefiniteness of T_k on \mathbb{R}^n .