- 1. Check how the following invariants can change by taking a minor or a contraction of the graph:
 - (a) minimum vertex cover size,
 - (b) maximum independent set size,
 - (c) minimum feedback vertex size,
 - (d) minimum dominating set size,
 - (e) maximum clique size,
 - (f) length of the longest path,
 - (g) length of the longest cycle.
- 2. Prove the following statement: for every $k \ge 1$ and planar graph G, the vertices V(G) has a partition into k sets V_1, \ldots, V_k such that the treewidth of $G \setminus V_i$ has treewidth at most f(k) for some function f.
- 3. Is it possible to generalize Courcelle's Theorem from bounded treewidth to bounded local treewidth?
- 4. Design a PTAS for DOMINATING SET on planar graphs.
- 5. Reduce the problem of finding a cycle of length at least k to the problem of finding a cycle of length exactly k.
- 6. Draw a K_6 on the torus (extra task: draw K_7).