TOPOLOGICAL DATA ANALYSIS - II

Afra Zomorodian Department of Computer Science *Dartmouth College* September 4, 2007

Plan

- [©] Yesterday:
 - Motivation
 - Topology
 - Simplicial Complexes
 - Invariants
 - Homology
 - Algebraic Complexes
- Today
 - Geometric Complexes
 - Persistent Homology
 - The Persistence Algorithm
 - Application to Natural Images

Outline

- Geometric Complexes
 - Voronoi Diagram
 - Delaunay Triangulation
 - Alpha Complex
 - Witness Complex
 - Summary
- Persistent Homology
- The Persistence Algorithm
- Application to Natural Images

Recall

- Procedure
 - Cover points to get approximation of underlying space
 - Take nerve to get combinatorial representation
- Example: ε-balls around points as cover
- Idea: Use geometry of embedding space to generate cover

Voronoi Diagram

Voronoi Diagram

- $p \in M \subseteq \mathbb{R}^2$
- Voronoi cell V(p): closest points to p in R²

$$V(p) = \left\{ x \in \mathbb{R}^2 \mid \mathsf{d}(x, p) \le \mathsf{d}(x, y), \forall y \in M \right\}$$

- Voronoi Diagram: Decomposition of $\mathbb{R}^{\scriptscriptstyle 2}$ into Voronoi cells
- Voronoi (1868 1908)
- Idea: Use Voronoi cells as cover!

Delaunay Triangulation

Delaunay Triangulation

- Delaunay Triangulation: nerve of Voronoi cover
- Computational Geometry
- General position assumption
 - no events with probability o
 - no k + 1 points on (k 1)-sphere
 - has to be handled in practice
- Fast algorithms for \mathbb{R}^3
- Delaunay (1890 1980)

Restricted Voronoi

Alpha Complex

Delaunay Subcomplex

Alpha Complex

• Alpha cell: $A_{\varepsilon}(p) = B_{\varepsilon}(p) \cap V(p)$

1

- Alpha shape: union of alpha cells
- Alpha complex: nerve of alpha shape

$$A_{\epsilon}(M) = \left\{ \operatorname{conv} T \mid T \subseteq M, \bigcap_{p \in T} A_{\epsilon}(p) \neq \emptyset \right\}$$

- $A_{\epsilon} \subseteq D$
- $A_{\infty} = D$
- $A_{\epsilon} \simeq C_{\epsilon}$
- [Edelsbrunner, Kirkpatrick, and Seidel '83], et al.

1

Strong Witness

Strong Witness

- Given: Point set $M \in \mathbb{R}^d$
- Strong witness: $\mathbf{x} \in \mathbb{R}^d$
 - x is equidistant from v_o, . . ., v_k \in M
 - x has no closer neighbor in M
 - x witnesses k-simplex $\{v_0, \ldots, v_k\}$

- Idea: Sample for witnesses
- Problem: Prob(strong witness) = o for discrete set M

Weak Witness

- Weak witness: $\mathbf{x} \in \mathbb{R}^d$
 - $\ |x-v_i| \leq |x-v| \text{ for } i=o,\ldots,k \text{ and } v \in M \setminus \{v_o,\ldots,v_k\}$
 - x's closest k + 1 neighbors are v_0, \ldots, v_k
 - x witnesses k-simplex $\{v_0, \ldots, v_k\}$ weakly
- Strong witness ⇒ weak witness
- (Theorem [de Silva])

A simplex has a strong witness iff all its faces have weak witnesses.

ISOMAP

- We want to capture the underlying space, not the embedding space
- Idea: Restrict witnesses to given points M

Witness Complex

- Given: N points M
- Choose: n landmarks L
- M \ L will act as witnesses

- $D = n \times N$, distance matrix
- Construct ϵ -graph on L: Edge [ab] $\in W_{\epsilon}(M)$ iff there exists a witness with max(D(a,i), D(b,i)) $\leq \epsilon$
- Do Vietoris-Rips Expansion

Complex Summary

Complex	Name	Idea	Scales?	Extends?
Cech	C_{ϵ}	Nerve of ϵ -balls	1K	\sim
Vietoris-Rips	V_{ϵ}	Pairwise dist < ϵ	1K	Υ
Alpha	A_{ϵ}	Nerve of restricted Voronoi	500K	$d \leq 3$
Witness	W_{ϵ}	Landmarks and witnesses	1K	Y

- Conformal Alpha no global scale parameter
- Flow stable manifolds of distance function
- Cubical rasterize, usually interpretation of images

Outline

- © Geometric Complexes
- Persistent Homology
 - Filtrations
 - Algebraic Result
 - Simple Examples
- The Persistence Algorithm
- Application to Natural Images

The Question of Scale

Combinatorial Topology

Filtration

• A filtration of a space X is a nested sequence of subspaces:

$$\emptyset = X^{0} \subseteq X^{1} \subseteq \cdots \subseteq X^{l} \subseteq \cdots \subseteq X^{m} = X$$

- $C_{\epsilon} \subseteq C_{\epsilon'}$ if $\epsilon \le \epsilon'$ (Also true for V_{ϵ} , A_{ϵ} , and W_{ϵ})
- Simplices are always added, never removed
- Implies partial order on simplices
- Full order: sequence of simplices
- K_i = union of first i simplices in sequence

Witness Complex

Inductive Systems

Idea: Follow basis elements from birth to death Problem: Need a compatible basis!

Persistent Homology

• Persistence barcode: multiset of intervals

Algebraic Result

- 1. Correspondence
 - Input: Filtration
 - Structure of homology: graded k[t]-module
- 2. Classification
 - k, a field $\Rightarrow k[t]$ is a PID
 - Structure theorem for graded PIDs
- 3. Parameterization
 - *n* half-infinite
 - *m* finite
 - Barcode: multiset of *n*+*m* intervals (birth, death)
 - *Complete discrete invariant!*

$$\begin{pmatrix} \bigoplus_{i=1}^{n} \Sigma^{\alpha_{i}} k[t] \end{pmatrix} \oplus \begin{pmatrix} \bigoplus_{j=1}^{m} \Sigma^{\gamma_{j}} k[t]/(t^{n_{j}}) \end{pmatrix}$$

$$\downarrow$$

$$\Sigma^{\alpha_{i}} k[t] \mapsto (\alpha^{i}, \infty)$$

$$\Sigma^{\gamma_{j}} k[t]/(t^{n_{j}}) \mapsto (\gamma_{j}, \gamma_{j} + n_{j})$$

Outline

- © Geometric Complexes
- © Persistent Homology
- The Persistence Algorithm
 - Adding a Simplex
 - Example Filtration
- Application to Natural Images

Adding a Simplex

- Given: Filtered complex K
- $K_i = K_{i-1} \cup \sigma$, where σ is a k-simplex
- Let $c = \partial \sigma$. c is a (k 1)-chain.
- (Lemma) c is a cycle.
- Proof: $\partial c = \partial \partial \sigma = o$.
- **(Lemma)** c is in K_{i -1}.
- Proof: K_i is a simplicial complex.

Gaussian Elimination

- σ is a k-simplex
- $c = \partial \sigma$ is a (k 1)-cycle in K_{i-1}
- Two cases: c is a boundary or not in K_{i-1}
- M_k is matrix for ∂_k
- c is a boundary iff
 - it is in range(M_k)
 - we can write it in terms of a basis for M_k
- Gaussian elimination maintains a basis for range(M_k)
- Filtration and persistence imply ordering on pivots

Case 1: c is a boundary in K_{i-1}

• If c is a boundary, then $\exists d \in C_{k+1}(K_{i-1})$, such that $c = \partial d$

G

- (Lemma) σ + d is a k-cycle in K_i.
- Proof: $\partial(\sigma + d) = \partial\sigma + \partial d = c + \partial d = o$.
- σ creates a new k-cycle class
- σ is a creator

Case 2: c is not a boundary in K_{i-1}

- (Lemma) c becomes a boundary in K_i.
- Proof: $c = \partial \sigma$.
- In K_{i-1}
 - c is a cycle
 - c is not a boundary
 - c is in a non-boundary homology class
- In K_i: c is a boundary, so its homology class is trivial.
- σ destroys a (k 1)-dimensional class
- σ is a destroyer
- Suppose τ created that class that σ destroyed
- We pair (τ , σ) to get the lifetime interval

Example

Filtration

• Initially, cascade = σ_i

filtration	а	b	С	d	ab	bc	cd	ad	ас	abc	acd

cascade			
	-		

∂(cascade)			

Vertices a, b, c, d

• $\partial \sigma = o$ for all vertices σ

ab

- We sort ∂ab = **b** + a by youngest
- Since b is unpaired, pair with ab

bc, cd

- $\partial bc = c + b$
- $\partial \mathbf{c}\mathbf{d} = \mathbf{d} + \mathbf{c}$

filtration	а	b	С	d	ab	bc	cd	ad	ac	abc	acd	a b
		ab	bc	cd	b	С	d					
cascade	а	b	С	d	ab	bc	cd					
∂(cascade)	0	0	0	0	b							
					а	b	С					

ad

• $\partial ad = (d + a) \sim (d + a) + (d + c) = c + a$ $\sim (c + a) + (c + b) = b + a \sim (b + a) + (b + a) = 0$

filtration	а	b	С	d	ab	bc	cd	ad	ac	abc	acd	a b
		ab	bc	cd	b	С	d					
cascade	а	b	С	d	ab	bc	cd	ad] [
								cd				
								bc				
								ab				
∂(cascade)	0	0	0	0	b	С	d	0				
					а	b	С					
]

ac

• $\partial ac = (c + a) \sim (c + a) + (c + b) = b + a$ $\sim (b + a) + (b + a) = 0$

abc

• $\partial abc = ac + bc + ab$

filtration	а	b	С	d	ab	bc	cd	ad	ас	abc	acd	a b
		ab	bc	cd	b	С	d		abc	ac		
cascade	а	b	С	d	ab	bc	cd	ad		abc]
								cd	bc			
								bc	ab			
								ab]
∂(cascade)	0	0	0	0	b	С	d	0	0	ac]
					а	b	С			bc		
										ab		

acd

• $\partial acd = ac + ad + cd \sim$ (ac + ad + cd) + (ac + bc + ab) = ad + cd + bc + ab

filtration	а	b	С	d	ab	bc	cd	ad	ас	abc	acd	a
		ab	bc	cd	b	С	d	acd	abc	ac	ac	
] d /
cascade	а	b	С	d	ab	bc	cd	ad	ac	abc	abc	
								cd	bc			
								bc	ab			
								ab				
∂ (cascade)	0	0	0	0	b	С	d	0	0	ас	ad]
					а	b	С			bc	cd	
										ab	bc	
											ab	
												-

b

Ć

Barcode

- β_o : a is unpaired \Rightarrow [0, ∞)
- β_0 : (b, ab) \Rightarrow [0, 1)
- β_o : (c, bc) $\Rightarrow \emptyset$
- β_0 : (d, cd) \Rightarrow [1, 2)
- β_1 : (ad, acd) \Rightarrow [2, 5)
- β_1 : (ac, abc) \Rightarrow [4, 5)

Outline

- © Geometric Complexes
- © Persistent Homology
- ③ The Persistence Algorithm
- Application to Natural Images

Natural Images

J. H. van Hateren, Neurobiophysics, U. Groningen

Local Structure: 3 x 3 Patches

 $(0.81, 0.62, 0.64, 0.82, 0.65, 0.64, 0.83, 0.66, 0.65) \in \mathbb{R}^9$

Mumford Dataset

- David Mumford (Brown)
 - 3×3 patches (\mathbb{R}^9)
 - Subtract mean intensity (\mathbb{R}^8)
 - Remove low contrast patches
 - Rescale to unit length (S^7)
- 2.5 million points on \mathbb{S}^7
- What is its structure?
- Examine dense areas

Space of Idealized Lines

- Lines in natural images
- Rasterized in 3×3 patches

- Parameterization
 - Distance to center: \mathbb{I}
 - Angle: \mathbb{S}^1
 - Space is annulus: $\mathbb{I}\times\mathbb{S}^1$

Demo

Graph Structure

2D Structure

The Klein Bottle

• Can we design a compression algorithm that uses the Klein bottle?

Software

- **PLEX:** comptop.stanford.edu/programs/plex
 - Cech
 - Vietoris-Rips
 - Witness
 - Persistence
- CGAL: www.cgal.org
 - Alpha
 - Persistence (?)
- CHomP: chomp.rutgers.edu
- Alpha Shapes: biogeometry.duke.edu/software/alphashapes
- GGobi: www.ggobi.org

Conclusion

- We are flooded by point set *data* and need to find structure in them
- *Topology* studies connectivity of spaces
- Topological analysis may be viewed as generalization of clustering
- To analyze point sets, we require a *combinatorial representation* approximating the original space
- *Homology* focuses on the structure of cycles
- *Persistent homology* analyzes the relationship of structures at multiple scales