Algebraic approaches to exact algorithms, part I: Inclusion-Exclusion

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

Inclusion-Exclusion Principle

Theorem (Inclusion-Exclusion Principle, intersection version)

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set. Then:

$$
\bigcap_{i \in\{1, \ldots, n\}} A_{i}\left|=\sum_{x \subseteq\{1, \ldots, n\}}(-1)^{|X|}\right| \bigcap_{i \in X} \overline{A_{i}} \mid
$$

where $\overline{A_{i}}=U-A_{i}$ and $\bigcap_{i \in \emptyset} \overline{A_{i}}=U$.
Example. $|A \cap B|=|U|-|\bar{A}|-|\bar{B}|+|\bar{A} \cap \bar{B}|$

$|U|-|\bar{A}|-|\bar{B}|$
Algebraic approach...
$|U| \rightarrow|\bar{A}|=|\bar{B}| \equiv+|\bar{A} \cap \bar{B}|$

Inclusion-Exclusion Principle, intersection version

Theorem (Inclusion-Exclusion Principle, intersection version)

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set. ($\left\{A_{i}\right\}_{i=1}^{n}=$ "requirements".) Denote $\overline{A_{i}}=U-A_{i}$ and $\bigcap_{i \in \emptyset} \overline{A_{i}}=U$.
Then:

$$
\left|\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|} \underbrace{\left|\bigcap_{i \in X} \overline{A_{i}}\right|}_{\text {"simplified problem" }}
$$

A common algorithmic application

Reduce a hard task to 2^{n} "simplified problems" (solvable in poly-time).

Iverson's Notation

$$
[\alpha]= \begin{cases}1 & \alpha \text { is true } \\ 0 & \text { otherwise }\end{cases}
$$

Example:

$$
\sum_{i=1}^{100}[i \text { is even }]=50
$$

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.
- Then the solution is $\left|\bigcap_{v \in V} A_{v}\right|$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.
- Then the solution is $\left|\bigcap_{v \in V} A_{v}\right|$.
- The simplified problem: $\left|\bigcap_{v \in X} \overline{A_{v}}\right|=$ the number of closed walks from U in $G^{\prime}=G[V-X]$.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G^{\prime} that start at vertex 1 .

Dynamic programming

- $T(d, x)=$ the number of length d walks from 1 to x.
- $T(d, x)=\sum_{y x \in E\left(G^{\prime}\right)} T(d-1, y)$.
- We return $T(n, 1)$, DP works in $O\left(n^{3}\right)$ time.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G^{\prime} that start at vertex 1 .

Dynamic programming

- $T(d, x)=$ the number of length d walks from 1 to x.
- $T(d, x)=\sum_{y x \in E\left(G^{\prime}\right)} T(d-1, y)$.
- We return $T(n, 1)$, DP works in $O\left(n^{3}\right)$ time.

Corollary

We can solve the Hamiltonian Cycle problem (and even find the number of such cycles) in $O\left(2^{n} n^{3}\right)=O^{*}\left(2^{n}\right)$ time and polynomial space.

Notation: $f(n) n^{O(1)}=O^{*}(f(n))$.

Coloring

k-coloring

k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for every edge $x y \in E, c(x) \neq c(y)$.

Problem

Given a graph $G=(V, E)$ and $k \in \mathbb{N}$ decide whether there is a k-coloring of G.

Note: If we can do it in time $T(n)$ then we can also find the coloring in $O^{*}(T(n))$ time when it exists, due to self-reducibility.

Coloring

k-coloring

k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for every edge $x y \in E, c(x) \neq c(y)$.

Problem

Given a graph $G=(V, E)$ and $k \in \mathbb{N}$ decide whether there is a k-coloring of G.

Note: If we can do it in time $T(n)$ then we can also find the coloring in $O^{*}(T(n))$ time when it exists, due to self-reducibility.

History

- (naive) $O^{*}\left(k^{n}\right)$
- Lawler 1976: Dynamic programming $O\left(2.45^{n}\right)$
- Björklund, Husfeldt, Koivisto 2006: Inclusion-Exclusion $O^{*}\left(2^{n}\right)$

Coloring via inclusion-exclusion in $O^{*}\left(2^{n}\right)$ time

Observation

We can color a vertex with many colors at the same time - existence of such a coloring is equivalent to the existence of the classic coloring.

Coloring in 2^{n}, cont' d

- U is the set of tuples $\left(l_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)

Coloring in 2^{n}, cont' d

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=
$$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|
$$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(l_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

- $s(Y)$ can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y)=s(Y-\{y\})+s(Y-N[y])$. This takes time (and space) $O^{*}\left(2^{n}\right)$, since the number of covers takes $O(n \log k)$ bits.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

- $s(Y)$ can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y)=s(Y-\{y\})+s(Y-N[y])$. This takes time (and space) $O^{*}\left(2^{n}\right)$, since the number of covers takes $O(n \log k)$ bits.
- Next, we compute $\left|\bigcap_{v \in X} \overline{A_{v}}\right|$ easily in $O^{*}(1)$ time, so we get $\left|\bigcap_{v \in V} A_{V}\right|$ in $O^{*}\left(2^{n}\right)$ time.

Coloring in 2^{n}, cont'd

Theorem

In $O^{*}\left(2^{n}\right)$ time and space we can

- find a k-coloring or conclude it does not exist,
- find the chromatic number.

Coloring in 2^{n}, cont' d

Theorem

In $O^{*}\left(2^{n}\right)$ time and space we can

- find a k-coloring or conclude it does not exist,
- find the chromatic number.

Theorem

In $O^{*}\left(2.25^{n}\right)$ time and polynomial space we can find a k-coloring of a given graph G or conclude that it does not exist.

Proof

We compute $s(Y)$ in $O\left(1.2377^{n}\right)$ time and polynomial space by the algorithm of Wahlström (2008). Total time:

$$
\sum_{X \subseteq V} 1.2377^{|X|}=\sum_{k=0}^{n}\binom{n}{k} 1.2377^{k}=(1+1.2377)^{n}=O\left(2.24^{n}\right)
$$

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w: E \rightarrow \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w: E \rightarrow \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Denote $n=|V|, k=|K|$.

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in $O^{*}\left(3^{k}\right)$ time and $O^{*}\left(2^{k}\right)$ space, even in the weighted version.

Branching walks

Definition

Let $G=(V, E)$ be an undirected graph and let $s \in V$.
A branching walk is a pair $B=(T, h)$, where

- T is an ordered rooted tree and
- $h: V(T) \rightarrow V$ is a homomorphism, i.e. if $(x, y) \in E(T)$ then $h(x) h(y) \in E(G)$.

We say that B is from s, when $h(r)=s$, where r is the root of T. The length of B is defined as $|E(T)|$.

Branching walks

Example 1 Every walk is a branching walk

Branching walks

Example 1 Every walk is a branching walk

Branching walks

Example 2 Even this one.

Branching walks

Branching walks

Example 3 An injective homomorphism.

Branching walks

Example 4 A non-injective homomorphism.

Branching walks

Example 5 An even more non-injective homomorphism.

Steiner Tree, unweighted

For a branching walk $B=\left(T_{B}, h\right)$ denote $V(B)=h\left(V\left(T_{B}\right)\right)$.
Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff
G contains a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq V(B)$ and $\left|E\left(T_{B}\right)\right| \leq c$.

Steiner Tree, unweighted

For a branching walk $B=\left(T_{B}, h\right)$ denote $V(B)=h\left(V\left(T_{B}\right)\right)$.
Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff
G contains a branching walk $B=\left(T_{B}, h\right)$ from s in G such that
$K \subseteq V(B)$ and $\left|E\left(T_{B}\right)\right| \leq c$.

- U is the set of all length c branching walks from s.

Steiner Tree, unweighted

For a branching walk $B=\left(T_{B}, h\right)$ denote $V(B)=h\left(V\left(T_{B}\right)\right)$.
Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff
G contains a branching walk $B=\left(T_{B}, h\right)$ from s in G such that
$K \subseteq V(B)$ and $\left|E\left(T_{B}\right)\right| \leq c$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.

Steiner Tree, unweighted

For a branching walk $B=\left(T_{B}, h\right)$ denote $V(B)=h\left(V\left(T_{B}\right)\right)$.
Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff
G contains a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq V(B)$ and $\left|E\left(T_{B}\right)\right| \leq c$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.
- Then $\left|\bigcap_{v \in K} A_{v}\right| \neq 0$ iff there is the desired Steiner Tree.

Steiner Tree, unweighted

For a branching walk $B=\left(T_{B}, h\right)$ denote $V(B)=h\left(V\left(T_{B}\right)\right)$. Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff G contains a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq V(B)$ and $\left|E\left(T_{B}\right)\right| \leq c$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.
- Then $\left|\bigcap_{v \in K} A_{v}\right| \neq 0$ iff there is the desired Steiner Tree.
- The simplified problem: for every $X \subseteq K$ compute

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=b_{c}^{v \backslash X}(s),
$$

where $b_{j}^{V \backslash X}(a)=$ the number of length j branching walks from a in $G[V \backslash X]$.

Steiner Tree, the simplified problem

$b_{j}^{V \backslash X}(a)=$ the number of length j branching walks from a in $G[V \backslash X]$.
The simplified problem
For any $X \subseteq K$ compute $b_{c}^{V \backslash X}(s)$.

Steiner Tree, the simplified problem

$b_{j}^{V \backslash X}(a)=$ the number of length j branching walks from a in $G[V \backslash X]$.

The simplified problem

For any $X \subseteq K$ compute $b_{c}^{V \backslash X}(s)$.

Dynamic Programming: computing $b_{c}^{V \backslash x}(s)$ in polynomial time

Compute $b_{j}^{V \backslash X}(a)$ for all $j=0, \ldots, c$ and $a \in V \backslash X$ using DP:
$b_{j}^{V \backslash X}(a)= \begin{cases}1 & \text { if } j=0, \\ \sum_{t \in N(a) \backslash X} \sum_{j_{1}+j_{2}=j-1} b_{j_{1}}^{V \backslash x}(a) b_{j_{2}}^{V \backslash X}(t) & \text { otherwise. }\end{cases}$

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^{*}\left(2^{k}\right)$ time and polynomial space.

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^{*}\left(2^{k}\right)$ time and polynomial space.

Theorem [Nederlof 2009]

The weighted Steiner Tree problem can be solved in $O^{*}\left(C \cdot 2^{k}\right)$ time and $O^{*}(C)$ space. (We skip the proof here)

The zeta ζ transform and the Möbius μ transform

We consider functions from subsets of a finite set V to some ring - for simplicity let us fix the ring $(\mathbb{Z},+, \cdot)$.

$$
f: 2^{V} \rightarrow \mathbb{Z}
$$

The transforms below transform f into another function $g: 2^{V} \rightarrow \mathbb{Z}$.

The Zeta transform

$(\zeta f)(X)=\sum_{Y \subseteq X} f(Y)$.

The Möbius transform

$$
(\mu f)(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} f(Y) .
$$

Why ζ and μ are cool?

The Zeta and Möbius transforms
$(\zeta f)(X)=\sum_{Y \subseteq X} f(Y) \quad(\mu f)(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} f(Y)$.

Inversion formula

For every $X \subseteq V$, we have $f(X)=\mu \zeta f(X)$.

Intuition why it is useful

- Assume we want to compute $f(X)$ efficiently, but we do not know how to do it.
- Say that we can compute $(\zeta f)(Y)$ for all $Y \subseteq X$ efficiently. So we compute, and we get the function $g=\zeta f \ldots$
- ... and we compute $\mu g(X)$ in $O^{*}\left(2^{|V|}\right)$ time (say it is efficient).

Why ζ and μ are cool?

The Zeta and Möbius transforms
$(\zeta f)(X)=\sum_{Y \subseteq X} f(Y)$
$(\mu f)(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} f(Y)$.

Inversion formula

For every $X \subseteq V$, we have $f(X)=\mu \zeta f(X)$.
Proof. $\mu \zeta f(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|}(\zeta f)(Y)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} \sum_{Z \subseteq Y} f(Z)$
$=\sum_{Z \subseteq X} f(Z) \cdot \sum_{Z \subseteq Y \subseteq X}(-1)^{|X \backslash Y|}$
$=f(X)+\sum_{Z \subseteq X} f(Z) \cdot \sum_{Z \subseteq Y \subseteq X}(-1)^{|X \backslash Y|}$
$=f(X)+\sum_{Z \mp X} f(Z) \cdot \underbrace{\sum_{X \backslash Y \subseteq X \backslash Z}(-1)^{|X \backslash Y|}}_{0}$

Hamiltonian cycle revisited

Counting HCs in a directed graph $G=(V, E), V=\{1, \ldots, n\}$
For $X \subseteq V$, let $f(X)$ be the number of closed n-walks W from vertex 1 such that $V(W)=X$.
Then:

Hamiltonian cycle revisited

Counting HCs in a directed graph $G=(V, E), V=\{1, \ldots, n\}$
For $X \subseteq V$, let $f(X)$ be the number of closed n-walks W from vertex 1 such that $V(W)=X$.
Then:

- $f(V)$ is the number of Hamiltonian cycles in G.

Hamiltonian cycle revisited

Counting HCs in a directed graph $G=(V, E), V=\{1, \ldots, n\}$

For $X \subseteq V$, let $f(X)$ be the number of closed n-walks W from vertex 1 such that $V(W)=X$.
Then:

- $f(V)$ is the number of Hamiltonian cycles in G.
- $\zeta f(X)=\sum_{s \subseteq X} f(X)$ is the number of closed n-walks W from vertex 1 such that $V(W) \subseteq X$.

Hamiltonian cycle revisited

Counting HCs in a directed graph $G=(V, E), V=\{1, \ldots, n\}$

For $X \subseteq V$, let $f(X)$ be the number of closed n-walks W from vertex 1 such that $V(W)=X$.
Then:

- $f(V)$ is the number of Hamiltonian cycles in G.
- $\zeta f(X)=\sum_{s \subseteq X} f(X)$ is the number of closed n-walks W from vertex 1 such that $V(W) \subseteq X$.
- Hence for every X, the value of $\zeta f(X)$ can be computed in $O\left(n^{3}\right)$ time (DP).

Hamiltonian cycle revisited

Counting HCs in a directed graph $G=(V, E), V=\{1, \ldots, n\}$

For $X \subseteq V$, let $f(X)$ be the number of closed n-walks W from vertex 1 such that $V(W)=X$.
Then:

- $f(V)$ is the number of Hamiltonian cycles in G.
- $\zeta f(X)=\sum_{s \subseteq X} f(X)$ is the number of closed n-walks W from vertex 1 such that $V(W) \subseteq X$.
- Hence for every X, the value of $\zeta f(X)$ can be computed in $O\left(n^{3}\right)$ time (DP).
- So we compute $f(V)=\mu \zeta f(V)$ in $O^{*}\left(2^{n}\right)$ time and polynomial space.

Computing ζ and μ for all subsets $X \subseteq V$

$$
(\zeta f)(X)=\sum_{Y \subseteq X} f(Y) \quad(\mu f)(X)=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} f(Y)
$$

Naive algorithm

- evaluating at single $X: O\left(2^{|X|}\right)$.
- evaluating at all $X \subseteq V: O\left(\sum_{X \subseteq V} 2^{|X|}\right)=O\left(3^{|V|}\right)$.

Yates' algorithm (1937), described in Knuth's TAOCP

Given a function $f: 2^{V} \rightarrow \mathbb{Z}$, we can compute all the 2^{n} values of ζf in $O^{*}\left(2^{n}\right)$ time. Similarly μf.

Fast Zeta Transform: all values of ζf in $O\left(2^{n} \cdot n\right)$ time

Let $V=\{1, \ldots, n\}$. Represent subsets as characteristic vectors:

$$
(\zeta f)\left(x_{1}, \ldots, x_{n}\right)=\sum_{y_{1}, \ldots, y_{n} \in\{0,1\}}\left[y_{1} \leq x_{1}, \ldots, y_{n} \leq x_{n}\right] f\left(y_{1}, \ldots, y_{n}\right) .
$$

Consider fixing the last $n-j$ bits:

$$
\zeta_{j}\left(x_{1}, \ldots, x_{n}\right)=\sum_{y_{1}, \ldots, y_{j} \in\{0,1\}}\left[y_{1} \leq x_{1}, \ldots, y_{j} \leq x_{j}\right] f(y_{1}, \ldots, y_{j}, \underbrace{x_{j+1}, \ldots, x_{n}}_{\text {fixed }}) .
$$

Consistently, $\zeta_{0}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$. Note that $\zeta_{n}(X)=\zeta f(X)$. Dynamic programming:

$$
\zeta_{j}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\zeta_{j-1}\left(x_{1}, \ldots, x_{n}\right) & \text { when } x_{j}=0 \\ \zeta_{j-1}\left(x_{1}, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n}\right)+ & \\ \zeta_{j-1}\left(x_{1}, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n}\right) & \text { when } x_{j}=1\end{cases}
$$

Fast zeta transform trimmed from above

$$
\zeta_{j}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\zeta_{j-1}\left(x_{1}, \ldots, x_{n}\right) & \text { when } x_{j}=0 \\ \zeta_{j-1}\left(x_{1}, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n}\right)+ & \\ \zeta_{j-1}\left(x_{1}, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n}\right) & \text { when } x_{j}=1\end{cases}
$$

DP in subset notation

$$
\zeta_{j}(X)= \begin{cases}\zeta_{j-1}(X) & \text { when } j \notin X \\ \zeta_{j-1}(X)+\zeta_{j-1}(X-\{j\}) & \text { when } j \in X\end{cases}
$$

If we need to find $\zeta(X)$ only for $X \in \mathcal{G}$ for some $\mathcal{G} \subset 2^{V}$, it suffices to compute $\zeta_{j}(X)$ only for $X \in \downarrow \mathcal{G}$;

Lower closure

$\downarrow \mathcal{G}=\{Y \subseteq V:$ for some $X \in \mathcal{G}, Y \subseteq X\}$.

Corollary (Björklund, Husfeldt, Kaski, Koivisto)

If we store the values of $\zeta_{j}(X)$ for $X \subseteq \downarrow \mathcal{G}$ in a dictionary, all values of $(\zeta f)(X)$ for $X \in \mathcal{G}$ can be computed in $O^{*}(|\downarrow \mathcal{G}|)$ time. Similarly for μf.

Fast zeta transform trimmed from below

Support, upper closure

For $f: 2^{V} \rightarrow \mathbb{Z}$ and $\mathcal{F} \subseteq 2^{V}$ define

- $\operatorname{supp}(f)=\{X \subseteq V: f(X) \neq 0\}$,
- $\uparrow \mathcal{F}=\{Y \subseteq V$: for some $X \in \mathcal{F}, X \subseteq Y\}$.

Recall: $(\zeta f)(X)=\sum_{Y \subseteq X} f(Y)$

Observation

- $\operatorname{supp}(\zeta f) \subseteq \uparrow \operatorname{supp}(f)$.
- $\operatorname{supp}\left(\zeta_{j} f\right) \subseteq \operatorname{supp}(\zeta f) \subseteq \uparrow \operatorname{supp}(f)$.

Corollary (Björklund, Husfeldt, Kaski, Koivisto)

If we store only the nonzero values of $\zeta_{j}(X)$ in a dictionary, all the values of ζf can be computed in $O^{*}(|\uparrow \operatorname{supp}(f)|)$ time. Similarly for μf.

Up-zeta transform ζ^{\uparrow}

Definition

$\left(\zeta^{\uparrow} f\right)(X)=\sum_{Y \supseteq X} f(Y)$.

Trimmed up-zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- (Trimming from above) For any set family $\mathcal{G} \subseteq 2^{V}$ we can compute all values of $\left.\zeta^{\uparrow} f\right|_{\mathcal{G}}$ in $O^{*}(|\uparrow \mathcal{G}|)$ time.
- (Trimming from below) We can compute all the values of $\zeta^{\uparrow} f$ in $O^{*}(|\downarrow \operatorname{supp}(f)|)$ time.

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} I_{j}=X$.
Then:

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} l_{j}=X$.
Then:

- $f(X) \neq 0$ iff $G[X]$ is k-colorable.

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} I_{j}=X$.
Then:

- $f(X) \neq 0$ iff $G[X]$ is k-colorable.
- $\zeta f(X)=\sum_{s \subseteq X} f(X)$ is the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} I_{j} \subseteq X$.

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} l_{j}=X$.
Then:

- $f(X) \neq 0$ iff $G[X]$ is k-colorable.
- $\zeta f(X)=\sum_{s \subseteq X} f(X)$ is the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} l_{j} \subseteq X$.
- As before, all 2^{n} values of ζf can be found in $O^{*}\left(2^{n}\right)$ time and space.

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} l_{j}=X$.
Then:

- $f(X) \neq 0$ iff $G[X]$ is k-colorable.
- $\zeta f(X)=\sum_{S \subseteq X} f(X)$ is the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} I_{j} \subseteq X$.
- As before, all 2^{n} values of ζf can be found in $O^{*}\left(2^{n}\right)$ time and space.
- Using the Yates' algorithm we find $f=\mu \zeta f$.

k-coloring, revisited

For $X \subseteq V$, let $f(X)$ be the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} l_{j}=X$.
Then:

- $f(X) \neq 0$ iff $G[X]$ is k-colorable.
- $\zeta f(X)=\sum_{S \subseteq X} f(X)$ is the number of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets in G and $\bigcup_{j=1}^{k} I_{j} \subseteq X$.
- As before, all 2^{n} values of ζf can be found in $O^{*}\left(2^{n}\right)$ time and space.
- Using the Yates' algorithm we find $f=\mu \zeta f$.
- Thus we found all the induced k-colorable subgraphs of G in $O^{*}\left(2^{n}\right)$ time and space.

The cover product

The cover product

The cover product of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $\left(f *_{c} g\right): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$,

$$
\left(f *_{c} g\right)(Y)=\sum_{A \cup B=Y} f(A) g(B) .
$$

The cover product

The cover product

The cover product of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $\left(f *_{c} g\right): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$,

$$
\left(f *_{c} g\right)(Y)=\sum_{A \cup B=Y} f(A) g(B)
$$

Why do we define it? Because it is natural. Besides, e.g.:
Let \mathcal{F} be the family of all independent sets in a given graph G. Let $\mathbf{1}_{\mathcal{F}}: 2^{V} \rightarrow\{0,1\}$ be the characteristic function of \mathcal{F}, i.e. $\mathbf{1}_{\mathcal{F}}(X)=[X \in \mathcal{F}]$.

The cover product

The cover product

The cover product of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $\left(f *_{c} g\right): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$,

$$
\left(f *_{c} g\right)(Y)=\sum_{A \cup B=Y} f(A) g(B)
$$

Why do we define it? Because it is natural. Besides, e.g.:
Let \mathcal{F} be the family of all independent sets in a given graph G. Let $\mathbf{1}_{\mathcal{F}}: 2^{V} \rightarrow\{0,1\}$ be the characteristic function of \mathcal{F}, i.e. $\mathbf{1}_{\mathcal{F}}(X)=[X \in \mathcal{F}]$. Then

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Computing the cover product

As usual: We cannot compute $\left(f *_{c} g\right)$? Then we compute $\zeta\left(f *_{c} g\right)$.

$$
\begin{aligned}
\zeta\left(f *_{c} g\right)(Y) & =\sum_{X \subseteq Y} \sum_{A \cup B=X} f(A) g(B)=\sum_{A \cup B \subseteq Y} f(A) g(B)= \\
& =\left(\sum_{A \subseteq Y} f(A)\right)\left(\sum_{B \subseteq Y} g(B)\right)=(\zeta f(Y))(\zeta g(Y)) .
\end{aligned}
$$

Computing the cover product

As usual: We cannot compute $\left(f *_{c} g\right)$? Then we compute $\zeta\left(f *_{c} g\right)$.

$$
\begin{aligned}
\zeta\left(f *_{c} g\right)(Y) & =\sum_{X \subseteq Y} \sum_{A \cup B=X} f(A) g(B)=\sum_{A \cup B \subseteq Y} f(A) g(B)= \\
& =\left(\sum_{A \subseteq Y} f(A)\right)\left(\sum_{B \subseteq Y} g(B)\right)=(\zeta f(Y))(\zeta g(Y)) .
\end{aligned}
$$

Hence $\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$. We use the Yates' algorithm 3x and we get $O^{*}\left(2^{n}\right)$ time (and space).

Computing the cover product

As usual: We cannot compute $\left(f *_{c} g\right)$? Then we compute $\zeta\left(f *_{c} g\right)$.

$$
\begin{aligned}
\zeta\left(f *_{c} g\right)(Y) & =\sum_{X \subseteq Y} \sum_{A \cup B=X} f(A) g(B)=\sum_{A \cup B \subseteq Y} f(A) g(B)= \\
& =\left(\sum_{A \subseteq Y} f(A)\right)\left(\sum_{B \subseteq Y} g(B)\right)=(\zeta f(Y))(\zeta g(Y)) .
\end{aligned}
$$

Hence $\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$. We use the Yates' algorithm $3 x$ and we get $O^{*}\left(2^{n}\right)$ time (and space).

Corollary

In order to compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{C} \mathbf{1}_{\mathcal{F}} *_{C} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V)$ it suffices to perform $O(\log k)$ such operations. Hence we obtain yet another algorithm which finds all k-colorable induced subgraphs in $O^{*}\left(2^{n}\right)$ time.

Subset convolution

Subset convolution

The subset convolution of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $(f * g): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$,

$$
(f * g)(Y)=\sum_{X \subseteq Y} f(X) g(Y-X)
$$

Equivalently...

$$
(f * g)(Y)=\sum_{\substack{A \cup B=Y \\ A \cap B=\emptyset}} f(A) g(B) .
$$

Subset convolution

Subset convolution

The subset convolution of two functions $f, g: 2^{V} \rightarrow \mathbb{Z}$ is a function $(f * g): 2^{V} \rightarrow \mathbb{Z}$ such that for every $Y \subseteq V$,

$$
(f * g)(Y)=\sum_{X \subseteq Y} f(X) g(Y-X) .
$$

Equivalently...

$$
(f * g)(Y)=\sum_{\substack{A B B=Y \\ A \cap B=\emptyset}} f(A) g(B) .
$$

Why do we define it? Because it is natural. Besides, e.g.: if $k=\chi(G)$ then $\underbrace{\mathbf{1}_{\mathcal{F}} * \mathbf{1}_{\mathcal{F}} * \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V)$ is the number of k-colorings of G.

Computing the subset convolution

For $f: 2^{V} \rightarrow \mathbb{Z}$ let f_{k} denote f trimmed to the cardinality k subsets, i.e.:

$$
f_{k}(S)=f(S) \cdot[|S|=k] .
$$

Computing the subset convolution

For $f: 2^{V} \rightarrow \mathbb{Z}$ let f_{k} denote f trimmed to the cardinality k subsets, i.e.:

$$
f_{k}(S)=f(S) \cdot[|S|=k] .
$$

Then

$$
\begin{aligned}
& (f * g)(Y)=\sum_{\substack{A \cup B=Y \\
A \cap B=\emptyset}} f(A) g(B)= \\
& =\sum_{i=0}^{|Y|} \sum_{\substack{A \cup B=Y \\
A \cap B=\emptyset \\
|A|=i}} f(A) g(B)=\sum_{i=0}^{|Y|} \sum_{\substack{A \cup B=Y \\
|A|=i \\
|B|=|Y|-i}} f(A) g(B)= \\
& =\sum_{i=0}^{|Y|} \sum_{A \cup B=Y} f_{i}(A) g_{|Y|-i}(B)=\sum_{i=0}^{|Y|}\left(f_{i} *_{c} g_{|Y|-i}\right)(Y) .
\end{aligned}
$$

Computing the subset convolution

We got:

$$
(*) \quad(f * g)(Y)=\sum_{i=0}^{|Y|}\left(f_{i} *_{c} g_{|Y|-i}\right)(Y) .
$$

Algorithm:
(1) Compute and store $f_{i} *_{c} g_{j}(Y)$ for all $i, j=0, \ldots, n$ and $Y \subseteq 2^{V}$.
(2) Compute $(f * g)(Y)$ for all $Y \subseteq 2^{V}$ using $(*)$.

Corollary

One can compute $f * g$ in $O^{*}\left(2^{n}\right)$ time.

Corollary

There is an algorithm which, for every induced subgraph H of G, finds the number of k-colorings of H in total $O^{*}\left(2^{n}\right)$ time and space.

Coloring below the 2^{n} barrier: the bounded degree case

Observation

Let \mathcal{F} be the family of (inclusion-wise) maximal independent sets.

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{G}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Coloring below the 2^{n} barrier: the bounded degree case

Observation

Let \mathcal{F} be the family of (inclusion-wise) maximal independent sets.

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Denote $\mathbf{1}_{\mathcal{F}}^{r}=\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{r \text { times }}$.

Recall

$\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$, so
$\left(\mathbf{1}_{\mathcal{F}}^{r} *_{c} \mathbf{1}_{\mathcal{F}}^{s}\right)(Y)=\mu\left(\left(\zeta \mathbf{1}_{\mathcal{F}}^{r}(Y)\right)\left(\zeta \mathbf{1}_{\mathcal{F}}^{s}(Y)\right)\right)$.

Coloring below the 2^{n} barrier: the bounded degree case

Observation

Let \mathcal{F} be the family of (inclusion-wise) maximal independent sets.

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Denote $\mathbf{1}_{\mathcal{F}}^{r}=\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{r \text { times }}$.

Recall

$\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$, so
$\left(\mathbf{1}_{\mathcal{F}}^{r} *_{c} \mathbf{1}_{\mathcal{F}}^{s}\right)(Y)=\mu\left(\left(\zeta \mathbf{1}_{\mathcal{F}}^{r}(Y)\right)\left(\zeta \mathbf{1}_{\mathcal{F}}^{s}(Y)\right)\right)$.

- $\operatorname{supp}_{\mathcal{F}}=\mathcal{F}$,

Coloring below the 2^{n} barrier: the bounded degree case

Observation

Let \mathcal{F} be the family of (inclusion-wise) maximal independent sets.

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Denote $\mathbf{1}_{\mathcal{F}}^{r}=\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{r \text { times }}$.

Recall

$\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$, so
$\left(\mathbf{1}_{\mathcal{F}}^{r} *_{c} \mathbf{1}_{\mathcal{F}}^{s}\right)(Y)=\mu\left(\left(\zeta \mathbf{1}_{\mathcal{F}}^{r}(Y)\right)\left(\zeta \mathbf{1}_{\mathcal{F}}^{s}(Y)\right)\right)$.

- $\operatorname{supp}_{\mathbf{F}_{\mathcal{F}}}=\mathcal{F}$,
- $\operatorname{supp}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}} \subseteq \uparrow \operatorname{supp} \mathbf{1}_{\mathcal{F}}=\uparrow \mathcal{F}$,

Coloring below the 2^{n} barrier: the bounded degree case

Observation

Let \mathcal{F} be the family of (inclusion-wise) maximal independent sets.

$$
\underbrace{\mathbf{1}_{\mathcal{F}} *_{C} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}(V) \neq 0 \text { iff } G \text { is } k \text {-colorable. }
$$

Denote $\mathbf{1}_{\mathcal{F}}^{r}=\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{r \text { times }}$.

Recall

$\left(f *_{c} g\right)(Y)=\mu((\zeta f(Y))(\zeta g(Y)))$, so
$\left(\mathbf{1}_{\mathcal{F}}^{r} *_{c} \mathbf{1}_{\mathcal{F}}^{s}\right)(Y)=\mu\left(\left(\zeta \mathbf{1}_{\mathcal{F}}^{r}(Y)\right)\left(\zeta \mathbf{1}_{\mathcal{F}}^{s}(Y)\right)\right)$.

- $\operatorname{supp}_{\mathbf{F}_{\mathcal{F}}}=\mathcal{F}$,
- $\operatorname{supp} \mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{C} \cdots \mathbf{1}_{\mathcal{F}} \subseteq \uparrow \operatorname{supp} \mathbf{1}_{\mathcal{F}}=\uparrow \mathcal{F}$,
- Corollary: One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time. k times

Coloring below the 2^{n} barrier: the bounded degree case

Corollary

One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time and space.

Coloring below the 2^{n} barrier: the bounded degree case

Corollary
One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time and space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

In any n-vertex graph of maximum degree Δ there are $\leq\left(2^{\Delta+1}-1\right)^{n /(\Delta+1)}$ dominating sets.

Coloring below the 2^{n} barrier: the bounded degree case

Corollary

One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text { times }}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time and space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

In any n-vertex graph of maximum degree Δ there are
$\leq\left(2^{\Delta+1}-1\right)^{n /(\Delta+1)}$ dominating sets.

Aaaaha!

But $\uparrow \mathcal{F}$ contains only dominating sets!

Corollary (Björklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree Δ in $O^{*}\left(\left(2^{\Delta+1}-1\right)^{n /(\Delta+1)}\right)$ time.

Coloring below the 2^{n} barrier: the bounded degree case

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree Δ in $O^{*}\left(\left(2^{\Delta+1}-\Delta-1\right)^{n /(\Delta+1)}\right)$ time.

Δ	$\left(2^{\Delta+1}-\Delta-1\right)^{n /(\Delta+1)}$
3	1.86121
4	1.93318
5	1.96745
6	1.98400
7	1.99208
8	1.99606
9	1.99804
10	1.99902
11	1.99951
12	1.99976

