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Matching connectivity matrix

Matching connectivity matrix

Let n be an even integer.

Hn is a square matrix over the Z2 �eld with rows and columns labeled
by all perfect matchings in Kn.

(Hn)M1,M2
= [M1 ∪M2 forms a Hamiltonian cycle in Kt ]

Dimension:
n!

(n/2)!2n/2
=

(n
e
)n

( n
2e )

n/22n/2
nO(1) = (n

e
)n/2nO(1) = 2O(n log n)

Example: H4

0 1 1

1 0 1

1 1 0
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Matching connectivity matrix H6
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Matching connectivity matrix Hn

Hn is huge

Hn has much redundancy

What is the rank of Hn?
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Family of matchings Xn

Partition the vertices 1, 2, . . . , n into n/2+ 1 groups:

1 | 23 | 45 | · · · | (n − 2)(n − 1) | n

Let pm(G ) denote the set of all perfect matchings of G .

Xn = X =

{M ∈ pm(Kn) : M matches vertices from neighboring groups only}

Example: n = 6

Groups:
1 | 23 | 45 | 6

Matchings:

X6 = {{12, 34, 56}, {12, 35, 46}, {13, 24, 56}, {13, 25, 46}}
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Indexing the matchings from X

X has 2n/2−1 matchings.

The matchings are indexed by 0/1-strings of length n/2− 1.

Building a matching from the string w1 . . . ,wn/2−1:
For i = 1, . . . , n/2− 1:

if wi = 1 then the yet unmatched vertex of i-th group is matched with

the �rst vertex of the (i + 1)-th group,

if wi = 0 then ... with the second ...

Example: n = 6

Groups:
1 | 23 | 45 | 6

Matchings:

X(11) = {12, 34, 56} X(10) = {12, 35, 46}
X(01) = {13, 24, 56} X(00) = {13, 25, 46}
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Properties of the HX,X submatrix

For w ∈ {0, 1}` denote w = w xor 1 · · · 1︸ ︷︷ ︸
`

, e.g. 110 = 001.

Observation

X(w) ∪ X(u) is a Hamiltonian cycle i� w = u.

Proof:

Assume wi = ui for some i .

wi = ui = 1 wi = ui = 0

}
(i+1)-th group

}
(i+1)-th group

X(u) ∪ X(w) has at least two connected components.
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Properties of the HX,X submatrix

Observation

X(w) ∪ X(u) is a Hamiltonian cycle i� w = u.

Proof:

Assume w = u.

Every group looks like:

}

group or

}
group

Every vertex is adjacent to a vertex in the previous group.

Hence, every vertex has a path to vertex 1.

Hence there is only one connected component.

Since all degrees are 2, this is a HC.
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Properties of the HX,X submatrix

Order the rows/columns of HX,X in lexicographic order, i.e.:

X(0 · · · 000),X(0 · · · 001),X(0 · · · 010),X(0 · · · 011), . . . ,X(1 · · · 111).

Then, HX,X =


0 · · · 0 1
0 · · · 1 0
... . .

.
0 0

1 · · · 0 0

, so rankHX,X = 2n/2−1.

Corollary

rankHn ≥ 2n/2−1.

Rows X of H are linearly independent.

Question

Do they form a basis of the row space of H?
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Linear combination coe�cients

Assume that X is a basis of the row space of H:
For any M ∈ pm(Kn), for some cM,w ∈ {0, 1},

HM =
∑

w∈{0,1}n/2−1
cM,wHX(w)

HM,X(w) = 0 ⇒ cM,w = 0,

HM,X(w) = 1 ⇒ cM,w = 1.

Hence, cM,w = HM,X(w) and

HM =
∑

w∈{0,1}n/2−1
HM,X(w)HX(w)

X

X X(w)

X(w)

M

H =
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The representation formula

If X is a basis then HM =
∑

w∈{0,1}n/2−1 HM,X(w)HX(w). Then,

The representation formula

HM1,M2
=

∑
w∈{0,1}n/2−1

HM1,X(w)HX(w),M2
.

Theorem (Cygan, Kratsch, Nederlof 2013)

The representation formula holds.

(technical inductive proof skipped here.)

Corollary (Cygan, Kratsch, Nederlof 2013)

rankHn = 2n/2 − 1.

Note: The representation formula holds in GF (2k) for every k .
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Undirected Hamiltonicity in O∗(1.888n) time

Let G = (V ,E ) be an undirected graph.

We want to test Hamiltonicity of G .

W.l.o.g. |V | is even.

Yet another hero (over GF (22n)):

P(x, y) =
∑

M1,M2∈pm(G)
M1 ∪M2 is a HC

∏
e∈M1

xe
∏
e∈M2

ye
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Polynomial P and Hamiltonicity

P(x, y) =
∑

M1,M2∈pm(G)
M1 ∪M2 is a HC

∏
e∈M1

xe
∏
e∈M2

ye

Observation

P 6≡ 0 i� G is Hamiltonian.

Proof:

(⇒): Obvious.

(⇐): Let H be a HC in G .
Then H = M1 ∪M2 where M1, M2 are perfect
matchings,
The sum in the de�nition of P contains each of the
monomials

∏
e∈M1

xe
∏

e∈M2
ye and

∏
e∈M2

xe
∏

e∈M1
ye

exactly once.
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Rewriting P

P({xe}e∈E , {ye}e∈E ) =
∑

M1,M2∈pm(G)
M1 ∪M2 is a HC

∏
e∈M1

xe
∏
e∈M2

ye =

∑
M1∈pm(G)

∑
M2∈pm(G)

HM1,M2

∏
e∈M1

xe
∏
e∈M2

ye =
(RF)

∑
M1∈pm(G)

∑
M2∈pm(G)

∑
w∈{0,1}n/2−1

HM1,X(w)HX(w),M2

∏
e∈M1

xe
∏
e∈M2

ye =

∑
w∈{0,1}n/2−1

 ∑
M1∈pm(G)

HM1,X(w)

∏
e∈M1

xe


︸ ︷︷ ︸

extG
X(w)

({xe}e∈E )

·

 ∑
M2∈pm(G)

HX(w),M2

∏
e∈M2

ye


︸ ︷︷ ︸

extG
X(w)

({ye}e∈E )

where for any M ∈ X,
extGM({ze}e∈E ) =

∑
M′∈pm(G)

M ∪M′ is a HC

∏
e∈M′

ze
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Evaluating P in O∗(1.888n) time

We got:

P({xe}e∈E , {ye}e∈E ) =
∑

w∈{0,1}n/2−1
extG

X(w)({xe}e∈E ) ext
G
X(w)({ye}e∈E )

Note that |X| = 2n/2−1 = O(1.42n).

Hence it su�ces to precompute extGM({xe}e∈E ) and extGM({ye}e∈E )
for all M ∈ X in O∗(1.888n) time.
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Evaluating extGM({ze}e∈E ) =
∑

M ′∈pm(G )
M ∪M ′ is a HC

∏
e∈M ′

ze in O
∗(1.888n).

Fix any u0 ∈ V .

N-alternating v -walk

Let N be a matching in Kn.
A walk u0, u1, . . . , ut in Kn is called N-alternating v-walk if

for every i = 0, . . . , n/2− 1, u2iu2i+1 ∈ N and u2i+1u2i+2 ∈ E (G ).

t = 2|N|,
each edge of N is visited,

ut = v ,

u0 u1 u2 u3 u2|N|−2u2|N|−1 u2|N| = v

N E (G ) N N E (G )
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Fix any u0 ∈ V .

N-alternating v -walk

u0 u1 u2 u3 u2|N|−2u2|N|−1 u2|N| = v

N E (G ) N N E (G )

For every matching N such that N ⊆ M ′ for some M ′ ∈ X, for every
v ∈ V , compute

T [N, v ] =
∑

N-alternating v -walk
e1,e2,...,e2|N|

|N|∏
i=1

ze2i

Note that extGM({ze}e∈E ) = T [M, u0].

Dynamic programming formula

T [N, v ] =
∑
uv∈E

∑
u′u∈N

zuvT [N \ {u′u}, u′]
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Evaluating extGM({ze}e∈E ) =
∑

M ′∈pm(G )
M ∪M ′ is a HC

∏
e∈M ′

ze in O
∗(1.888n).

Dynamic programming formula

T [N, v ] =
∑
uv∈E

∑
u′u∈N

zuvT [N \ {u′u}, u′]

Corollary

Let α(n) = |{N ⊆ M : M ∈ Xn}|.
All entries of T [N, v ] can be computed in O∗(α(n)) time.

Since |Xn| = 2n/2−1 and every M ∈ Xn has 2n/2 subsets, α(n) ≤ 2n−1.

... but there are a lot of common subsets!
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Bounding α(n)

Let β(n) = |{N ⊆ M : M ∈ Xn and n 6∈ V (N)}|.
Then 

α(n) =

match vertex n︷ ︸︸ ︷
2α(n − 2) +

do not match vertex n︷︸︸︷
β(n)

β(n) = 4α(n − 4)︸ ︷︷ ︸
match n − 2 or n − 1

+ 1 · β(n − 2)︸ ︷︷ ︸
do not match them

Solve it using your favorite method and get

α(n) = O((3+
√
17

2 )n/2) = O(1.88721n).
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Theorem

Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in undirected graphs can be solved in
O∗(1.888n) time.
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Hamiltonicity in directed bipartite graphs in O∗(1.888n) time

G = (V1 ∪ V2,E ) � a directed bipartite graph.

V1

V2
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Hamiltonicity in directed bipartite graphs in O∗(1.888n) time

G = (V1 ∪ V2,E ) � a directed bipartite graph.

V1

V2

E1 = {(v1, v2) ∈ E : v1 ∈ V1 and v2 ∈ V2}; G1 = (V ,E1)

E2 = {(v2, v1) ∈ E : v1 ∈ V1 and v2 ∈ V2}; G2 = (V ,E2)

P =
∑

M1∈pm(G1)
M2∈pm(G2)

M1 ∪M2 is a HC

∏
e∈M1

xe
∏
e∈M2

ye =
∑

w∈{0,1}n/2−1
extG1

X(w)({xe}e∈E1) ext
G2

X(w)({ye}e∈E2)
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Theorem

Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in directed bipartite graphs can be solved in
O∗(1.888n) time.
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