Algebraic approach to exact algorithms, Part II: Fast Matrix Multiplication

Łukasz Kowalik
University of Warsaw

ADFOCS, Saarbrücken, August 2013

(Square) matrix multiplication

Problem

Given two matrices $n \times n: A$ and B.
Compute the matrix $C=A \cdot B$.

Naive algorithm

$c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$.
Time: $O\left(n^{3}\right)$ arithmetical operations.

Matrix multiplication: Divide and conquer (1)

W.l.o.g. $n=2^{k}$.

Let us partition A, B, C into blocks of size $(n / 2) \times(n / 2)$:

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\
\mathbf{A}_{2,1} & \mathbf{A}_{2,2}
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\
\mathbf{B}_{2,1} & \mathbf{B}_{2,2}
\end{array}\right]
$$

Then

$$
\mathbf{C}=\left[\begin{array}{c|c}
\mathbf{A}_{1,1} \mathbf{B}_{1,1}+\mathbf{A}_{1,2} \mathbf{B}_{2,1} & \mathbf{A}_{1,1} \mathbf{B}_{1,2}+\mathbf{A}_{1,2} \mathbf{B}_{2,2} \\
\hline \mathbf{A}_{2,1} \mathbf{B}_{1,1}+\mathbf{A}_{2,2} \mathbf{B}_{2,1} & \mathbf{A}_{2,1} \mathbf{B}_{1,2}+\mathbf{A}_{2,2} \mathbf{B}_{2,2}
\end{array}\right]
$$

We get the recurrence $T(n)=8 T(n / 2)+O\left(n^{2}\right)$, hence $T(n)=O\left(n^{3}\right)$.
(The last level dominates, it has $8^{\log _{2} n}=n^{3}$ nodes.)

Matrix multiplication: Divide and conquer (2)

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\
\mathbf{A}_{2,1} & \mathbf{A}_{2,2}
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\
\mathbf{B}_{2,1} & \mathbf{B}_{2,2}
\end{array}\right]
$$

A new approach (Strassen 1969):

$$
\begin{array}{ll}
\mathbf{M}_{1}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{2,2}\right) & \mathbf{M}_{2}:=\left(\mathbf{A}_{2,1}+\mathbf{A}_{2,2}\right) \mathbf{B}_{1,1} \\
\mathbf{M}_{3}:=\mathbf{A}_{1,1}\left(\mathbf{B}_{1,2}-\mathbf{B}_{2,2}\right) & \mathbf{M}_{4}:=\mathbf{A}_{2,2}\left(\mathbf{B}_{2,1}-\mathbf{B}_{1,1}\right) \\
\mathbf{M}_{5}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{1,2}\right) \mathbf{B}_{2,2} & \mathbf{M}_{6}:=\left(\mathbf{A}_{2,1}-\mathbf{A}_{1,1}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{1,2}\right) \\
\mathbf{M}_{7}:=\left(\mathbf{A}_{1,2}-\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{2,1}+\mathbf{B}_{2,2}\right) . &
\end{array}
$$

Then:

$$
\begin{aligned}
& \mathbf{C}=\left[\begin{array}{c|c}
\mathbf{A}_{1,1} \mathbf{B}_{1,1}+\mathbf{A}_{1,2} \mathbf{B}_{2,1} & \mathbf{A}_{1,1} \mathbf{B}_{1,2}+\mathbf{A}_{1,2} \mathbf{B}_{2,2} \\
\hline \mathbf{A}_{2,1} \mathbf{B}_{1,1}+\mathbf{A}_{2,2} \mathbf{B}_{2,1} & \mathbf{A}_{2,1} \mathbf{B}_{1,2}+\mathbf{A}_{2,2} \mathbf{B}_{2,2}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\mathbf{M}_{1}+\mathbf{M}_{4}-\mathbf{M}_{5}+\mathbf{M}_{7} & \mathbf{M}_{3}+\mathbf{M}_{5} \\
\hline \mathbf{M}_{2}+\mathbf{M}_{4} & \mathbf{M}_{1}-\mathbf{M}_{2}+\mathbf{M}_{3}+\mathbf{M}_{6}
\end{array}\right]
\end{aligned}
$$

We get the recurrence $T(n)=7 T(n / 2)+O\left(n^{2}\right)$ hence $T(n)=O\left(7^{\log _{2} n}\right)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$.

State-of-art algorithms

ω constant

$\omega=\inf \left\{p: \forall \epsilon>0\right.$ one can multiply two $n \times n$ matrices in $O\left(n^{p+\epsilon}\right)$ time $\}$

Trivial lower bound: $\omega \geq 2$.
Theorem (Coppersmith and Winograd 1990)

$$
\omega \leq 2.376
$$

Theorem (Stothers 2010)

$$
\omega \leq 2.3736 \text {. }
$$

Theorem (Vassilevska-Williams 2011) $\omega \leq 2.3727$.

A standard exercise

Problem

Given a directed/undirected n-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

A standard exercise

Problem

Given a directed/undirected n-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

Lemma

Let \mathbf{A} be the adjacency matrix of an n-vertex graph G (directed or undirected). Let $k \in \mathbb{N}_{>0}$. Then for every $i, j=1, \ldots, n$ the entry $\mathbf{A}_{i, j}^{k}$ is the number of length k walks from i to j.

Proof: Easy induction on k.

Corollary

Both problems above can be solved in $O\left(n^{\omega}\right)$ time.

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \cdots$

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \ldots$
In what follows we deal with the equivalent (up to a \#clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with n variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly k clauses?

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \cdots$
In what follows we deal with the equivalent (up to a \#clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with n variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly k clauses?

Complexity

MAX-2-SAT is NP-complete.
The naive algorithm works in $O^{*}\left(2^{n}\right)$ time.
Question: Can we do better? E.g. $O\left(1.9^{n}\right)$?

MAX-2-SAT (Williams 2004)

We construct an undirected graph G on $O\left(2^{n / 3}\right)$ vertices.

- Let us fix an arbitrary partition $V=V_{0} \cup V_{1} \cup V_{2}$ into three equal parts (as equal as possible...).
- $V(G)$ is the set of all assignments $v_{i}: V_{i} \rightarrow\{0,1\}$ for $i=0,1,2$.
- For every $v \in V_{i}, w \in V_{(i+1) \bmod 3}$ graph G contains the edge $v w$.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the $v w u$ triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the $v w u$ triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(v) \cap c(u)|-|c(w) \cap c(u)| \\
& +|c(v) \cap c(w) \cap c(u)|
\end{aligned}
$$

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(v) \cap c(u)|-|c(w) \cap c(u)| \\
& +\underbrace{|c(v) \cap c(w) \cap c(u)|}_{0} .
\end{aligned}
$$

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the $v w u$ triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(w) \cap c(u)|-|c(u) \cap c(v)| \\
& +\underbrace{|c(v) \cap c(w) \cap c(u)|}_{0} .
\end{aligned}
$$

So, we put weight $(x y)=|c(x)|-|c(x) \cap c(y)|$.

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O\left(k^{2}\right)$ partitions $k=k_{0}+k_{1}+k_{2}$. For every partition we build a graph $G_{k_{0}, k_{1}, k_{2}}$ which consists only of:

- edges of weight k_{0} between $2^{V_{0}}$ and $2^{V_{1}}$,
- edges of weight k_{1} between $2^{V_{1}}$ and $2^{V_{2}}$,
- edges of weight k_{2} between $2^{V_{2}}$ and $2^{V_{0}}$,

Then it suffices to...

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O\left(k^{2}\right)$ partitions $k=k_{0}+k_{1}+k_{2}$. For every partition we build a graph $G_{k_{0}, k_{1}, k_{2}}$ which consists only of:

- edges of weight k_{0} between $2^{V_{0}}$ and $2^{V_{1}}$,
- edges of weight k_{1} between $2^{V_{1}}$ and $2^{V_{2}}$,
- edges of weight k_{2} between $2^{V_{2}}$ and $2^{V_{0}}$,

Then it suffices to... check whether there is a triangle.

Checking whether $G_{k_{0}, k_{1}, k_{2}}$ contains a triangle

Corollary

- Graph $G_{k_{0}, k_{1}, k_{2}}$ has $3 \cdot 2^{n / 3}$ vertices.
- We can verify whether $G_{k_{0}, k_{1}, k_{2}}$ contains a triangle in $O\left(2^{\omega n / 3}\right)=O\left(1.7302^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.
- Hence we can check whether G contains a triangle of weight k in $O\left(k^{2} \cdot 2^{\omega n / 3}\right)=O^{*}\left(1.731^{n}\right)$ time.

MAX-2-SAT (Williams 2004): Conclusion

Corollary

There is an algorithm for MAX-2-SAT running in $O^{*}\left(1.731^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)=O\left(1.588^{n}\right)$ space.

MAX-2-SAT (Williams 2004): Conclusion

Corollary

There is an algorithm for MAX-2-SAT running in $O^{*}\left(1.731^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)=O\left(1.588^{n}\right)$ space.

It is easy to modify the algorithm (how?) to get

Corollary

There is an algorithm which counts the number of optimum MAX-2-SAT solutions running in $O^{*}\left(1.731^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.

