
Stability of Clustering Slide 1'

&

$

%

Stability of Clustering
— Wednesday Afternoon Session —

Hans U. Simon

Email: hans.simon@rub.de

Homepage: http://www.ruhr-uni-bochum.de/lmi

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken



Stability of Clustering Slide 2'

&

$

%

1

Part I: An Informal Start

• Illustration of Clustering and Algorithms for Clustering

• The Intuitive Concept of Clustering Stability

• Known Analytic Results about Clustering Stability

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Illustration of Clustering

Figure 1: k-Clustering: a partition of data points into k classes (here, k = 3).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Illustration of k-Means Clustering

Figure 2: k-means aims at minimizing the average squared distance between a

point and the corresponding center of gravity.

• NP-hard optimization problem in general

• efficient (EM-style) algorithms for the computation of a local optimum

• influence of large clusters potentially overemphasized

• “squared average distance” occasionally a bad choice as a “risk function”

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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A Nightmare Configuration for k-Means

Figure 3: The 2-Clustering indicated by circles and squares looks pretty good

(doesn’t it?). k-Means would prefer the split indicated by the cut-line.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Some Alternatives to k-Means

k-Median: Choose k centers such as to minimize the average distance between

a point and the center closest to it.

MST-Heuristic: Compute a minimum spanning tree and delete the k − 1

edges with the largest weights.

Dissimilarity-based Heuristics: See second lecture on clustering stability.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken



Stability of Clustering Slide 7'

&

$

%

The Intuitive Concept of Stability

A stable clustering algorithm should be robust against random fluctuations in

the data !

As indicated in the following reasoning, choosing the “wrong” number of

clusters should (hopefully) lead to instability.

Wrong Split: If k is a “good” number of clusters, and the algorithm produces

k + 1, then it has split at least one of the “true clusters”. The wrong split

is likely to be an over-sensitive reaction to “noise” in the data.

Wrong Merge: If k is a “good” number of clusters, and the algorithm

produces k − 1, then it has merged at least two of the “true clusters”.

Again this is likely to be an over-sensitive reaction to “noise” in the data.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Stability-based Clustering Decisions

Based on intuitive considerations (as above), stability is being widely used

in practical applications as a heuristics for tuning parameters of clustering

algorithms like

• the number of clusters

• or various stopping criteria.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Formally Unproven Intuitions May Go Wrong

The following example is taken from the COLT 2006 paper by Ben-David, von

Luxburg, and Pál:

(a) (b) (c) (d)

Figure 4: (a) wrong merge leading to instability (b) wrong split leading to in-

stability (c) wrong merge leading to stability (d) wrong split leading to stability

Cartoons (a) and (b) support the intuition behind stability; cartoons (c) and

(d) are in contradiction to it.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Some Pointers to the Literature

The following papers deal with clustering heuristics that follow the stability

approach (without providing a rigorous analysis):

• Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon. A stability based

method for discovering structure in clustered data. In Pacific Symposium

on Biocomputing 7, pages 6–17, 2002.

• Sandrine Dudoit and Jane Fridlyand. A prediction-based resampling

method for estimating the number of clusters in a data set. Genome

Biology, 3(7):1–21, 2002.

• Tilman Lange, Mikio L. Braun, Volker Roth, and Joachim M. Buhmann.

Stability-based model selection. In Advances in Neural Information

Processing Systems 15, pages 617–624. MIT Press, 2003.

• Erel Levine and Eytan Domany. Resampling method for unsupervised

estimation of cluster validity. Neural Computation, 13(11):2573–2593,

2001.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Papers Providing a More Formal Analysis

• Shai Ben-David, Ulrike von Luxburg, and Dávid Pál. A sober look at

clustering stability. In Proceedings of the 19th Annual Conference on

Learning Theory, pages 5–19, 2006

• Shai Ben-David, Dávid Pál, and H.U.S. Stability of k-means clustering.

In Proceedings of the 20th Annual Conference on Learning Theory, pages

20–34, 2007.

• Alexander Rakhlin and Andrea Caponnetto. Stability of k-means clus-

tering. In Advances in Neural Information Processing Systems 19. MIT

Press, pages 1121–1128, 2007.

The last two papers (with the same title) refer to different notions of stability.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Known Analytic Results

The paper by Ben-David, von Luxburg, and Pál

• formalizes stability as a kind of robustness against independent resampling,

• shows that risk-minimizing algorithms are stable if the risk-minimizing

clustering is unique,

• but the converse is proven only by making some additional symmetry

assumptions.

The paper by Ben-David, Pál, and H.U.S. shows that k-means is stable if and

only if the risk-minimizing clustering is unique.

The paper by Rakhlin and Caponnetto introduces another formal notion of

stability (robustness against replacements of subsamples) and determines the

degree of robustness of k-means w.r.t. this notion.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Part II: Towards a Theory of Clustering Stability

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Data Space, Random Sample, Relative Frequencies

Data Space: X = {x1, . . . , xn}

Probabilities: µ = (µ1, . . . , µn) ∈ � n
++

Sample: xj(1), . . . , xj(m) ∈ X (independently drawn according to µ)

Relative Frequencies: Wi(xj(1), . . . , xj(m)) := 1
m
|l ∈ {1, . . . , m} : jl = i|

Vector of Relative Frequencies: Ŵm = (W1, . . . , Wn)

Ŵm can serve as a “guess” for the unknown vector µ of “true probabilities”.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Admissible Clusterings and Risk Minimization

k-Clustering: a partition, C, of X into k equivalence classes called “clusters”

Risk Function: RC(w) ∈ � + (risk induced by C and “weight vector” w)

R-Minimizing Algorithm A: (xj(1), . . . , xj(m)) 7→ Ŵm 7→ Ĉ,

where Ĉ is a minimizer of RC(w)

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Stability

Algorithm A is called stable if there is a clustering C1 such that

lim
m→∞

Pr[A(Ŵm) = C1] = 1 ,

i.e., A outputs C1 almost surely when m grows to infinity. Let C1 be the most

likely output of A as m goes to infinity. Then

instab(A) := 1 − lim
m→∞

Pr[A(Ŵm) = C1]

can serve as a measure of instability (yielding zero iff A is stable).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Decision Function

• C1, the most likely output of A as m goes to infinity

• C2, the the second most likely output of A as m goes to infinity

• f(w), the “decision function” given by

f(w) := RC2
(w) − RC1

(w) ,

with ties broken in favor of C1 (for sake of clarity).

The following equivalence is obvious:

A is stable ⇔ lim
m→∞

Pr[f(Ŵm) ≥ 0] = 1

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Assumptions

1. f(w) is continuously differentiable at w = µ infinitely often.

2. There is an open ball around w = µ where the Taylor series

f(µ + h) =
∑

k≥0

Tk(h) , (1)

Tk(h) =
1

k!

∑

1≤i1,...,ik≤n

∂kf(w)

∂wi1 · · ·∂wik

∣

∣

∣

∣

µ

hi1 · · ·hik
, (2)

=
∑

ϑ1+···+ϑn=k

1

ϑ1! · · ·ϑn!

∂kf(w)

∂wϑ1

1 · · ·∂wϑn

n

∣

∣

∣

∣

∣

µ

hϑ1

1 · · ·hϑn

n (3)

of f converges (where ϑ1, . . . , ϑn ≥ 0 is always assumed implicitly).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Semidefiniteness versus Indefiniteness

U := {h ∈ �

n : h1 + · · · + hn = 0} . (4)

Let k(U) be given by

k(U) := min{k : Tk(h) does not vanish on U} . (5)

• Tk is called positive semidefinite on U if Tk(h) ≥ 0 for every h ∈ U .

• Tk is called negative semidefinite on U if Tk(h) ≤ 0 for every h ∈ U .

• Tk is called indefinite on U if it is neither positive nor negative semidefinite

on U .

Tk is indefinite on U (unless it vanishes on U) for every odd k (because

Tk(−h) = −Tk(h) for every odd k).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Main Result 1

Theorem 2.1 A is unstable if and only if Tk(U) is indefinite on U . Moreover,

if k(U) is odd, then

lim
m→∞

Pr[f(Ŵm) > 0] = lim
m→∞

Pr[f(Ŵm) < 0] =
1

2

which implies that instab(A) ≥ 1/2.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Sketch of Proof: a trivial case first

Exercise: Consider the case that k(U) = 0. Argue that in this case Tk(U) is

positive definite (and thus not indefinite) and A is stable.

Since this is consistent with the theorem, we may now safely assume that

k(U) ≥ 1.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Bringing the Central Limit Theorem into Play

• Consider the decomposition

Ŵm = µ + ĥm .

Then, random vector ĥm takes values in U , is normally distributed with

mean ~0, and approaches ~0 as m goes to infinity.

• The equidensity levels are concentric ellipsoids. Let E0 be the unique such

ellipsoid with a surface of volume 1.

• A random draw of ĥm can be performed in two stages:

– Pick a point h uniformly at random from the surface of E0.

– Pick a scaling factor λm at random and set ĥm = λmh.

• λm approaches zero as m goes to infinity.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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First Non-vanishing Taylor-term Determines the Sign

Consider the decomposition

f(µ + h) = Tk(U)(h) +
∑

k>k(U)

Tk(h) .

If f(µ + h) 6= 0, then

signf(µ + λ · h) = signTk(U)(λ · h)

for a sufficiently small λ > 0 (depending on h).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Indefiniteness = Instability

The following illustration is explained during the talk:

+

+

Figure 5: The outer ellipsoid is E0. The black bullets mark areas on the surface

of E0 where |Tk(U)| is smaller than a given threshold value. The sector marked

“+” denotes an area where Tk(U) is strictly positive. In the intersection of this

sector and the inner ellipsoid, function f is strictly positive too.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Main Result 2

Recall that a function g defined on an open domain is called homogeneous of

degree α if, for every λ that is sufficiently close to 1, the following holds:

g(λx) = λαg(x) (6)

Theorem 2.2 If the decision function f(w) is homogeneous, then

k(U) = k( �

n) .

Moreover, for k := k(U) = k( � n), Tk is positive semidefinite (or negative

semidefinite, indefinite, respectively) on U if and only Tk is positive semidefinite

(or negative semidefinite, indefinite, respectively) on � n.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Euler’s Homogeneity Relation

The following result is a well-known fact:

Lemma 2.3 For a continuously differentiable function f : D → � , D ⊆ � n,

the following holds. f(w) is homogeneous of degree α iff f satisfies the following

condition (called “Euler’s Homogeneity Relation”) on D:

∇f(w)>w = αf(w) (7)

Lemma 2.4 Assume that f is continuously differentiable infinitely often on

its domain D. Then the following holds. If f(w) is homogeneous of degree

α, then, for every k ≥ 0 and every sequence 1 ≤ i1, . . . , ik ≤ n, function

(∇kf(w))i1,...,ik
is homogeneous of degree α − k.

Exercise: Prove Lemma 2.4 by means of Lemma 2.3 and by induction on k.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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A Generalization of Main Result 2

Lemma 2.5 Assume that U is a linear subspace of � n of dimension n − 1,

µ /∈ U , and f is homogeneous (say of degree α). Then, k(U) = k( � n).

Moreover, for k := k(U) = k( � n), Tk is positive semidefinite (or negative

semidefinite, indefinite, respectively) on U if and only Tk is positive semidefinite

(or negative semidefinite, indefinite, respectively) on � n.

Clearly, k( � n) ≤ k(U). As for the converse direction, it suffices to show that

the following holds for every l ≥ 0:

T0, T1, . . . , Tk vanish on U =⇒ T0, T1, . . . , Tk vanish on � n. (8)

Exercise: • For k = 1, (8) is fairly easy to show. Why ?

• Prove (8) for arbitrary k ≥ 0 by induction.

• Argue that Lemma 2.5 applies to U and µ from Main Result 2.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Part III: Exercises

• two equivalent notions of stability

• uniqueness of the minimizing clustering as a sufficient condition for stability

• discussion of the case k(U) = 0 in the proof of Main Result 1

• the covariance matrix for the random vector of relative frequencies

• the homogeneity of the partial derivatives of a homogeneous function

• the proof of (the generalized) Main Result 2

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 1

The definition of stability based on independent resampling is as follows:

• Let Ŵm be the vector of relative frequencies derived from a first random

sample of size m, and let Ŵ ′
m be the vector derived from a second

independent random sample of size m. Let A(Ŵm) and A(Ŵ ′
m) denote

the k-clusterings output by A when it is independently applied to the two

random samples, respectively.

• The µ-Hamming-distance, dµ, between two clusterings is defined as the

probability (according to µ) that a random pair of data points falls into

different clusters in one clustering and in the same cluster for the other-one.

• A is called stable if

lim
m→∞

E[dµ(A(Ŵm), A(Ŵ ′
m))] = 0 .

Argue that this definition of stability is equivalent to the definition given on

page 16.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 2

Let R be a risk function and A an R-minimizing clustering algorithm. Argue

that the following holds: if the clustering of minimum risk is unique, then A is

stable.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 3

Solve the exercise on page 21 (trivial case within the proof of Main Result 1).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 4

• Let ~ei ∈ � n denotes the vector with a 1 in component i and zeros in the

remaining components, and let ~e ∈ � n denote the all-ones vector.

• Let W ∈ � n denote the random vector that takes value ~ei with probability

µi.

• Note that the subspace U := {h ∈ � n : h1 + · · ·+ hn = 0} from (4) is pre-

cisely the subspace spanned by the eigenvectors of C with strictly positive

eigenvalues. Moreover, the random vector Ŵm of relative frequencies can

be expressed as

Ŵm =
1

m
(W1 + · · · + Wm) , (9)

where W1, . . . , Wm are i.i.d. with the same distribution as W .

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 4 (continued)

Prove the following result:

E[W ] = µ and the covariance matrix C of W is given by

C[i, j] =







µi(1 − µi) if i = j

−µiµj if i 6= j
. (10)

Moreover, the eigenvalues λ1 ≥ · · · ≥ λN ≥ 0 of C are as follows:

1. λN = 0 (with eigenvector (1, . . . , 1)>).

2. Eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN−1 are the extrema of the function

h(λ) =
N
∏

i=1

µi(λ − µi)

so that

µi ≥ λi ≥ µi+1

for i = 1, . . . , N − 1.

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 5

Solve the exercise on page 26 (homogeneity of partial derivatives of a homoge-

neous function).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken
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Exercise 6

Solve the exercise on page 27 (proof of the lemma that generalizes Main

Result 2).

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken


