Algebraic approach to exact algorithms, Part IV: Matching connectivity matrix

Łukasz Kowalik
University of Warsaw

ADFOCS, Saarbrücken, August 2013

Matching connectivity matrix

Matching connectivity matrix

Let n be an even integer.

- \mathcal{H}_{n} is a square matrix over the \mathbb{Z}_{2} field with rows and columns labeled by all perfect matchings in K_{n}.
- $\left(\mathcal{H}_{n}\right)_{M_{1}, M_{2}}=\left[M_{1} \cup M_{2}\right.$ forms a Hamiltonian cycle in $\left.K_{t}\right]$
- Dimension:

$$
\frac{n!}{(n / 2)!2^{n / 2}}=\frac{\left(\frac{n}{e}\right)^{n}}{\left(\frac{n}{2 e}\right)^{n / 2} 2^{n / 2}} n^{O(1)}=\left(\frac{n}{e}\right)^{n / 2} n^{O(1)}=2^{O(n \log n)}
$$

Example: \mathcal{H}_{4}

	$\cap \cap$	\boldsymbol{m}	\boldsymbol{n}
$\cap \cap$	0	1	1
\boldsymbol{m}	1	0	1
\boldsymbol{n}	1	1	0

Matching connectivity matrix \mathcal{H}_{6}

Nr .		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
1	$\cap \cap \cap$	0	0	0	0	1	1	0	1	1	1	1	0	1	1	0
2	$n \mathrm{~m}$	0	0	0	1	0	1	1	1	0	0	1	1	1	0	1
3	\cdots n	0	0	0	1	1	0	1	0	1	1	0	1	0	1	1
4	m n	0	1	1	0	0	0	0	1	1	1	0	1	1	0	1
5	$\pi \times$	1	0	1	0	0	0	1	0	1	0	1	1	1	1	0
6	กn	1	1	0	0	0	0	1	1	0	1	1	0	0	1	1
7	กn	0	1	1	0	1	1	0	0	0	0	1	1	0	1	1
8	TM1	1	1	0	1	0	1	0	0	0	1	0	1	1	1	0
9	mm	1	0	1	1	1	0	0	0	0	1	1	0	1	0	1
10	nn	1	0	1	1	0	1	0	1	1	0	0	0	0	1	1
11	r(m)	1	1	0	0	1	1	1	0	1	0	0	0	1	0	1
12	m成	0	1	1	1	1	0	1	1	0	0	0	0	1	1	0
13	nn	1	1	0	1	1	0	0	1	1	0	1	1	0	0	0
14	nm	1	0	1	0	1	1	1	1	0	1	0	1	0	0	0
15	nn	0	1	1	1	0	1	1	0	1	1	1	0	0	0	0

Matching connectivity matrix \mathcal{H}_{n}

- \mathcal{H}_{n} is huge

Matching connectivity matrix \mathcal{H}_{n}

- \mathcal{H}_{n} is huge
- \mathcal{H}_{n} has much redundancy

Matching connectivity matrix \mathcal{H}_{n}

- \mathcal{H}_{n} is huge
- \mathcal{H}_{n} has much redundancy
- What is the rank of \mathcal{H}_{n} ?

Family of matchings X_{n}

Partition the vertices $1,2, \ldots, n$ into $n / 2+1$ groups:

$$
1|23| 45|\cdots|(n-2)(n-1) \mid n
$$

Let $\operatorname{pm}(G)$ denote the set of all perfect matchings of G.
$\mathrm{X}_{n}=\mathbf{X}=$
$\left\{M \in \mathrm{pm}\left(K_{n}\right): M\right.$ matches vertices from neighboring groups only $\}$

Example: $n=6$

Groups:

$$
1|23| 45 \mid 6
$$

Matchings:

$$
X_{6}=\{\{12,34,56\},\{12,35,46\},\{13,24,56\},\{13,25,46\}\}
$$

Indexing the matchings from \mathbf{X}

- X has $2^{n / 2-1}$ matchings.
- The matchings are indexed by $0 / 1$-strings of length $n / 2-1$.
- Building a matching from the string $w_{1} \ldots, w_{n / 2-1}$:

For $i=1, \ldots, n / 2-1$:

- if $w_{i}=1$ then the yet unmatched vertex of i-th group is matched with the first vertex of the $(i+1)$-th group,
- if $w_{i}=0$ then ... with the second ...

Example: $n=6$

Groups:

$$
1|23| 45 \mid 6
$$

Matchings:

$$
\begin{array}{ll}
\mathbf{X}(11)=\{12,34,56\} & \mathbf{X}(10)=\{12,35,46\} \\
\mathbf{X}(01)=\{13,24,56\} & \mathbf{X}(00)=\{13,25,46\}
\end{array}
$$

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

For $w \in\{0,1\}^{\ell}$ denote $\bar{w}=w$ xor $\underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110}=001$.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

For $w \in\{0,1\}^{\ell}$ denote $\bar{w}=w$ xor $\underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110}=001$.

Observation

$\mathbf{X}(w) \cup \mathbf{X}(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

For $w \in\{0,1\}^{\ell}$ denote $\bar{w}=w$ xor $\underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110}=001$.

Observation

$\mathbf{X}(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:

Assume $w_{i}=u_{i}$ for some i.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

For $w \in\{0,1\}^{\ell}$ denote $\bar{w}=w \times o r \underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110}=001$.

Observation

$X(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:

Assume $w_{i}=u_{i}$ for some i.

$\mathbf{X}(u) \cup \mathbf{X}(w)$ has at least two connected components.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Observation

$X(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:
 Assume $w=\bar{u}$.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Observation

$X(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:

Assume $w=\bar{u}$.Every group looks like:

or

- Every vertex is adjacent to a vertex in the previous group.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Observation

$X(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:

Assume $w=\bar{u}$. Every group looks like:

or

- Every vertex is adjacent to a vertex in the previous group.
- Hence, every vertex has a path to vertex 1 .

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Observation

$X(w) \cup X(u)$ is a Hamiltonian cycle iff $w=\bar{u}$.

Proof:

Assume $w=\bar{u}$.Every group looks like:

or

- Every vertex is adjacent to a vertex in the previous group.
- Hence, every vertex has a path to vertex 1 .
- Hence there is only one connected component.
- Since all degrees are 2 , this is a HC.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Order the rows/columns of $\mathcal{H}_{\mathbf{x}, \mathbf{x}}$ in lexicographic order, i.e.:

$$
\mathbf{X}(0 \cdots 000), \mathbf{X}(0 \cdots 001), \mathbf{X}(0 \cdots 010), \mathbf{X}(0 \cdots 011), \ldots, \mathbf{X}(1 \cdots 111)
$$

Then, $\mathcal{H}_{\mathbf{X}, \mathbf{X}}=\left[\begin{array}{cccc}0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & . & 0 & 0 \\ 1 & \cdots & 0 & 0\end{array}\right]$, so $\operatorname{rank} \mathcal{H}_{\mathbf{X}, \mathbf{X}}=2^{n / 2-1}$.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Order the rows/columns of $\mathcal{H}_{\mathbf{x}, \mathbf{x}}$ in lexicographic order, i.e.:

$$
\mathbf{X}(0 \cdots 000), \mathbf{X}(0 \cdots 001), \mathbf{X}(0 \cdots 010), \mathbf{X}(0 \cdots 011), \ldots, \mathbf{X}(1 \cdots 111)
$$

Then, $\mathcal{H}_{\mathbf{X}, \mathbf{X}}=\left[\begin{array}{cccc}0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & . & 0 & 0 \\ 1 & \cdots & 0 & 0\end{array}\right]$, so $\operatorname{rank} \mathcal{H}_{\mathbf{X}, \mathbf{X}}=2^{n / 2-1}$.

Corollary

$\operatorname{rank} \mathcal{H}_{n} \geq 2^{n / 2-1}$.

Properties of the $\mathcal{H}_{\mathrm{x}, \mathrm{x}}$ submatrix

Order the rows/columns of $\mathcal{H}_{\mathbf{x}, \mathbf{x}}$ in lexicographic order, i.e.:

$$
\mathbf{X}(0 \cdots 000), \mathbf{X}(0 \cdots 001), \mathbf{X}(0 \cdots 010), \mathbf{X}(0 \cdots 011), \ldots, \mathbf{X}(1 \cdots 111)
$$

Then, $\mathcal{H}_{\mathbf{X}, \mathbf{x}}=\left[\begin{array}{cccc}0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & . \cdot & 0 & 0 \\ 1 & \cdots & 0 & 0\end{array}\right]$, so $\operatorname{rank} \mathcal{H}_{\mathbf{X}, \mathbf{x}}=2^{n / 2-1}$.

Corollary

$\operatorname{rank} \mathcal{H}_{n} \geq 2^{n / 2-1}$.
Rows \mathbf{X} of \mathcal{H} are linearly independent.

Question

Do they form a basis of the row space of \mathcal{H} ?

Linear combination coefficients

Assume that \mathbf{X} is a basis of the row space of \mathcal{H} :
For any $M \in \mathrm{pm}\left(K_{n}\right)$, for some $c_{M, w} \in\{0,1\}$,

$$
\mathcal{H}_{M}=\sum_{w \in\{0,1\}^{n / 2-1}} c_{M, w} \mathcal{H}_{\mathbf{X}(w)}
$$

- $\mathcal{H}_{M, \mathbf{X}(w)}=0 \Rightarrow c_{M, \bar{w}}=0$,
- $\mathcal{H}_{M, \mathbf{X}(w)}=1 \Rightarrow c_{M, \bar{w}}=1$.

Hence, $c_{M, w}=\mathcal{H}_{M, \mathbf{x}(\bar{w})}$ and

The representation formula

If \mathbf{X} is a basis then $\mathcal{H}_{M}=\sum_{w \in\{0,1\}^{n / 2-1}} \mathcal{H}_{M, \mathbf{X}(\bar{w})} \mathcal{H}_{\mathbf{X}(w)}$. Then,
The representation formula

$$
\mathcal{H}_{M_{1}, M_{2}}=\sum_{w \in\{0,1\}^{n / 2-1}} \mathcal{H}_{M_{1}, \mathbf{X}(\bar{w})} \mathcal{H}_{\mathbf{X}(w), M_{2}} .
$$

Theorem (Cygan, Kratsch, Nederlof 2013)

The representation formula holds.
(technical inductive proof skipped here.)
Corollary (Cygan, Kratsch, Nederlof 2013)
rank $H_{n}=2^{n / 2}-1$.
Note: The representation formula holds in $G F\left(2^{k}\right)$ for every k.

Undirected Hamiltonicity in $O^{*}\left(1.888^{n}\right)$ time

- Let $G=(V, E)$ be an undirected graph.
- We want to test Hamiltonicity of G.
- W.I.o.g. $|V|$ is even.

Undirected Hamiltonicity in $O^{*}\left(1.888^{n}\right)$ time

- Let $G=(V, E)$ be an undirected graph.
- We want to test Hamiltonicity of G.
- W.l.o.g. $|V|$ is even.
- Yet another hero (over $G F\left(2^{2 n}\right)$):

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\substack{M_{1}, M_{2} \in \operatorname{pm}(G) \\ M_{1} \cup M_{2} \text { is a } \mathrm{HC}}} \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}
$$

Polynomial P and Hamiltonicity

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\substack{M_{1}, M_{2} \in \mathrm{pm}(G) \\ M_{1} \cup M_{2} \text { is a } \mathrm{HC}}} \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}
$$

Observation

$P \not \equiv 0$ iff G is Hamiltonian.

Proof:

(\Rightarrow) : Obvious.
$(\Leftarrow): \quad$ - Let H be a HC in G.

- Then $H=M_{1} \cup M_{2}$ where M_{1}, M_{2} are perfect matchings,
- The sum in the definition of P contains each of the monomials $\prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}$ and $\prod_{e \in M_{2}} x_{e} \prod_{e \in M_{1}} y_{e}$ exactly once.

Rewriting P

$$
P\left(\left\{x_{e}\right\}_{e \in E},\left\{y_{e}\right\}_{e \in E}\right)=\sum_{\substack{M_{1}, M_{2} \in \operatorname{pm}(G) \\ M_{1} \cup M_{2} \text { is a } \mathrm{HC}}} \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}=
$$

$$
\sum_{M_{1} \in \operatorname{pm}(G)} \sum_{M_{2} \in \operatorname{pm}(G)} \mathcal{H}_{M_{1}, M_{2}} \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}=(\mathrm{RF})
$$

$$
\sum_{M_{1} \in \operatorname{pm}(G)} \sum_{M_{2} \in \operatorname{pm}(G)} \sum_{w \in\{0,1\}^{n / 2-1}} \mathcal{H}_{M_{1}, \mathbf{X}(\bar{w})} \mathcal{H}_{\mathbf{X}(w), M_{2}} \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}=
$$

$$
\sum_{w \in\{0,1\}^{n / 2-1}} \underbrace{\left(\sum_{M_{1} \in \operatorname{pm}(G)} \mathcal{H}_{M_{1}, \mathbf{x}(\bar{w})} \prod_{e \in M_{1}} x_{e}\right)}_{\operatorname{ext}_{\mathbf{x}(\bar{w})}^{G}\left(\left\{x_{e}\right\}_{e \in E}\right)} \cdot \underbrace{\left(\sum_{M_{2} \in \operatorname{pm}(G)} \mathcal{H}_{\mathbf{X}(w), M_{2}} \prod_{e \in M_{2}} y_{e}\right)}_{\operatorname{ext}_{\mathbf{X}(w)}^{G}\left(\left\{y_{e}\right\}_{e \in E}\right)}
$$

where for any $M \in \mathbf{X}$,

$$
\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum_{\substack{M^{\prime} \in \operatorname{pm}(G) \\ M \cup M^{\prime} \text { is a } \mathrm{HC}}} \prod_{e \in M^{\prime}} z_{e}
$$

Evaluating P in $O^{*}\left(1.888^{n}\right)$ time

We got:

$$
P\left(\left\{x_{e}\right\}_{e \in E},\left\{y_{e}\right\}_{e \in E}\right)=\sum_{w \in\{0,1\}^{n / 2-1}} \operatorname{ext}_{\mathbf{X}(\bar{w})}^{G}\left(\left\{x_{e}\right\}_{e \in E}\right) \operatorname{ext}_{\mathbf{X}(w)}^{G}\left(\left\{y_{e}\right\}_{e \in E}\right)
$$

- Note that $|\mathbf{X}|=2^{n / 2-1}=O\left(1.42^{n}\right)$.
- Hence it suffices to precompute $\operatorname{ext}_{M}^{G}\left(\left\{x_{e}\right\}_{e \in E}\right)$ and $\operatorname{ext}_{M}^{G}\left(\left\{y_{e}\right\}_{e \in E}\right)$ for all $M \in \mathbf{X}$ in $O^{*}\left(1.888^{n}\right)$ time.

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum$

Fix any $u_{0} \in V$.

N-alternating v-walk

Let N be a matching in K_{n}.
A walk $u_{0}, u_{1}, \ldots, u_{t}$ in K_{n} is called N-alternating v-walk if

- for every $i=0, \ldots, n / 2-1, u_{2 i} u_{2 i+1} \in N$ and $u_{2 i+1} u_{2 i+2} \in E(G)$.
- $t=2|N|$,
- each edge of N is visited,
- $u_{t}=v$,

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \quad \prod z_{e}$ in $O^{*}\left(1.888^{n}\right)$. $M^{\prime} \in \operatorname{pm}(G) e \in M^{\prime}$
 $M \cup M^{\prime}$ is a HC

Fix any $u_{0} \in V$.
N-alternating v-walk

For every matching N such that $N \subseteq M^{\prime}$ for some $M^{\prime} \in \mathbf{X}$, for every $v \in V$, compute

$$
T[N, v]=\quad \prod_{1} z_{e_{2 i}}
$$

N-alternating v-walk $i=1$
$e_{1}, e_{2}, \ldots, e_{2|N|}$

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \quad \prod z_{e}$ in $O^{*}\left(1.888^{n}\right)$. $M^{\prime} \in \operatorname{pm}(G) e \in M^{\prime}$ $M \cup M^{\prime}$ is a HC

Fix any $u_{0} \in V$.
N-alternating v-walk

For every matching N such that $N \subseteq M^{\prime}$ for some $M^{\prime} \in \mathbf{X}$, for every $v \in V$, compute

$$
T[N, v]=\sum_{\substack{N \text {-alternating } \\ e_{1}, e_{2}, \ldots, e_{2}|N|}} \prod_{\substack{v-\text { walk }}} z_{i=1}^{|N|} z_{e_{2 i}}
$$

Note that $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=T\left[M, u_{0}\right]$.

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \prod z_{e}$ in $O^{*}\left(1.888^{n}\right)$. $M^{\prime} \in \operatorname{pm}(G) e \in M^{\prime}$
 $M \cup M^{\prime}$ is a HC

Fix any $u_{0} \in V$.
N-alternating v-walk

For every matching N such that $N \subseteq M^{\prime}$ for some $M^{\prime} \in \mathbf{X}$, for every $v \in V$, compute

$$
T[N, v]=\quad \prod_{1} z_{e_{2 i}}
$$

N-alternating v-walk $i=1$

$$
e_{1}, e_{2}, \ldots, \stackrel{\bullet}{e}_{2|N|}
$$

Note that $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=T\left[M, u_{0}\right]$.
Dynamic programming formula

$$
T[N, v]=\sum_{u v \in E} \sum_{u^{\prime} u \in N} z_{u v} T\left[N \backslash\left\{u^{\prime} u\right\}, u^{\prime}\right]
$$

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \quad \prod z_{e}$ in $O^{*}\left(1.888^{n}\right)$. $M^{\prime} \in \operatorname{pm}(G) e \in M^{\prime}$
 $M \cup M^{\prime}$ is a HC

Dynamic programming formula

$$
T[N, v]=\sum_{u v \in E} \sum_{u^{\prime} u \in N} z_{u v} T\left[N \backslash\left\{u^{\prime} u\right\}, u^{\prime}\right]
$$

Corollary

Let $\alpha(n)=\left|\left\{N \subseteq M: M \in \mathbf{X}_{n}\right\}\right|$.
All entries of $T[N, v]$ can be computed in $O^{*}(\alpha(n))$ time.

- Since $\left|\mathbf{X}_{n}\right|=2^{n / 2-1}$ and every $M \in \mathbf{X}_{n}$ has $2^{n / 2}$ subsets, $\alpha(n) \leq 2^{n-1}$.

Evaluating $\operatorname{ext}_{M}^{G}\left(\left\{z_{e}\right\}_{e \in E}\right)=\sum \quad \prod z_{e}$ in $O^{*}\left(1.888^{n}\right)$. $M^{\prime} \in \operatorname{pm}(G) e \in M^{\prime}$ $M \cup M^{\prime}$ is a HC

Dynamic programming formula

$$
T[N, v]=\sum_{u v \in E} \sum_{u^{\prime} u \in N} z_{u v} T\left[N \backslash\left\{u^{\prime} u\right\}, u^{\prime}\right]
$$

Corollary

Let $\alpha(n)=\left|\left\{N \subseteq M: M \in \mathbf{X}_{n}\right\}\right|$.
All entries of $T[N, v]$ can be computed in $O^{*}(\alpha(n))$ time.

- Since $\left|\mathbf{X}_{n}\right|=2^{n / 2-1}$ and every $M \in \mathbf{X}_{n}$ has $2^{n / 2}$ subsets, $\alpha(n) \leq 2^{n-1}$.
- ... but there are a lot of common subsets!

Bounding $\alpha(n)$

Let $\beta(n)=\mid\left\{N \subseteq M: M \in \mathbf{X}_{n}\right.$ and $\left.n \notin V(N)\right\} \mid$.
Then

$$
\left\{\begin{array}{l}
\alpha(n)=\overbrace{2 \alpha(n-2)}^{\text {match vertex } n}+\overbrace{\beta(n)}^{n} \\
\beta(n)=\underbrace{4 \alpha(n-4)}_{\text {match } n-2 \text { or } n-1}+\underbrace{1 \cdot \beta(n-2)}_{\text {do not match them }}
\end{array}\right.
$$

Solve it using your favorite method and get $\alpha(n)=O\left(\left(\frac{3+\sqrt{17}}{2}\right)^{n / 2}\right)=O\left(1.88721^{n}\right)$.

Theorem

Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in undirected graphs can be solved in $O^{*}\left(1.888^{n}\right)$ time.

Hamiltonicity in bipartite graphs in $O^{*}\left(1.888^{n}\right)$ time

$G=\left(V_{1} \cup V_{2}, E\right)-$ a directed bipartite graph.

Hamiltonicity in

bipartite graphs in $O^{*}\left(1.888^{n}\right)$ time

$G=\left(V_{1} \cup V_{2}, E\right)-$ a directed bipartite graph.

- $E_{1}=\left\{\left(v_{1}, v_{2}\right) \in E: v_{1} \in V_{1}\right.$ and $\left.v_{2} \in V_{2}\right\} ; G_{1}=\left(V, E_{1}\right)$
- $E_{2}=\left\{\left(v_{2}, v_{1}\right) \in E: v_{1} \in V_{1}\right.$ and $\left.v_{2} \in V_{2}\right\} ; G_{2}=\left(V, E_{2}\right)$
$P=\sum \prod_{e \in M_{1}} x_{e} \prod_{e \in M_{2}} y_{e}=\sum \operatorname{ext}_{\mathbf{X}(\bar{w})}^{G_{1}}\left(\left\{x_{e}\right\}_{e \in E_{1}}\right) \operatorname{ext}_{\mathbf{X}(w)}^{G_{2}}\left(\left\{y_{e}\right\}_{e \in E_{2}}\right)$
$M_{1} \in \operatorname{pm}\left(G_{1}\right) e \in M_{1} \quad e \in M_{2} \quad w \in\{0,1\}^{n / 2-1}$
$M_{2} \in \operatorname{pm}\left(G_{2}\right)$
$M_{1} \cup M_{2}$ is a HC

Theorem

Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in directed bipartite graphs can be solved in $O^{*}\left(1.888^{n}\right)$ time.

