Algebraic approach to exact algorithms, Part IV: Matching connectivity matrix

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

Łukasz Kowalik (UW)

Matching connectivity matrix

Let *n* be an even integer.

- \mathcal{H}_n is a square matrix over the \mathbb{Z}_2 field with rows and columns labeled by all perfect matchings in K_n .
- $(\mathfrak{H}_n)_{M_1,M_2} = [M_1 \cup M_2 \text{ forms a Hamiltonian cycle in } \mathcal{K}_t]$

• Dimension:

$$\frac{n!}{(n/2)!2^{n/2}} = \frac{\left(\frac{n}{e}\right)^n}{\left(\frac{n}{2e}\right)^{n/2}2^{n/2}} n^{O(1)} = \left(\frac{n}{e}\right)^{n/2} n^{O(1)} = 2^{O(n \log n)}$$

Example: \mathcal{H}_4

	$ \cap \cap$	\mathbb{M}	\bigcirc
$\land \land$	0	1	1
\mathbb{M}	1	0	1
\bigcirc	1	1	0

Matching connectivity matrix \mathcal{H}_6

Nr.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		っっっ)))	ا ا	گ	س ک	3	€		\mathbb{A}	س ک		\mathbb{R}	3	€	9
1	۸۸۸	0	0	0	0	1	1	0	1	1	1	1	0	1	1	0
2	nΜ	0	0	0	1	0	1	1	1	0	0	1	1	1	0	1
3	$\neg \bigcirc$	0	0	0	1	1	0	1	0	1	1	0	1	0	1	1
4	ΜΛ	0	1	1	0	0	0	0	1	1	1	0	1	1	0	1
5	\mathcal{M}	1	0	1	0	0	0	1	0	1	0	1	1	1	1	0
6	$\overline{\mathbf{M}}$	1	1	0	0	0	0	1	1	0	1	1	0	0	1	1
7	\square	0	1	1	0	1	1	0	0	0	0	1	1	0	1	1
8	\mathbb{M}	1	1	0	1	0	1	0	0	0	1	0	1	1	1	0
9		1	0	1	1	1	0	0	0	0	1	1	0	1	0	1
10	$\overline{\mathbf{w}}$	1	0	1	1	0	1	0	1	1	0	0	0	0	1	1
11		1	1	0	0	1	1	1	0	1	0	0	0	1	0	1
12	\bigcirc	0	1	1	1	1	0	1	1	0	0	0	0	1	1	0
13		1	1	0	1	1	0	0	1	1	0	1	1	0	0	0
14	\bigcirc	1	0	1	0	1	1	1	1	0	1	0	1	0	0	0
15	\bigcirc	0	1	1	1	0	1	1	0	1	1	1	0	0	0	0

• \mathcal{H}_n is huge

- \mathcal{H}_n is huge
- \mathcal{H}_n has much redundancy

- \mathcal{H}_n is huge
- \mathcal{H}_n has much redundancy
- What is the rank of \mathcal{H}_n ?

Family of matchings X_n

Partition the vertices $1, 2, \ldots, n$ into n/2 + 1 groups:

$$1 \mid 23 \mid 45 \mid \cdots \mid (n-2)(n-1) \mid n$$

Let pm(G) denote the set of all perfect matchings of G.

 $X_n = X = \{M \in pm(K_n) : M \text{ matches vertices from neighboring groups only}\}$

Example: n = 6

Groups:

Matchings:

$$\mathbf{X}_{6} = \{\{12, 34, 56\}, \{12, 35, 46\}, \{13, 24, 56\}, \{13, 25, 46\}\}$$

Indexing the matchings from **X**

- X has $2^{n/2-1}$ matchings.
- The matchings are indexed by 0/1-strings of length n/2 1.
- Building a matching from the string $w_1 \dots, w_{n/2-1}$: For $i = 1, \dots, n/2 - 1$:
 - if $w_i = 1$ then the yet unmatched vertex of *i*-th group is matched with the first vertex of the (i + 1)-th group,
 - if $w_i = 0$ then ... with the second ...

Example: n = 6

Groups:

1 | 23 | 45 | 6

Matchings:

$$\begin{array}{ll} \textbf{X}(11) = \{12, 34, 56\} & \textbf{X}(10) = \{12, 35, 46\} \\ \textbf{X}(01) = \{13, 24, 56\} & \textbf{X}(00) = \{13, 25, 46\} \end{array}$$

For
$$w \in \{0,1\}^{\ell}$$
 denote $\overline{w} = w \operatorname{xor} \underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110} = 001$.

< 口 > < 同

For
$$w \in \{0,1\}^{\ell}$$
 denote $\overline{w} = w \operatorname{xor} \underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110} = 001$.

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

For
$$w \in \{0,1\}^{\ell}$$
 denote $\overline{w} = w \operatorname{xor} \underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110} = 001$.

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w_i = u_i$ for some *i*.

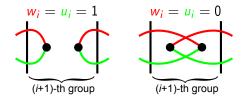
For
$$w \in \{0,1\}^{\ell}$$
 denote $\overline{w} = w \operatorname{xor} \underbrace{1 \cdots 1}_{\ell}$, e.g. $\overline{110} = 001$.

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w_i = u_i$ for some *i*.



 $X(u) \cup X(w)$ has at least two connected components.

Łukasz Kowalik (UW)

Properties of the $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ submatrix

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w = \overline{u}$.

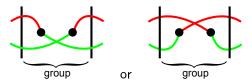
Properties of the $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ submatrix

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w = \overline{u}$. Every group looks like:



• Every vertex is adjacent to a vertex in the previous group.

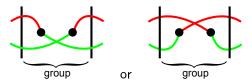
Properties of the $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ submatrix

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w = \overline{u}$. Every group looks like:



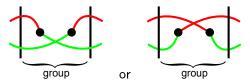
- Every vertex is adjacent to a vertex in the previous group.
- Hence, every vertex has a path to vertex 1.

Observation

 $X(w) \cup X(u)$ is a Hamiltonian cycle iff $w = \overline{u}$.

Proof:

Assume $w = \overline{u}$. Every group looks like:



- Every vertex is adjacent to a vertex in the previous group.
- Hence, every vertex has a path to vertex 1.
- Hence there is only one connected component.
- Since all degrees are 2, this is a HC.

Order the rows/columns of $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ in lexicographic order, i.e.:

 $X(0 \cdots 000), X(0 \cdots 001), X(0 \cdots 010), X(0 \cdots 011), \dots, X(1 \cdots 111).$

Then,
$$\mathfrak{H}_{\mathbf{X},\mathbf{X}} = \begin{bmatrix} 0 & \cdots & 0 & 1\\ 0 & \cdots & 1 & 0\\ \vdots & \ddots & 0 & 0\\ 1 & \cdots & 0 & 0 \end{bmatrix}$$
, so rank $\mathfrak{H}_{\mathbf{X},\mathbf{X}} = 2^{n/2-1}$.

Order the rows/columns of $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ in lexicographic order, i.e.:

 $X(0\cdots 000), X(0\cdots 001), X(0\cdots 010), X(0\cdots 011), \ldots, X(1\cdots 111).$

Then,
$$\mathfrak{H}_{\mathbf{X},\mathbf{X}} = \begin{bmatrix} 0 & \cdots & 0 & 1\\ 0 & \cdots & 1 & 0\\ \vdots & \ddots & 0 & 0\\ 1 & \cdots & 0 & 0 \end{bmatrix}$$
, so rank $\mathfrak{H}_{\mathbf{X},\mathbf{X}} = 2^{n/2-1}$.

Corollary

 $\operatorname{rank} \mathfrak{H}_n \geq 2^{n/2-1}.$

Order the rows/columns of $\mathcal{H}_{\boldsymbol{X},\boldsymbol{X}}$ in lexicographic order, i.e.:

 $X(0\cdots 000), X(0\cdots 001), X(0\cdots 010), X(0\cdots 011), \ldots, X(1\cdots 111).$

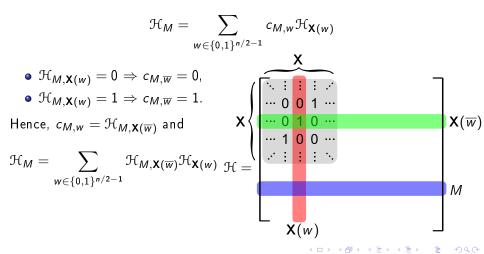
Then,
$$\mathfrak{H}_{\mathbf{X},\mathbf{X}} = \begin{bmatrix} 0 & \cdots & 0 & 1\\ 0 & \cdots & 1 & 0\\ \vdots & \ddots & 0 & 0\\ 1 & \cdots & 0 & 0 \end{bmatrix}$$
, so rank $\mathfrak{H}_{\mathbf{X},\mathbf{X}} = 2^{n/2-1}$.

Corollary

 $\operatorname{rank} \mathcal{H}_n \geq 2^{n/2-1}$.

Rows **X** of \mathcal{H} are linearly independent.

Assume that X is a basis of the row space of \mathcal{H} : For any $M \in pm(K_n)$, for some $c_{M,w} \in \{0, 1\}$,



The representation formula

If **X** is a basis then
$$\mathfrak{H}_M = \sum_{w \in \{0,1\}^{n/2-1}} \mathfrak{H}_{M,\mathbf{X}(\overline{w})} \mathfrak{H}_{\mathbf{X}(w)}$$
. Then,

The representation formula

$$\mathfrak{H}_{M_1,M_2} = \sum_{w \in \{0,1\}^{n/2-1}} \mathfrak{H}_{M_1,\mathbf{X}(\overline{w})} \mathfrak{H}_{\mathbf{X}(w),M_2}.$$

Theorem (Cygan, Kratsch, Nederlof 2013)

The representation formula holds.

(technical inductive proof skipped here.)

Corollary (Cygan, Kratsch, Nederlof 2013)

rank $H_n = 2^{n/2} - 1$.

Note: The representation formula holds in $GF(2^k)$ for every k.

Łukasz Kowalik (UW)

Undirected Hamiltonicity in $O^*(1.888^n)$ time

- Let G = (V, E) be an undirected graph.
- We want to test Hamiltonicity of G.
- W.I.o.g. |V| is even.

Undirected Hamiltonicity in $O^*(1.888^n)$ time

- Let G = (V, E) be an undirected graph.
- We want to test Hamiltonicity of G.
- W.I.o.g. |V| is even.
- Yet another hero (over $GF(2^{2n})$):

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\substack{M_1, M_2 \in pm(G) \\ M_1 \cup M_2 \text{ is a HC}}} \prod_{e \in M_1} x_e \prod_{e \in M_2} y_e$$

Polynomial P and Hamiltonicity

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\substack{M_1, M_2 \in pm(G) \\ M_1 \cup M_2 \text{ is a HC}}} \prod_{e \in M_1} x_e \prod_{e \in M_2} y_e$$

Observation

 $P \not\equiv 0$ iff G is Hamiltonian.

Proof:

 (\Rightarrow) : Obvious.

$$\Leftarrow$$
): • Let *H* be a HC in *G*.

- Then $H = M_1 \cup M_2$ where M_1 , M_2 are perfect matchings,
- The sum in the definition of P contains each of the monomials $\prod_{e \in M_1} x_e \prod_{e \in M_2} y_e$ and $\prod_{e \in M_2} x_e \prod_{e \in M_1} y_e$ exactly once.

Rewriting P

 $P(\{x_e\}_{e \in E}, \{y_e\}_{e \in E}) = \sum_{i=1}^{n} || x_e || y_e =$ $M_1, M_2 \in pm(G) \ e \in M_1 \ e \in M_2$ $M_1 \cup M_2$ is a HC $\sum \qquad \sum \qquad \mathcal{H}_{M_1,M_2} \prod x_e \prod y_e = (\mathsf{RF})$ $M_1 \in \mathsf{pm}(G) \ M_2 \in \mathsf{pm}(G)$ $e \in M_1$ $e \in \overline{M_2}$ $\sum \sum \sum \mathcal{H}_{M_1,\mathbf{X}(\overline{w})} \mathcal{H}_{\mathbf{X}(w),M_2} \prod x_e \prod y_e =$ $e \in M_1$ $e \in M_2$ $M_1 \in pm(G) \ M_2 \in pm(G) \ w \in \{0,1\}^{n/2-1}$ $\sum_{w \in \{0,1\}^{n/2-1}} \underbrace{\left(\sum_{M_1 \in pm(G)} \mathcal{H}_{M_1,\mathbf{X}(\overline{w})} \prod_{e \in M_1} x_e\right)}_{e \in M_1} \cdot \underbrace{\left(\sum_{M_2 \in pm(G)} \mathcal{H}_{\mathbf{X}(w),M_2} \prod_{e \in M_2} y_e\right)}_{e \in M_2}$ $\underbrace{\mathsf{ext}}_{\mathsf{X}(w)}^{\mathsf{G}}(\{y_e\}_{e\in E})$ $\operatorname{ext}_{\mathbf{X}(\overline{w})}^{G}(\{x_e\}_{e\in E})$ where for any $M \in \mathbf{X}$, $\operatorname{ext}_{M}^{G}(\{z_{e}\}_{e\in E}) = \sum \prod z_{e}$ $M' \in pm(G)$ $e \in M'$ $M \cup M'$ is a HC Łukasz Kowalik (UW) Algebraic approach... August 2013 14 / 23 We got:

$$P(\{x_e\}_{e\in E}, \{y_e\}_{e\in E}) = \sum_{w\in\{0,1\}^{n/2-1}} ext^G_{\mathbf{X}(\overline{w})}(\{x_e\}_{e\in E}) ext^G_{\mathbf{X}(w)}(\{y_e\}_{e\in E})$$

- Note that $|\mathbf{X}| = 2^{n/2-1} = O(1.42^n)$.
- Hence it suffices to precompute $\operatorname{ext}_{M}^{G}(\{x_{e}\}_{e \in E})$ and $\operatorname{ext}_{M}^{G}(\{y_{e}\}_{e \in E})$ for all $M \in \mathbf{X}$ in $O^{*}(1.888^{n})$ time.

Fix any $u_0 \in V$.

N-alternating *v*-walk

Let N be a matching in K_n .

A walk u_0, u_1, \ldots, u_t in K_n is called *N*-alternating *v*-walk if

• for every $i = 0, \ldots, n/2 - 1$, $u_{2i}u_{2i+1} \in N$ and $u_{2i+1}u_{2i+2} \in E(G)$.

•
$$t = 2|N|$$

• each edge of N is visited,

•
$$u_t = v$$
,

 $\underbrace{\begin{array}{cccc} N & E(G) & N \\ u_0 & u_1 & u_2 & u_3 \end{array}}_{U_2|N|-2} & \cdots & \underbrace{\begin{array}{cccc} N & E(G) \\ u_{2|N|-2} & u_{2|N|-1} & u_{2|N|} = v \end{array} }_{U_2|N|-1}$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix any $u_0 \in V$. N-alternating v-walk E(G) = NΝ E(G) $\tilde{u}_{2|N|-2}\tilde{u}_{2|N|-1}\tilde{u}_{2|N|} = v$ ū∩ Ū1 ūэ Ūз For every matching N such that $N \subseteq M'$ for some $M' \in \mathbf{X}$, for every $v \in V$, compute N T[N, v] = $Z_{e_{2i}}$ N-alternating v-walk i=1 $e_1, e_2, \dots, \tilde{e}_{2|N|}$

Fix any $u_0 \in V$. *N*-alternating *v*-walk N = E(G) = N = V $U_2 = U_3 = V$ $U_2|N| - 2 = U_2|N| = v$ For every matching *N* such that $N \subseteq M'$ for some $M' \in \mathbf{X}$, for every $v \in V$, compute $T[N, v] = \sum_{\substack{N-\text{alternating } v-\text{walk } i=1 \\ e_1, e_2, \dots, e_2|N|}} \prod_{i=1}^{|N|} z_{e_{2i}}$

Note that $\operatorname{ext}_{M}^{G}(\{z_{e}\}_{e\in E}) = T[M, u_{0}].$

Fix any $u_0 \in V$. *N*-alternating *v*-walk N = E(G) = N = V $U_1 = U_2 = U_3 = V$ For every matching *N* such that $N \subseteq M'$ for some $M' \in \mathbf{X}$, for every $v \in V$, compute $T[N, v] = \sum_{i=1}^{|N|} \prod_{i=1}^{|N|} z_{e_{2i}}$

N-alternating *v*-walk
$$i=1$$

 $e_1, e_2, \dots, e_{2|N|}$

Note that $\operatorname{ext}_{M}^{G}(\{z_{e}\}_{e\in E}) = T[M, u_{0}].$

Dynamic programming formula

$$T[N, v] = \sum_{uv \in E} \sum_{u'u \in N} z_{uv} T[N \setminus \{u'u\}, u']$$

Łukasz Kowalik (UW)

Dynamic programming formula

$$T[N, v] = \sum_{uv \in E} \sum_{u'u \in N} z_{uv} T[N \setminus \{u'u\}, u']$$

Corollary

Let $\alpha(n) = |\{N \subseteq M : M \in \mathbf{X}_n\}|.$ All entries of T[N, v] can be computed in $O^*(\alpha(n))$ time.

• Since
$$|{f X}_n|=2^{n/2-1}$$
 and every $M\in {f X}_n$ has $2^{n/2}$ subsets, $lpha(n)\leq 2^{n-1}$

Dynamic programming formula

$$T[N, v] = \sum_{uv \in E} \sum_{u'u \in N} z_{uv} T[N \setminus \{u'u\}, u']$$

Corollary

Let $\alpha(n) = |\{N \subseteq M : M \in \mathbf{X}_n\}|.$ All entries of T[N, v] can be computed in $O^*(\alpha(n))$ time.

• Since $|\mathbf{X}_n| = 2^{n/2-1}$ and every $M \in \mathbf{X}_n$ has $2^{n/2}$ subsets, $\alpha(n) \le 2^{n-1}$.

• ... but there are a lot of common subsets!

Let
$$\beta(n) = |\{N \subseteq M : M \in \mathbf{X}_n \text{ and } n \notin V(N)\}|.$$

Then

$$\begin{cases} \alpha(n) = \underbrace{2\alpha(n-2)}_{\text{match vertex } n} \text{ do not match vertex } n \\ \beta(n) = \underbrace{4\alpha(n-2)}_{\text{match } n-2 \text{ or } n-1} + \underbrace{1 \cdot \beta(n-2)}_{\text{do not match them}} \end{cases}$$

Solve it using your favorite method and get $\alpha(n) = O((\frac{3+\sqrt{17}}{2})^{n/2}) = O(1.88721^n).$

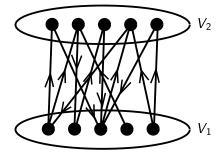
Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in undirected graphs can be solved in $O^*(1.888^n)$ time.

Łukasz Kowalik (UW)

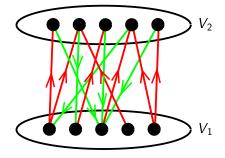
Hamiltonicity in directed bipartite graphs in $O^*(1.888^n)$ time

 $G = (V_1 \cup V_2, E)$ – a directed bipartite graph.



Hamiltonicity in directed bipartite graphs in $O^*(1.888^n)$ time

 $G = (V_1 \cup V_2, E)$ – a directed bipartite graph.



• $E_1 = \{(v_1, v_2) \in E : v_1 \in V_1 \text{ and } v_2 \in V_2\}; G_1 = (V, E_1)$ • $E_2 = \{(v_2, v_1) \in E : v_1 \in V_1 \text{ and } v_2 \in V_2\}; G_2 = (V, E_2)$ $P = \sum_{\substack{M_1 \in pm(G_1) \\ M_2 \in pm(G_2) \\ M_1 \cup M_2 \text{ is a HC}} \prod_{e \in M_2} x_e \prod_{e \in M_2} y_e = \sum_{w \in \{0,1\}^{n/2-1}} \operatorname{ext}_{\mathbf{X}(\overline{w})}^{G_1}(\{x_e\}_{e \in E_1}) \operatorname{ext}_{\mathbf{X}(w)}^{G_2}(\{y_e\}_{e \in E_2})$

Theorem (Cygan, Kratsch, Nederlof 2013)

The Hamiltonian cycle problem in directed bipartite graphs can be solved in $O^*(1.888^n)$ time.