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Risk Functions

For sake of simplicity, we identify a k-clustering over a data space X =

{x1, . . . , xn} as a partition of [n] := {1, . . . , n} into k classes (=clusters).

We consider risk functions RC(w), where C is a k-clustering, with the following

additive structure:

RC(w) =
∑

C∈C

RC(w)

RC(w) is what cluster C contributes to the total risk.

Often RC(w) has the form

RC(w) = SC(w) · R̄C(w) where SC(w) =
∑

i∈C

wi .

Here, SC(w) is the “total weight” of C and R̄C(w) represents the weighted

average risk within cluster C so that RC(w) is the weighted sum of these

average risk terms.
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The k-Means Risk

X ⊆ � d, ‖ · ‖ denotes the Euclidean norm in � d, and

zC(w) =
1

SC(w)

∑

j∈C

wjxj

is the “center of gravity” within C:

RC(w) =
∑

i∈C

wi · ‖xi − zC(w)‖
2

= SC(w) ·
∑

i∈C

wi

SC(w)
‖xi − zC(w)‖2

︸ ︷︷ ︸

=:R̄C(w)

Note that R̄C(w) is the weighted-average squared distance between a point in

C and the center zC(w) of C.
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Exercise

Show the following:

• The centers of gravities are the optimal positions for centers, i.e., for fixed

C, any other choice of centers leads to a strictly increased risk.

• Optimal clusterings coincide with the partition induced by the Voronoi

diagram for the center points.

• Optimal clusterings exclude “ties”, that is, for for every point there is a

unique closest center.

The first two observations give rise to an EM-style algorithm for the computa-

tion of a locally optimal clustering.
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An Alternative Representation of the k-Means Risk

Exercise: Show that

R̄C(w) :=
∑

i∈C

wi

SC(w)
‖xi − zC(w)‖2

!
=

1

2
·

∑

i,j∈C

wi

SC(w)

wj

SC(w)
‖xi − xj‖

2

so that

RC(w) = SC(w) ·
1

2
·

∑

i,j∈C

wi

SC(w)

wj

SC(w)
‖xi − xj‖

2
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Some Risk Functions of a Similar Structure

RC(w) = SC(w) ·
1

2
·

∑

i,j∈C

wi

SC(w)

wj

SC(w)
‖xi − xj‖

2 (1)

RC(w) =
1

2
·

∑

i,j∈C

wiwj‖xi − xj‖
2 (2)

RC(w) = SC(w) ·
1

2
·

∑

i,j∈C

wi

SC(w)

wj

SC(w)
‖xi − xj‖ (3)

RC(w) =
1

2
·

∑

i,j∈C

wiwj‖xi − xj‖ (4)

Exercise: All risk functions shown above are homogeneous (of degree 1 or 2).

Why might homogeneity be a desirable property for risk functions ?

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken



Stability of Clustering Slide 7'

&

$

%

Dissimilarity Matrix

A matrix D ∈ � n×n is called dissimilarity matrix if

• it is symmetric,

• has zeros on the main diagonal,

• and has strictly positive entries elsewhere.

Some remarks:

• di,j represents the “dissimilarity” between data points xi, xj (often

estimated by averaging over human judgments).

• D need not satisfy the triangle inequality and is therefore not necessarily

a metric.

• Clustering algorithms will have access to data points only indirectly via D.
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Dissimilarity-based Risk Functions

The (first) risk function induced by D is defined as

RC(w) =
∑

C∈C

SC(w) · R̄C(w)

where

R̄C(w) =
1

2
·

∑

i,j∈C

wi

SC(w)

wj

SC(w)
di,j

Note that R̄C(w) represents the weighted-average dissimilarity within C.

Alternatively, we could consider the second risk function induced by D which

is defined as follows:

RC(w) =
1

2
·
∑

C∈C

∑

i,j∈C

wiwjdi,j

All four risk functions from page 6 are special cases !
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Reminder

Let f = RC2
−RC1

be the decision function for the two distinguished clusterings

C1, C2 (introduced in the Wednesday session). Let

f(µ + h) =
∑

k≥0

Tk(h)

Tk(h) =
1

k!

∑

1≤i1,...,ik≤n

∂kf(w)

∂wi1 · · · ∂wik

∣
∣
∣
∣
µ

hi1 · · ·hik

be the Taylor-expansion around µ. Let k( � n) be the smallest k such

that Tk( � n)(h) does not vanish. Then (provided that the risk function is

homogeneous) the following holds for any risk-minimizing algorithm A:

• A is unstable if and only if Tk( � n) is indefinite (on � n).

• Moreover, if k( � n) is odd, then instab(A) ≥ 1/2.
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Goal

The paper by Ben-David, Pál, and H.U.S. from COLT 2006 shows:

k-means is stable
!
⇔ k( �

n) = 0

⇔ the risk-minimizing clustering is unique

We conjecture that the analogous statement holds for any dissimilarity-based

risk minimizing algorithm. We proceed in stages:

Stage 1: The conjecture is true and easy to verify for the second risk function

induced by a dissimilarity matrix.

Stage 2: As for the first risk function, there is a “partial proof” that covers

all but one weird case.

Stage 3: We show how one can cope with the weird case when we specialize

our considerations to k-means clustering.
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Stage 1: The Second Dissimilarity-based Risk Function

For RC(w) =
∑

C∈C RC(w) and

RC(w) =
1

2
·
∑

C∈C

∑

i,j∈C

wiwjdi,j ,

the partial derivatives are easy to determine:

Let D(C) be the matrix resulting from D by setting entry (i, j) to zero for all

pairs whose components are not in the same cluster. Then

RC(w) =
1

2
w>D(C)w , ∇RC(w) = D(C)w , and ∇2RC(w) = D(C)

Now consider the decision function f = RC2
− RC1

. It follows that:

• ∇2f(w) has zeros on the main diagonal.

• Since C1 6= C2, ∇
2f(w) has non-zero entries.

• ∇2f(w) is indefinite.

This completes stage 1 !
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Exercise

Explain the reasoning on the preceding page in more detail.
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Stage 2

Stage 2 is structured as follows:

• partial derivatives of the first dissimilarity-based risk function

• a central lemma:

first non-vanishing term in the Taylor series for f is of order at most 3

• case-analysis excluding the weird case
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Derivatives for the 1st Dissimilarity-based Risk Function

Using short-notation (statement) = 1 if the statement is true and 0 otherwise,

and

(∇kRC(µ))p1,...,pk
:=

∂kRC(w)

∂wp1
· · · ∂wpk

∣
∣
∣
∣
µ

, (5)

we get:

(∇RC(w))p =
∑

j∈Cp

wj

SCp
(w)

dp,j −
1

2

∑

i,j∈Cp

wi

SCp
(w)

wj

SCp
(w)

di,j (6)

(∇2RC(w))p,q =
(Cp = Cq)

SCp
(w)

· (dp,q − (∇RC(w))p − (∇RC(w))q) (7)

From (7), we extrapolate that

(∇2RC(w))p,p =
−2

SCp
(w)

· (∇RC(w))p (8)
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Partial Derivatives of Higher Order

(∇3RC(w))p,q,r =
−(Cp = Cq = Cr)

SCp
(w)

(9)

(
(∇2RC(w))p,q + (∇2RC(w))p,r + (∇2RC(w))q,r

)
(10)

More generally, for every k ≥ 3, the following holds:

(∇kRC(w))p1,...,pk
=

−(Cp1
= · · · = Cpk

)

SCp1
(w)

k∑

l=1

(∇k−1RC(w))p1,...,pl−1,pl+1,...,pk

(11)
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Exercise

• Check the formulas for the partial derivatives.

• Try to give them a nice interpretation.

• Show the following: if R is the k-means risk function, then

(∇RC(w))p = ‖xp − zC(w)‖2

(∇2RC(w))p,q = (Cp = Cq) ·
−2〈xp − zC(w), xq − zC(w)〉

SC(w)
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A Central Lemma

We claim that

k∗ := k( �

n) ≤ 3 .

The proof makes use of the following observations:

• Assume that ∇f(µ) and ∇2f(µ) vanish. It suffices to show that ∇3f(µ)

does not vanish.

• For any k-clustering C:

– RC is not a linear function.

– ∇2RC(µ) does not vanish because, otherwise, all higher order terms

would vanish as well (according to the recursion on page 15), which is

impossible.

• We may assume wlog that C1 and C2 have no clusters in common.

(Otherwise, remove common clusters and diminish k accordingly.)
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Proof of the Central Lemma

• Pick C ∈ C1 and p, q ∈ C such that (∇2RC(µ))p,q 6= 0.

• Since ∇2f(µ) vanishes, we conclude that there exists C ′ ∈ C2 such that

(∇2RC′(µ))p,q = (∇2RC(µ))p,q 6= 0.

• Pick r from the symmetric difference of C and C ′. For reasons of symmetry,

we may assume that r ∈ C \ C ′.
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Proof of the Central Lemma (continued)

Clearly,

(∇3RC′(µ))p,q,r = ∇2RC′(µ))p,r = ∇2RC′(µ))q,r = 0 .

On the other hand, we get

(∇3RC(µ))p,q,r =
−1

SC(µ)

(
(∇2RC(µ))p,q + (∇2RC(µ))p,r + (∇2RC(µ))q,r

)

∗
=

−1

SC(µ)
(∇2RC(µ))p,q 6= 0 ,

where the equation marked “∗” follows because the Hessian of f vanishes at µ

so that

(∇2RC(µ))p,r = (∇2RC′(µ))p,r = (∇2RC(µ))q,r = (∇2RC′(µ))q,r = 0 .

This settles the proof for the central lemma.
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Analysis of “easy-to-handle” Cases

Let Tk be the term in the Taylor-expansion of f = RC2
−RC1

around µ. Recall

that k∗ = k( � n) denotes the order of the first term that does not vanish. The

following is obvious from our general results about stability:

• If k∗ = 0, then C1 is a unique minimizer of RC(µ) and any R-minimizing

algorithm is stable.

• If k∗ ∈ {1, 3}, then, for any R-minimizing algorithm A, instab(A) ≥ 1/2

(implying that A is unstable).

• If k∗ = 2 and ∇2f(µ) has zeros on the main diagonal, then ∇2f(µ) is

indefinite (since there must be a non-zero entry outside the main diagonal).

It follows that any R-minimizing algorithm is unstable.

Stage 2 is finished !!

Hans U. Simon, Ruhr-Universität Bochum, Germany ADFOCS 2007, MPI Saarbrücken



Stability of Clustering Slide 21'

&

$

%

Stage 3: The Remaining Case (focusing on k-means)

We are left only with the

Weird Case: k∗ = 2 and ∇2f(µ) has at least one non-zero entry on its main

diagonal.

Claim: Assume that we are in the weird case. If R is the k-means risk

function, then any R-minimizing algorithm is unstable.
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Proof of the Claim

• Let g := ∇RC1
= ∇RC2

denote the common gradient of RC1
and RC2

.

• For any 1 ≤ p ≤ n, let C(p) ∈ C1 and C ′(p) ∈ C2 denote the respective

cluster that contains p. Furthermore, let W (p) and W ′(p) denote the total

weight of C(p) and C ′(p), respectively.

• With this notation:

(∇2f(µ))p,p = 2gp(W (p) − W ′(p))

It suffices to show that

(∃1 ≤ p ≤ n : (∇2f(µ))p,p > 0)
!

=⇒ (∃1 ≤ q ≤ n : (∇2f(µ))q,q < 0) .

(This would imply indefiniteness of ∇2f(µ), which, in turn, implies instability.)
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Exercise

Show the following:

• (∃1 ≤ p ≤ n : (W (p) > W ′(p)) ⇒ (∃1 ≤ q ≤ n : (W ′(q) > W (q)).

• gi = 0 ⇒ C(i) = C ′(i) ⇒ W (i) = W ′(i) so that W ′(q) > W (q) ⇒ gq 6= 0.

As for the second part, it is helpful to remember that the gradient gives us the

squared distance between a point and the corresponding center of gravity, and

that the clusters of optimal clusterings correspond to Voronoi-cells.
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Proof of the Claim (continued)

Now we are ready to complete the analysis of the weird case:

(∃1 ≤ p ≤ n : (∇2f(µ))p,p > 0) =⇒ (∃1 ≤ p ≤ n : (W (p) > W ′(p))

=⇒ (∃1 ≤ q ≤ n : (W ′(q) > W (q))

=⇒ (∃1 ≤ q ≤ n : (W ′(q) > W (q) ∧ gq 6= 0)

=⇒ (∃1 ≤ q ≤ n : (∇2f(µ))q,q < 0)
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Example

Consider the dissimilarity matrix

D =
















0 1 1/4 ∞ ∞ 1/4

1 0 1/4 ∞ ∞ 1/4

1/4 1/4 0 1/4 1/4 ∞

∞ ∞ 1/4 0 1 1/4

∞ ∞ 1/4 1 0 1/4

1/4 1/4 ∞ 1/4 1/4 0
















,

where ∞ could be replaced by a sufficiently large value. Let µ represent the

uniform distribution on [6]. It is easy to see that there are precisely two optimal

2-partitions,

C = {{1, 2, 3}, {4, 5, 6}} and C ′ = {{1, 2, 6}, {4, 5, 3}} ,

each-one leading to risk 1/6.
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Exercise

• Look at the example from the preceding page. Calculate the first order

Taylor-terms of the decision function and show that the first non-vanishing

term is order 3.
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Final Remark

Exercise: Let R be the risk-function for k-means. Show that C1 6= C2 implies

that ∇2RC1
(µ) 6= ∇2RC2

(µ). In other words, the clustering is uniquely

determined by the Hesse matrix of its risk-function.

This shows k( � n) ≤ 2 in the special case of k-means (in contrast to the

example that we have seen above).
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