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Matching connectivity matrix

Matching connectivity matrix

Let n be an even integer.
o JH, is a square matrix over the Z, field with rows and columns labeled

by all perfect matchings in K.
o (Hn)my M, = [M1 U M, forms a Hamiltonian cycle in K]

@ Dimension:

n! (2)" o /2,0(1) _ 50(nl
= — n _ (g)n n — 90(nlog n)
(n/2)!2"/2 (Z)n/22n/2 )
Example: H,
NN || /AN
NN| o 1 1
M\ 1 0 1
M\ 1 1 0

tukasz Kowalik (UW) Algebraic approach... August 2013 2/23



>
=
=
)
O
(]
=
c
o
(@]
eY0)
=
-
(@]
)
[g0)

15

14

13

12

11

10

0
0
0

1

0
0
0

1

0
0
0

0

nAN
nm
nin

Mmn

M\
mn
(L))

Nr.

1
2
3

4

10
11
13
14

3/23

August 2013

Algebraic approach...

tukasz Kowalik (UW)



Matching connectivity matrix J,

@ H, is huge
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Matching connectivity matrix J,

@ H, is huge

@ H, has much redundancy

tukasz Kowalik (UW Algebraic approach... August 2013 4 /23
g



Matching connectivity matrix J,

@ H, is huge
@ H, has much redundancy
@ What is the rank of H,?
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Family of matchings X,

Partition the vertices 1,2,...,ninto n/2 + 1 groups:
1123]145| ---|(n—=2)(n—1)]|n
Let pm(G) denote the set of all perfect matchings of G.

X, =X=
{M € pm(K,) : M matches vertices from neighboring groups only}

Example: n =16
Groups:
123|456

Matchings:

Xe = {{12,34,56},{12,35,46},{13,24,56},{13,25,46}}
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Indexing the matchings from X

e X has 27/2=1 matchings.
@ The matchings are indexed by 0/1-strings of length n/2 — 1.

o Building a matching from the string wy ..., w,/»_1:
Fori=1,....,n/2—1:
e if w; =1 then the yet unmatched vertex of i-th group is matched with
the first vertex of the (i 4+ 1)-th group,
o if w; =0 then ... with the second ...

Example: n =16

Groups:
1]23(45]6

Matchings:

X(11) = {12,34,56} X(10) = {12,35,46}
X(01) = {13,24,56} X(00) = {13,25,46}

v
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Properties of the H{x x submatrix

For w € {0,1}" denote w = wxorl---1, e.g. 110 = 001.
)4
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Properties of the H{x x submatrix

¢ — _
For w € {0,1}" denote w = wxorl---1, e.g. 110 = 001.
)4

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .
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Properties of the H{x x submatrix

¢ — _
For w € {0,1}" denote w = wxorl---1, e.g. 110 = 001.
)4

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:
Assume w; = u; for some i.
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Properties of the H{x x submatrix

For w € {0,1} denote w = wxorl---1, e.g. 110 = 001.
N——
)4

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:

Assume w; = u; for some i.
wi=u =1 wi=u; =0
N ——— S——
(i+1)-th group (i+1)-th group

X(u)UX(w) has at least two connected components.
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Properties of the H{x x submatrix

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:
Assume w = 1.
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Properties of the H{x x submatrix

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:
Assume w = u.Every group looks like:

group or group

@ Every vertex is adjacent to a vertex in the previous group.
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Properties of the H{x x submatrix

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:
Assume w = u.Every group looks like:

group or group

@ Every vertex is adjacent to a vertex in the previous group.

@ Hence, every vertex has a path to vertex 1.
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Properties of the H{x x submatrix

Observation

X(w) U X(u) is a Hamiltonian cycle iff w = .

Proof:
Assume w = u.Every group looks like:

group or group

@ Every vertex is adjacent to a vertex in the previous group.
@ Hence, every vertex has a path to vertex 1.
@ Hence there is only one connected component.

@ Since all degrees are 2, this is a HC.
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Properties of the H{x x submatrix

Order the rows/columns of Hx x in lexicographic order, i.e.:

X(0---000),X(0---001),X(0---010),X(0---011),...,X(1---111).

0 01
0 10

Then, CHX,X = : 00|’ so rank g‘fx,x = on/2-1,
1 00
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Properties of the H{x x submatrix

Order the rows/columns of Hx x in lexicographic order, i.e.:

X(0---000),X(0---001),X(0---010),X(0---011),...,X(1---111).

0 01
0 10

Then, CHX,X = 00|’ so rank g‘fx,x = on/2-1,
1 00

rank J, > 2n/2-1, l
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Properties of the H{x x submatrix

Order the rows/columns of Hx x in lexicographic order, i.e.:

X(0---000),X(0---001),X(0---010),X(0---011),...,X(1---111).

0 01
0 10

Then, CHX,X = 00|’ so rank g‘fx,x = on/2-1,
1 00

rank J, > 2n/2-1, l

Rows X of H are linearly independent.

Do they form a basis of the row space of H? l
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Linear combination coefficients

Assume that X is a basis of the row space of H:
For any M € pm(Ka,), for some ¢y, € {0,1},

Hu= > cmwHxw)
we{0,1}n/2-1
X
o }CM,X(W) =0= CMw = 0, _ : . —_
o Hyxw)=1= cuw=1. 00 1 -
Hence, cum,w = Hpy x(w) and X¢=010 X(w)

Hm = Z Hux @) Hxw) g0 =
we{.Lyr/am B W
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The representation formula

If X is a basis then H, = EWG{OJ},,/Q,I Hom xw)Hx(w)- Then,

The representation formula

Huty,mp = Z Hmy x (@) Hx (w), M -
WG{O,].}"/Z_I

Theorem (Cygan, Kratsch, Nederlof 2013)

The representation formula holds.

(technical inductive proof skipped here.)

Corollary (Cygan, Kratsch, Nederlof 2013)
rank H, = 2"/2 — 1.

Note: The representation formula holds in GF(2) for every k.
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Undirected Hamiltonicity in O*(1.888") time

o Let G = (V,E) be an undirected graph.
@ We want to test Hamiltonicity of G.
e W.lLo.g. |V]is even.
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Undirected Hamiltonicity in O*(1.888") time

o Let G = (V,E) be an undirected graph.
@ We want to test Hamiltonicity of G.

e W.lLo.g. |V]is even.

o Yet another hero (over GF(22")):

P(x,y) = Z HXeHYe

Ml,Mzepm(G) eclMy ec M,
M1 U M, is a HC

PR R
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Polynomial P and Hamiltonicity

'D(Xay) - Z H Xe H Ve

Ml,MZEpm(G) ec M, ecM,
My U Ms is a HC

Observation
P £ 0 iff G is Hamiltonian.

Proof:

(=): Obvious.
(<): o Let HbeaHCin G.
@ Then H = My U Mo where My, M, are perfect
matchings,
@ The sum in the definition of P contains each of the

monomials HeeM1 Xe Hee,\/,2 ye and HeeMg Xe HeeM1 Ve
exactly once.
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P({xe}ecE, {VetecE) = Z H Xe H Ye =

My,Maepm(G) eeMy  ecM>
Ml @] M2 isa HC

> > Y [[ e [T e ="

Miepm(G) Mxepm(G) eeM; eecM,
Z Z Z Hay x (@) Hx (w), M2 H Xe H Ve =
Mi1epm(G) M2epm(G) we{0,1}7/2-1 ecM;  eeMy
Z Z iHMl,X(W) H Xe | - Z :H’-X(W),MQ H Ye
we{0,1}7/2-1 \ M1€pm(G) e€My Maepm(G) eeMp
eXtG ({Xe}eEE) eth(w)({ye}eeE)

where for any M € X,

exti({zetece) = Y. ][] =

M'epm(G) eeM’
MU M’ is a HC
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Evaluating P in O*(1.888") time

We got:

P({xe}ece, {yetec) = Y ext{m({xetece) extgu)({veteck)

wef0,1}n/2-1
o Note that |X| = 27/2-1 = O(1.42").

@ Hence it suffices to precompute ext,\G/,({xe}eeE) and ext,\G/,({ye}eeE)
for all M € X in O*(1.888") time.
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Evaluating ext$({ze}eck) :Z H ze in O*(1.888").

M'epm(G) eeM’
MU M’ is a HC

Fix any up € V.

N-alternating v-walk
Let N be a matching in K.

A walk ug, u1,...,u; in K, is called N-alternating v-walk if
o forevery i=0,...,n/2—1, i1 € N and upj1i2 € E(G).
o t=2|N|
@ each edge of N is visited,
@ Ur=1v,
N E(G) N N E(G)
‘ ' ' -
7 uy 7)) us U n|—2U2|N|—1 U2|N) = V
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Evaluating ext$({ze}eck) :Z H ze in O*(1.888").

M'epm(G) eeM’
MU M’ is a HC

Fix any ug € V.

N-alternating v-walk

N E(G) N N E(G)
® ® ® ® - O——0—0
Uo 7] 7)) us Up|n|—2U2|N|—1 Uo|n) = V

For every matching N such that N C M’ for some M’ € X, for every
v € V, compute [N|

T[N,v] = Z HZEZ"

N-alternating v-walk i=1
€1,€2,...,€2|N|
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Evaluating ext$({ze}eck) :Z H ze in O*(1.888").

M'epm(G) eeM’
MU M’ is a HC

Fix any ug € V.

N-alternating v-walk

N E(G) N N E(G)
® ® ® ® - O——0—0
Uo 7] 7)) us Up|n|—2U2|N|—1 Uo|n) = V

For every matching N such that N C M’ for some M’ € X, for every
v € V, compute [N|

T[N,v] = Z HZEZ"

N-alternating v-walk i=1
€1,€2,...,€2|N|

Note that ext$,({ze}ece) = T[M, uo).
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Evaluating ext$({ze}eck) :Z H ze in O*(1.888").

M'epm(G) eeM’
MU M’ is a HC

Fix any ug € V.

N-alternating v-walk

N E(G) N N E(G)
® ® ® ® - O——0—0
Uo 7] 7)) us Up|n|—2U2|N|—1 Uo|n) = V

For every matching N such that N C M’ for some M’ € X, for every
v € V, compute [N|

T[N,v] = Z HZEZ"

N-alternating v-walk i=1
€1,€2,...,€2|N|

Note that ext$,({ze}ece) = T[M, uo).

Dynamic programming formula

TINVI= > > zw TN\ {d/u}, ]

uveE v'ueN
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Evaluating ext$({ze}ece) = g H ze in O*(1.888").
M'epm(G) eeM’
MU M’ isa HC

Dynamic programming formula

TINVI= > >z TIN\ {d/u}, ]

uveE v'ueN

Corollary

Let a(n) =[{NC M : M e X}
All entries of T[N, v] can be computed in O*(c(n)) time.

| A\

<

@ Since [X,| = 2"271 and every M € X, has 2"/ subsets, a(n) < 2" 1.
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Evaluating ext$({ze}eck) :Z H ze in O*(1.888").

M'epm(G) eeM’
MU M’ is a HC

Dynamic programming formula

TINVI= > >z TIN\ {d/u}, ]

uveE v'ueN

| A\

Corollary

Let a(n) =[{NC M : M e X}
All entries of T[N, v] can be computed in O*(c(n)) time.

<

@ Since [X,| = 2"271 and every M € X, has 2"/ subsets, a(n) < 2" 1.

@ ... but there are a lot of common subsets!
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Bounding a(n)

Let B(n)={NC M : MeX,and ng V(N)}.
Then

match vertex n do not match vertex n

—— ~ =
a(n) = 2a(n—2) + B(n)
B(n)= 4da(n—4) + 1-5(n—-2)
—_——

match n—2orn—1 do not match them

Solve it using your favorite method and get
a(n) = O((3=A7)n/2) = 0(1.88721").
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Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in undirected graphs can be solved in
0*(1.888") time.
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Hamiltonicity in bipartite graphs in 0*(1.888") time

G = (V4 U V,, E) — a directed bipartite graph.

2

Vi
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Hamiltonicity in bipartite graphs in 0*(1.888") time

G = (V4 U V,, E) — a directed bipartite graph.

Vo

Vi

] Elz{(vl,vz)EE v evy and vy € V2}; Gli(V,El)
] Ez*{(VQAvl)EE vy € Vyand v € \/2}; G2*(V.E2)
P = Z H Xe H Ye = Z ext)G(tW)({xe}eeEI)ext)G(iW)({ye}eegz)

Miepm(Gy) e€My eEM>  we{0,1}n/2-1
Mngm(Gz)
My U My is a HC
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Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in directed bipartite graphs can be solved in
0*(1.888") time.
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