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Plan

☺ Yesterday:
– Motivation
– Topology
– Simplicial Complexes
– Invariants
– Homology
– Algebraic Complexes

• Today
– Geometric Complexes
– Persistent Homology
– The Persistence Algorithm
– Application to Natural Images
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Outline

• Geometric Complexes
– Voronoi Diagram
– Delaunay Triangulation
– Alpha Complex
– Witness Complex
– Summary

• Persistent Homology
• The Persistence Algorithm
• Application to Natural Images
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Recall

• Procedure
– Cover points to get approximation of underlying space
– Take nerve to get combinatorial representation 

• Example:  ε-balls around points as cover

• Idea:  Use geometry of embedding space to generate 
cover
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Voronoi Diagram
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Voronoi Diagram

• p ∈M ⊆ R2

• Voronoi cell V(p):
closest points to p in R2

• Voronoi Diagram: Decomposition of R2 into Voronoi 
cells

• Voronoi (1868 – 1908)

• Idea:  Use Voronoi cells as cover!
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Delaunay Triangulation
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• Delaunay Triangulation: nerve of 
Voronoi cover

• Computational Geometry

• General position assumption
– no events with probability 0
– no k + 1 points on (k – 1)-sphere
– has to be handled in practice

• Fast algorithms for R3

• Delaunay (1890 – 1980)

Delaunay Triangulation
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Restricted Voronoi
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Alpha Complex
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Delaunay Subcomplex
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Alpha Complex

• Alpha cell: Aε(p) = Bε(p) ∩ V(p)
• Alpha shape: union of alpha cells
• Alpha complex: nerve of alpha shape

• Let D be the Delaunay triangulation
– A0 = ∅
– Aε⊆ D
– A∞ = D

• Aε ' Cε

• [Edelsbrunner, Kirkpatrick, and Seidel ’83], et al.
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Strong Witness
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Strong Witness

• Given:  Point set M ∈ Rd

• Strong witness: x ∈ Rd

– x is equidistant from v0, . . ., vk ∈M
– x has no closer neighbor in M
– x witnesses k-simplex {v0, . . ., vk}

• Idea:  Sample for witnesses

• Problem:  Prob(strong witness) = 0 for discrete set M



15

Weak Witness

• Weak witness:  x ∈ Rd

– |x – vi| · |x – v| for i = 0, . . ., k and v ∈M \ {v0, . . ., vk}
– x’s closest k + 1 neighbors are v0, . . ., vk

– x witnesses k-simplex {v0, . . ., vk} weakly

• Strong witness ⇒weak witness

• (Theorem [de Silva])
A simplex has a strong witness iff all its faces have 
weak witnesses.
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Isomap

• We want to capture the underlying space, not the 
embedding space

• Idea:  Restrict witnesses to given points M

[Tenenbaum et al. ’00]
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• Given:  N points M
• Choose:  n landmarks L
• M \ L will act as witnesses

• D = n × N, distance matrix
• Construct ε-graph on L:

Edge [ab] ∈Wε(M) iff there exists a witness with 
max(D(a,i), D(b,i)) · ε

• Do Vietoris-Rips Expansion

Witness Complex
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Complex Summary

• Conformal Alpha – no global scale parameter
• Flow – stable manifolds of distance function
• Cubical – rasterize, usually interpretation of images

Complex Name Idea Scales? Extends?

Cech Cε Nerve of ε-balls 1K ∼

Vietoris-Rips Vε Pairwise dist < ε 1K Y

Alpha Aε Nerve of restricted Voronoi 500K d · 3

Witness Wε Landmarks and witnesses 1K Y
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Outline

☺ Geometric Complexes
• Persistent Homology

– Filtrations
– Algebraic Result
– Simple Examples

• The Persistence Algorithm
• Application to Natural Images
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The Question of Scale

β0 = 150
β1 = 0
β2 = 0

β0 = 1
β1 = 37
β2 = 0

β0 = 1
β1 = 2
β2 = 1

β0 = 1
β1 = 1
β2 = 22

Combinatorial Topology

ε
β1
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Filtration

• A filtration of a space X is a nested sequence of 
subspaces:

• Cε⊆ Cε0 if ε · ε0 (Also true for Vε, Aε, and Wε)

• Simplices are always added, 
never removed

• Implies partial order on simplices
• Full order:  sequence of simplices
• Ki = union of first i simplices in sequence Witness

Complex
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i

Inductive Systems

⊆ ⊆⊆

Hk(K250) Hk(K1452)Hk(K994)Hk(K500)

K250 K500 K994 K1452

Functoriality

Idea:  Follow basis elements from birth to death

Problem:  Need a compatible basis!
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Persistent Homology

• Persistence barcode:  multiset of intervals

Birth Death
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Algebraic Result

1. Correspondence
• Input:  Filtration
• Structure of homology:  graded k[t]-module

2. Classification
• k, a field ⇒ k[t] is a PID
• Structure theorem for 

graded PIDs
3. Parameterization

• n half-infinite
• m finite
• Barcode:  multiset of n+m intervals (birth, death)
• Complete discrete invariant!
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Deconstructing the Graph (2D)

Torus!

β1 Barcode

β1 Graph
ε

β1
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Discovering 3D Structure

β1 Barcode
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Outline

☺ Geometric Complexes
☺ Persistent Homology
• The Persistence Algorithm

– Adding a Simplex
– Example Filtration

• Application to Natural Images
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Adding a Simplex

• Given:  Filtered complex K
• Ki = Ki – 1 ∪ σ, where σ is a k-simplex

• Let c = ∂σ. c is a (k – 1)-chain.
• (Lemma) c is a cycle.
• Proof:  ∂c = ∂∂σ = 0.

• (Lemma) c is in Ki  – 1.
• Proof:  Ki is a simplicial complex.
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Gaussian Elimination

• σ is a k-simplex
• c = ∂σ is a (k – 1)-cycle in Ki – 1

• Two cases:  c is a boundary or not in Ki – 1

• Mk is matrix for ∂k

• c is a boundary iff
– it is in range(Mk)
– we can write it in terms of a basis for Mk

• Gaussian elimination maintains a basis for range(Mk)
• Filtration and persistence imply ordering on pivots
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Case 1:  c is a boundary in Ki – 1

• If c is a boundary, then 
∃d ∈ Ck + 1(Ki – 1), such that c = ∂d

• (Lemma) σ + d is a k-cycle in Ki.
• Proof:  ∂(σ + d) = ∂σ + ∂d = c + ∂d = 0.

• σ creates a new k-cycle class
• σ is a creator

c
σ

d
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Case 2:  c is not a boundary in Ki – 1

• (Lemma) c becomes a boundary in Ki.
• Proof:  c = ∂σ.
• In Ki – 1

– c is a cycle
– c is not a boundary
– c is in a non-boundary homology class

• In Ki:  c is a boundary, so its homology class is trivial.
• σ destroys a (k – 1)-dimensional class
• σ is a destroyer
• Suppose τ created that class that σ destroyed
• We pair (τ, σ) to get the lifetime interval

σ

c
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Example
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Filtration

• Initially, cascade = σi
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Vertices a, b, c, d

• ∂σ = 0 for all vertices σ
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ab

• We sort ∂ab = b + a by youngest
• Since b is unpaired, pair with ab
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bc, cd

• ∂bc = c + b
• ∂cd = d + c
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ad

• ∂ad = (d + a) ∼ (d + a) + (d + c) = c + a 
∼ (c + a) + (c + b) = b + a ∼ (b + a) + (b + a) = 0
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ac

• ∂ac = (c + a) ∼ (c + a) + (c + b) = b + a 
∼ (b + a) + (b + a) = 0
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abc

• ∂abc = ac + bc + ab
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acd

• ∂acd = ac + ad + cd ∼
(ac + ad + cd) + (ac + bc + ab) = ad + cd + bc + ab
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Barcode

• β0:  a is unpaired ⇒ [0, ∞)
• β0:  (b, ab) ⇒ [0, 1)
• β0:  (c, bc) ⇒∅

• β0:  (d, cd) ⇒ [1, 2)
• β1:  (ad, acd) ⇒ [2, 5)
• β1:  (ac, abc) ⇒ [4, 5)
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Outline

☺ Geometric Complexes
☺ Persistent Homology
☺ The Persistence Algorithm
• Application to Natural Images
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Natural Images

J. H. van Hateren, Neurobiophysics, U. Groningen
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Local Structure:  3 x 3 Patches

(0.81, 0.62, 0.64, 0.82, 0.65, 0.64, 0.83, 0.66, 0.65) ∈ R9
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Mumford Dataset

• David Mumford (Brown)
– 3 × 3 patches (R9)
– Subtract mean intensity (R8)
– Remove low contrast patches
– Rescale to unit length (S7)

• 2.5 million points on S7

• What is its structure?

• Examine dense areas
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Space of Idealized Lines

• Lines in natural images
• Rasterized in 3 × 3 patches

• Parameterization
– Distance to center:  I
– Angle:  S1

– Space is annulus:  I × S1
I × S1

' S1
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Demo
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Quadratic (Vertical) Quadratic (Horizontal)

Graph Structure

Linear
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2D Structure
b

b

a a
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• Can we design a compression algorithm that uses the 
Klein bottle?

The Klein Bottle
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Software

• Plex: comptop.stanford.edu/programs/plex
– Cech
– Vietoris-Rips
– Witness
– Persistence

• Cgal:  www.cgal.org
– Alpha
– Persistence (?)

• CHomP:  chomp.rutgers.edu

• Alpha Shapes:  biogeometry.duke.edu/software/alphashapes

• GGobi: www.ggobi.org
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Conclusion

• We are flooded by point set data and need to find 
structure in them

• Topology studies connectivity of spaces
• Topological analysis may be viewed as generalization 

of clustering
• To analyze point sets, we require a combinatorial 

representation approximating the original space
• Homology focuses on the structure of cycles
• Persistent homology analyzes the relationship of 

structures at multiple scales
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