Topological Data Analysis - II

Afra Zomorodian
Department of Computer Science
Dartmouth College
September 4, 2007

Plan

(). Yesterday:

- Motivation
- Topology
- Simplicial Complexes
- Invariants
- Homology
- Algebraic Complexes
- Today
- Geometric Complexes
- Persistent Homology
- The Persistence Algorithm
- Application to Natural Images

Outline

- Geometric Complexes
- Voronoi Diagram
- Delaunay Triangulation
- Alpha Complex
- Witness Complex
- Summary
- Persistent Homology
- The Persistence Algorithm
- Application to Natural Images

Recall

- Procedure
- Cover points to get approximation of underlying space
- Take nerve to get combinatorial representation
- Example: ε-balls around points as cover
- Idea: Use geometry of embedding space to generate cover

Voronoi Diagram

Voronoi Diagram

- $p \in M \subseteq \mathbb{R}^{2}$
- Voronoi cell $\mathrm{V}(\mathrm{p})$: closest points to p in \mathbb{R}^{2}

$$
V(p)=\left\{x \in \mathbb{R}^{2} \mid \mathrm{d}(x, p) \leq \mathrm{d}(x, y), \forall y \in M\right\}
$$

- Voronoi Diagram: Decomposition of \mathbb{R}^{2} into Voronoi cells
- Voronoi (1868-1908)
- Idea: Use Voronoi cells as cover!

Delaunay Triangulation

Delaunay Triangulation

- Delaunay Triangulation: nerve of Voronoi cover
- Computational Geometry
- General position assumption
- no events with probability o
- no $k+1$ points on $(k-1)$-sphere
- has to be handled in practice
- Fast algorithms for \mathbb{R}^{3}
- Delaunay (1890-1980)

Restricted Voronoi

Alpha Complex

Delaunay Subcomplex

Alpha Complex

- Alpha cell: $A_{\varepsilon}(p)=B_{\varepsilon}(p) \cap V(p)$
- Alpha shape: union of alpha cells
- Alpha complex: nerve of alpha shape

$$
A_{\epsilon}(M)=\left\{\operatorname{conv} T \mid T \subseteq M, \bigcap_{p \in T} A_{\epsilon}(p) \neq \emptyset\right\}
$$

- Let D be the Delaunay triangulation
- $\mathrm{A}_{\mathrm{o}}=\emptyset$
- $\mathrm{A}_{\varepsilon} \subseteq \mathrm{D}$
- $\mathrm{A}_{\infty}=\mathrm{D}$
- $\mathrm{A}_{\varepsilon} \simeq \mathrm{C}_{\varepsilon}$
- [Edelsbrunner, Kirkpatrick, and Seidel '83], et al.

Strong Witness

Strong Witness

- Given: Point set $M \in \mathbb{R}^{\text {d }}$
- Strong witness: $\mathrm{x} \in \mathbb{R}^{\mathrm{d}}$
- x is equidistant from $v_{0}, \ldots, v_{k} \in M$
- x has no closer neighbor in M
- x witnesses k -simplex $\left\{\mathrm{v}_{\mathrm{o}}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$
- Idea: Sample for witnesses
- Problem: Prob(strong witness) =o for discrete set M

Weak Witness

- Weak witness: $x \in \mathbb{R}^{d}$
- $\left|x-v_{i}\right| \leq|x-v|$ for $i=0, \ldots, k$ and $v \in M \backslash\left\{v_{o}, \ldots, v_{k}\right\}$
- x 's closest $\mathrm{k}+1$ neighbors are $\mathrm{v}_{\mathrm{o}}, \ldots, \mathrm{v}_{\mathrm{k}}$
- x witnesses k -simplex $\left\{\mathrm{v}_{\mathrm{o}}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ weakly
- Strong witness \Rightarrow weak witness
- (Theorem [de Silva])

A simplex has a strong witness iff all its faces have weak witnesses.

Isomap

- We want to capture the underlying space, not the embedding space
- Idea: Restrict witnesses to given points M

Witness Complex

- Given: N points M
- Choose: n landmarks L
- M \L will act as witnesses

- $\mathrm{D}=\mathrm{n} \times \mathrm{N}$, distance matrix
- Construct ε-graph on L: Edge $[a b] \in \mathrm{W}_{\varepsilon}(\mathrm{M})$ iff there exists a witness with $\max (\mathrm{D}(\mathrm{a}, \mathrm{i}), \mathrm{D}(\mathrm{b}, \mathrm{i})) \leq \varepsilon$
- Do Vietoris-Rips Expansion

Complex Summary

Complex	Name	Idea	Scales?	Extends?
Cech	C_{ε}	Nerve of ε-balls	1 K	\sim
Vietoris-Rips	V_{ε}	Pairwise dist $<\varepsilon$	1 K	Y
Alpha	A_{ε}	Nerve of restricted Voronoi	500 K	$\mathrm{~d} \leq 3$
Witness	W_{ε}	Landmarks and witnesses	1 K	Y

- Conformal Alpha - no global scale parameter
- Flow - stable manifolds of distance function
- Cubical - rasterize, usually interpretation of images

Outline

(-) Geometric Complexes

- Persistent Homology
- Filtrations
- Algebraic Result
- Simple Examples
- The Persistence Algorithm
- Application to Natural Images

The Question of Scale

Filtration

- A filtration of a space X is a nested sequence of subspaces:

$$
\emptyset=X^{0} \subseteq X^{1} \subseteq \cdots \subseteq X^{l} \subseteq \cdots \subseteq X^{m}=X
$$

- $\mathrm{C}_{\varepsilon} \subseteq \mathrm{C}_{\varepsilon^{\prime}}$ if $\varepsilon \leq \varepsilon^{\prime} \quad$ (Also true for $\mathrm{V}_{\varepsilon}, \mathrm{A}_{\varepsilon}$, and W_{ε})
- Simplices are always added, never removed
- Implies partial order on simplices
- Full order: sequence of simplices
- $\mathrm{K}_{\mathrm{i}}=$ union of first i simplices in sequence

Witness Complex

Inductive Systems

Idea: Follow basis elements from birth to death
Problem: Need a compatible basis!

Persistent Homology

- Persistence barcode: multiset of intervals

Algebraic Result

1. Correspondence

- Input: Filtration
- Structure of homology: graded $k[t]$-module

2. Classification

- k, a field $\Rightarrow k[t]$ is a PID
- Structure theorem for graded PIDs

3. Parameterization

- n half-infinite
- m finite

$$
\left(\bigoplus_{i=1}^{n} \Sigma^{\alpha_{i}} k[t]\right) \oplus\left(\bigoplus_{j=1}^{m} \Sigma^{\gamma_{j}} k[t] /\left(t^{n_{j}}\right)\right)
$$

- Barcode: multiset of $n+m$ intervals (birth, death)
- Complete discrete invariant!

Deconstructing the Graph (2D)

Torus!

Discovering 3D Structure

Outline

© Geometric Complexes
() Persistent Homology

- The Persistence Algorithm
- Adding a Simplex
- Example Filtration
- Application to Natural Images

Adding a Simplex

- Given: Filtered complex K
- $\mathrm{K}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}-1} \cup \sigma$, where σ is a k -simplex
- Let $\mathrm{c}=\partial \sigma$. c is $\mathrm{a}(\mathrm{k}-1)$-chain.
- (Lemma) c is a cycle.
- Proof: $\partial c=\partial \partial \sigma=0$.
- (Lemma) c is in $\mathrm{K}_{\mathrm{i}-1}$.
- Proof: K_{i} is a simplicial complex.

Gaussian Elimination

- σ is a k-simplex
- $\mathrm{c}=\partial \sigma$ is a $(\mathrm{k}-1)$-cycle in $\mathrm{K}_{\mathrm{i}-1}$
- Two cases: c is a boundary or not in $\mathrm{K}_{\mathrm{i}-1}$
- M_{k} is matrix for ∂_{k}
- c is a boundary iff
- it is in range $\left(M_{k}\right)$
- we can write it in terms of a basis for M_{k}
- Gaussian elimination maintains a basis for range $\left(M_{k}\right)$
- Filtration and persistence imply ordering on pivots

Case 1: c is a boundary in $\mathrm{K}_{\mathrm{i}-1}$

- If c is a boundary, then $\exists \mathrm{d} \in \mathrm{C}_{\mathrm{k}+1}\left(\mathrm{~K}_{\mathrm{i}-1}\right)$, such that $\mathrm{c}=\partial \mathrm{d}$
- (Lemma) $\sigma+\mathrm{d}$ is a k -cycle in K_{i}.

- Proof: $\partial(\sigma+\mathrm{d})=\partial \sigma+\partial \mathrm{d}=\mathrm{c}+\partial \mathrm{d}=0$.
- σ creates a new k-cycle class
- σ is a creator

Case 2: c is not a boundary in $\mathrm{K}_{\mathrm{i}-1}$

- (Lemma) c becomes a boundary in K_{i}.
- Proof: c= $=\partial \sigma$.
- $\ln \mathrm{K}_{\mathrm{i}-1}$
- c is a cycle

- c is not a boundary
- c is in a non-boundary homology class
- In K_{i} : c is a boundary, so its homology class is trivial.
- σ destroys a ($\mathrm{k}-1$)-dimensional class
- σ is a destroyer
- Suppose τ created that class that σ destroyed
- We pair (τ, σ) to get the lifetime interval

Example

Filtration

- Initially, cascade $=\sigma_{i}$

cascade
(cascade)

Vertices a, b, c, d

- $\partial \sigma=o$ for all vertices σ

ab

- We sort $\partial \mathrm{ab}=\mathbf{b}+\mathbf{a}$ by youngest
- Since b is unpaired, pair with $a b$

bc, cd

- $\partial \mathrm{bc}=\mathbf{c}+\mathrm{b}$
- $\partial c d=\mathbf{d}+c$

ad

- \quad \quad ad $=(d+a) \sim(d+a)+(d+c)=c+a$

$$
\sim(c+a)+(c+b)=b+a \sim(b+a)+(b+a)=0
$$

filtration		b		c	d		ab	bc	cd	ad	ac	abc	acd
		a		bc	c		b	c	d				

∂ (cascade)	o	o	0	\circ	b	c	d	\circ
					a	b	c	

ac

- $\partial \mathrm{ac}=(\mathrm{c}+\mathrm{a}) \sim(\mathrm{c}+\mathrm{a})+(\mathrm{c}+\mathrm{b})=\mathrm{b}+\mathrm{a}$
$\sim(b+a)+(b+a)=0$

filtration		b		c	d	a	b	bc	cd	ad	ac	abc	acd
		a		bc	cd	b	b	c	d				

cascade	a	b	c	d	$a b$	$b c$	$c d$	$a d$	$a c$	
								$c d$	$b c$	
									$b c$	$a b$
								$a b$		

∂ (cascade)	o	o	o	0	b	c	d	o	0
					a	b	c		

abc

- $\partial \mathrm{abc}=\mathrm{ac}+\mathrm{bc}+\mathrm{ab}$

acd

- \quad acd $=\mathrm{ac}+\mathrm{ad}+\mathrm{cd} \sim$

$$
(a c+a d+c d)+(a c+b c+a b)=a d+c d+b c+a b
$$

filtration			b	c		d	ab	bc	cd	ad	ac	abc	acd	
			ab	bc		cd	b	c	d	acd	abc	ac	ac	ac

$$
\begin{array}{|c|cccccccccccc|}
\hline \partial \text { (cascade) } & 0 & 0 & 0 & 0 & b & c & d & 0 & 0 & \text { ac } & \text { ad } \\
\hline & & & & & a & b & c & & & & b c & c d \\
& & & & & & & & & & a b & b c \\
& & & & & & & & & & & & a b
\end{array}
$$

Barcode

$a_{0} b^{b}$						
0 a, b	$1{ }^{\text {a }}$ ab, ${ }^{\text {c, }}$	$2 \mathrm{~cd}, \mathrm{ad}$	3 ac	4 abc	5	acd

- β_{o} : a is unpaired $\Rightarrow[0, \infty)$
- $\beta_{o}:(b, a b) \Rightarrow[0,1)$
- $\beta_{o}:(c, b c) \Rightarrow \emptyset$
- $\beta_{o}:(d, c d) \Rightarrow[1,2)$
- $\beta_{1}:(\mathrm{ad}, \mathrm{acd}) \Rightarrow[2,5)$
- $\beta_{1}:(\mathrm{ac}, \mathrm{abc}) \Rightarrow[4,5)$

Outline

© Geometric Complexes
() Persistent Homology
() The Persistence Algorithm

- Application to Natural Images

Natural Images

J. H. van Hateren, Neurobiophysics, U. Groningen

Local Structure: 3×3 Patches

$(0.81,0.62,0.64,0.82,0.65,0.64,0.83,0.66,0.65) \in \mathbb{R}^{9}$

Mumford Dataset

- David Mumford (Brown)
- 3×3 patches $\left(\mathbb{R}^{9}\right)$
- Subtract mean intensity $\left(\mathbb{R}^{8}\right)$
- Remove low contrast patches
- Rescale to unit length (\mathbb{S})
- 2.5 million points on $\mathbb{S} 7$
- What is its structure?
- Examine dense areas

Space of Idealized Lines

- Lines in natural images
- Rasterized in 3×3 patches

- Parameterization
- Distance to center: \mathbb{I}
- Angle: \mathbb{S}^{1}
- Space is annulus: $\mathbb{I} \times \mathbb{S}^{1}$

Demo

Graph Structure

2D Structure

The Klein Bottle

- Can we design a compression algorithm that uses the Klein bottle?

Software

- PLEX: comptop.stanford.edu/programs/plex
- Cech
- Vietoris-Rips
- Witness
- Persistence
- CgAL: www.cgal.org
- Alpha
- Persistence (?)
- CHomP: chomp.rutgers.edu
- Alpha Shapes: biogeometry.duke.edu/software/alphashapes
- GGobi: www.ggobi.org

Conclusion

- We are flooded by point set data and need to find structure in them
- Topology studies connectivity of spaces
- Topological analysis may be viewed as generalization of clustering
- To analyze point sets, we require a combinatorial representation approximating the original space
- Homology focuses on the structure of cycles
- Persistent homology analyzes the relationship of structures at multiple scales

