Algebraic approach to exact algorithms, Part II: Fast Matrix Multiplication

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

Problem

Given two matrices $n \times n$: A and B. Compute the matrix $C = A \cdot B$.

Naive algorithm

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$ Time: $O(n^3)$ arithmetical operations. W.l.o.g. $n = 2^k$. Let us partition **A**, **B**, **C** into blocks of size $(n/2) \times (n/2)$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} \text{ , } \mathbf{B} = \begin{bmatrix} \mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\ \mathbf{B}_{2,1} & \mathbf{B}_{2,2} \end{bmatrix}$$

Then

$$\textbf{C} = \begin{bmatrix} \textbf{A}_{1,1}\textbf{B}_{1,1} + \textbf{A}_{1,2}\textbf{B}_{2,1} & \textbf{A}_{1,1}\textbf{B}_{1,2} + \textbf{A}_{1,2}\textbf{B}_{2,2} \\ \hline \textbf{A}_{2,1}\textbf{B}_{1,1} + \textbf{A}_{2,2}\textbf{B}_{2,1} & \textbf{A}_{2,1}\textbf{B}_{1,2} + \textbf{A}_{2,2}\textbf{B}_{2,2} \end{bmatrix}$$

We get the recurrence $T(n) = 8T(n/2) + O(n^2)$, hence $T(n) = O(n^3)$. (The last level dominates, it has $8^{\log_2 n} = n^3$ nodes.)

Matrix multiplication: Divide and conquer (2)

$$\textbf{A} = \begin{bmatrix} \textbf{A}_{1,1} & \textbf{A}_{1,2} \\ \textbf{A}_{2,1} & \textbf{A}_{2,2} \end{bmatrix} \text{, } \textbf{B} = \begin{bmatrix} \textbf{B}_{1,1} & \textbf{B}_{1,2} \\ \textbf{B}_{2,1} & \textbf{B}_{2,2} \end{bmatrix}$$

A new approach (Strassen 1969):

$$\begin{split} \mathsf{M}_1 &:= (\mathsf{A}_{1,1} + \mathsf{A}_{2,2})(\mathsf{B}_{1,1} + \mathsf{B}_{2,2}) \\ \mathsf{M}_3 &:= \mathsf{A}_{1,1}(\mathsf{B}_{1,2} - \mathsf{B}_{2,2}) \\ \mathsf{M}_5 &:= (\mathsf{A}_{1,1} + \mathsf{A}_{1,2})\mathsf{B}_{2,2} \\ \mathsf{M}_7 &:= (\mathsf{A}_{1,2} - \mathsf{A}_{2,2})(\mathsf{B}_{2,1} + \mathsf{B}_{2,2}). \end{split}$$

$$\begin{split} \mathsf{M}_2 &:= (\mathsf{A}_{2,1} + \mathsf{A}_{2,2}) \mathsf{B}_{1,1} \\ \mathsf{M}_4 &:= \mathsf{A}_{2,2} (\mathsf{B}_{2,1} - \mathsf{B}_{1,1}) \\ \mathsf{M}_6 &:= (\mathsf{A}_{2,1} - \mathsf{A}_{1,1}) (\mathsf{B}_{1,1} + \mathsf{B}_{1,2}) \end{split}$$

Then:

$$\begin{split} \textbf{C} &= \begin{bmatrix} \textbf{A}_{1,1}\textbf{B}_{1,1} + \textbf{A}_{1,2}\textbf{B}_{2,1} & \textbf{A}_{1,1}\textbf{B}_{1,2} + \textbf{A}_{1,2}\textbf{B}_{2,2} \\ \hline \textbf{A}_{2,1}\textbf{B}_{1,1} + \textbf{A}_{2,2}\textbf{B}_{2,1} & \textbf{A}_{2,1}\textbf{B}_{1,2} + \textbf{A}_{2,2}\textbf{B}_{2,2} \\ \end{bmatrix} \\ &= \begin{bmatrix} \textbf{M}_1 + \textbf{M}_4 - \textbf{M}_5 + \textbf{M}_7 & \textbf{M}_3 + \textbf{M}_5 \\ \hline \textbf{M}_2 + \textbf{M}_4 & \textbf{M}_1 - \textbf{M}_2 + \textbf{M}_3 + \textbf{M}_6 \end{bmatrix} \end{split}$$

We get the recurrence $T(n) = 7T(n/2) + O(n^2)$ hence $T(n) = O(7^{\log_2 n}) = O(n^{\log_2 7}) = O(n^{2.81}).$

ω constant

 $\omega = \inf\{p : \forall \epsilon > 0 \text{ one can multiply two } n \times n \text{ matrices in } O(n^{p+\epsilon}) \text{ time}\}$

Trivial lower bound: $\omega \ge 2$.

Theorem (Coppersmith and Winograd 1990)

 $\omega \leq$ 2.376.

Theorem (Stothers	2010)
$\omega \leq$ 2.3736.	

Theorem (Vassilevska-Williams 2011)

 $\omega \leq 2.3727$.

A standard exercise

Problem

Given a directed/undirected *n*-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

A standard exercise

Problem

Given a directed/undirected *n*-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

Lemma

Let **A** be the adjacency matrix of an *n*-vertex graph *G* (directed or undirected). Let $k \in \mathbb{N}_{>0}$. Then for every $i, j = 1, \ldots, n$ the entry $\mathbf{A}_{i,j}^k$ is the number of length *k* walks from *i* to *j*.

Proof: Easy induction on k.

Corollary Both problems above can be solved in $O(n^{\omega})$ time.

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$ In what follows we deal with the equivalent (up to a #clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with *n* variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly *k* clauses?

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$ In what follows we deal with the equivalent (up to a #clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with *n* variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly *k* clauses?

Complexity

MAX-2-SAT is NP-complete.

The naive algorithm works in $O^*(2^n)$ time.

Question: Can we do better? E.g. $O(1.9^n)$?

MAX-2-SAT (Williams 2004)

We construct an undirected graph G on $O(2^{n/3})$ vertices.

- Let us fix an arbitrary partition $V = V_0 \cup V_1 \cup V_2$ into three equal parts (as equal as possible...).
- V(G) is the set of all assignments $v_i: V_i \rightarrow \{0,1\}$ for i = 0, 1, 2.
- For every $v \in V_i$, $w \in V_{(i+1) \mod 3}$ graph G contains the edge vw.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$\begin{aligned} |c(v) \cup c(w) \cup c(u)| &= |c(v)| + |c(w)| + |c(u)| \\ &- |c(v) \cap c(w)| - |c(v) \cap c(u)| - |c(w) \cap c(u)| \\ &+ |c(v) \cap c(w) \cap c(u)|. \end{aligned}$$

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$|c(v) \cup c(w) \cup c(u)| = |c(v)| + |c(w)| + |c(u)| - |c(v) \cap c(w)| - |c(v) \cap c(u)| - |c(w) \cap c(u)| + \underbrace{|c(v) \cap c(w) \cap c(u)|}_{0}.$$

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$|c(v) \cup c(w) \cup c(u)| = |c(v)| + |c(w)| + |c(u)| - |c(v) \cap c(w)| - |c(w) \cap c(u)| - |c(u) \cap c(v)| + \underbrace{|c(v) \cap c(w) \cap c(u)|}_{0}.$$

So, we put weight $(xy) = |c(x)| - |c(x) \cap c(y)|$.

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O(k^2)$ partitions $k = k_0 + k_1 + k_2$. For every partition we build a graph G_{k_0,k_1,k_2} which consists only of:

- edges of weight k_0 between 2^{V_0} and 2^{V_1} ,
- edges of weight k_1 between 2^{V_1} and 2^{V_2} ,
- edges of weight k_2 between 2^{V_2} and 2^{V_0} ,

Then it suffices to...

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O(k^2)$ partitions $k = k_0 + k_1 + k_2$. For every partition we build a graph G_{k_0,k_1,k_2} which consists only of:

- edges of weight k_0 between 2^{V_0} and 2^{V_1} ,
- edges of weight k_1 between 2^{V_1} and 2^{V_2} ,
- edges of weight k_2 between 2^{V_2} and 2^{V_0} ,

Then it suffices to... check whether there is a triangle.

Corollary

- Graph G_{k_0,k_1,k_2} has $3 \cdot 2^{n/3}$ vertices.
- We can verify whether G_{k_0,k_1,k_2} contains a triangle in $O(2^{\omega n/3}) = O(1.7302^n)$ time and $O(2^{2/3n})$ space.
- Hence we can check whether G contains a triangle of weight k in $O(k^2 \cdot 2^{\omega n/3}) = O^*(1.731^n)$ time.

Corollary

There is an algorithm for MAX-2-SAT running in $O^*(1.731^n)$ time and $O(2^{2/3n}) = O(1.588^n)$ space.

Corollary

There is an algorithm for MAX-2-SAT running in $O^*(1.731^n)$ time and $O(2^{2/3n}) = O(1.588^n)$ space.

It is easy to modify the algorithm (how?) to get

Corollary

There is an algorithm which counts the number of optimum MAX-2-SAT solutions running in $O^*(1.731^n)$ time and $O(2^{2/3n})$ space.