ADFOCS 2013
Algebraic Approaches to Exact Algorithms
Exercises, Thursday, 8th August 2013

1. Describe a $O\left(2^{\omega n / 3}\right)$-time algorithm for the Max Cut problem.

Max Cut

Input: Graph $G=(V, E)$, a number $k \in \mathbb{N}$
Question: Is there a subset $S \subseteq V$ such that there are at least k edges between S and $V \backslash S$?
2. In the weighted k-path problem, we are given a directed graph $G=(V, E)$ with a weight function $w: E \rightarrow\{0, \ldots, W\}$ and the goal is to find a k-path P of smallest weight (i.e. $\left.\sum_{u v \in E(P)} w(u, v)\right)$. Describe a $O\left(2^{k} \cdot W \cdot p(k, n)\right)$ time algorithm for this problem, for some polynomial p.
Hint: Introduce a new variable.
3. Describe a $O^{*}\left(2^{3 k}\right)$-time algorithm for the Triangle Packing problem

Triangle Packing

Input: Graph $G=(V, E)$, a number $k \in \mathbb{N}$
Question: Does G contain k disjoint triangles?
4. In the lecture we have seen a $O^{*}\left(2^{3 / 4 k}\right)=O^{*}\left(1.682^{k}\right)$-time algorithm for undirected k-path. This can be tuned to $O^{*}\left(1.66^{k}\right)$. Can you find a possible way of doing it? (Warning: altough the idea is simple, calculating the 1.66 constant can be hard, especially witout the aid of a computer.)
Hint: Reduce the number of labels, but not for free.
5. Consider the following problem:

Colorful Graph Motif
Input: Graph $G=(V, E)$, a coloring $c: V \rightarrow C$, a set of colors M
Question: Is there a subset $S \subseteq V$ such that $G[S]$ is connected, and $c(S)=M$?

Denote $k=|M|$. Describe a $O^{*}\left(c^{k}\right)$-time algorithm for a constant c, ideally a $O^{*}\left(2^{k}\right)$-time algorithm.

You can also consider a (slightly different, perhaps slightly simpler) problem, where the vertices in the subset S must form a path.

