Algebraic approaches to exact algorithms, part I: Inclusion-Exclusion

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

Inclusion-Exclusion Principle

Theorem (Inclusion-Exclusion Principle, intersection version)

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Then:

$$|igcap_{i\in\{1,...,n\}}A_i|=\sum_{X\subseteq\{1,...,n\}}(-1)^{|X|}|igcap_{i\in X}\overline{A_i}$$

where $\overline{A_i} = U - A_i$ and $\bigcap_{i \in \emptyset} \overline{A_i} = U$.

Example. $|A \cap B| = |U| - |\overline{A}| - |\overline{B}| + |\overline{A} \cap \overline{B}|$

Inclusion-Exclusion Principle, intersection version

Theorem (Inclusion-Exclusion Principle, intersection version)

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. $(\{A_i\}_{i=1}^n = \text{"requirements".})$ Denote $\overline{A_i} = U - A_i$ and $\bigcap_{i \in \emptyset} \overline{A_i} = U$. Then:

$$\bigcap_{i \in \{1,...,n\}} A_i| = \sum_{X \subseteq \{1,...,n\}} (-1)^{|X|} |\bigcap_{i \in X} \overline{A_i}|$$

"simplified problem"

A common algorithmic application

Reduce a hard task to 2^n "simplified problems" (solvable in poly-time).

$[\alpha] = \begin{cases} 1 & \alpha \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Example:

$$\sum_{i=1}^{100} [i \text{ is even}] = 50$$

Łukasz Kowalik (UW)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when $v_0 = v_k$.

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when
$$v_0 = v_k$$

• U is the set of closed n-walks from vertex 1.

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.
- A walk is closed, when $v_0 = v_k$.
- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when
$$v_0 = v_k$$

- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.
- Then the solution is $|\bigcap_{v \in V} A_v|$.

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.
- A walk is closed, when $v_0 = v_k$.
- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.
- Then the solution is $|\bigcap_{v \in V} A_v|$.
- The simplified problem: $|\bigcap_{v \in X} \overline{A_v}|$ = the number of closed walks from U in G' = G[V X].

The simplified problem

Compute the number of closed n-walks in G' that start at vertex 1.

Dynamic programming

• T(d, x) = the number of length d walks from 1 to x.

•
$$T(d,x) = \sum_{yx \in E(G')} T(d-1,y).$$

• We return T(n, 1), DP works in $O(n^3)$ time.

The simplified problem

Compute the number of closed n-walks in G' that start at vertex 1.

Dynamic programming

• T(d, x) = the number of length d walks from 1 to x.

•
$$T(d,x) = \sum_{yx \in E(G')} T(d-1,y).$$

• We return T(n, 1), DP works in $O(n^3)$ time.

Corollary

We can solve the Hamiltonian Cycle problem (and even find the number of such cycles) in $O(2^n n^3) = O^*(2^n)$ time and **polynomial space**.

Notation: $f(n)n^{O(1)} = O^*(f(n))$.

Coloring

k-coloring

k-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for every edge $xy \in E$, $c(x) \neq c(y)$.

Problem

Given a graph G = (V, E) and $k \in \mathbb{N}$ decide whether there is a k-coloring of G.

Note: If we can do it in time T(n) then we can also find the coloring in $O^*(T(n))$ time when it exists, due to self-reducibility.

Coloring

k-coloring

k-coloring of a graph G = (V, E) is a function $c : V \to \{1, \ldots, k\}$ such that for every edge $xy \in E$, $c(x) \neq c(y)$.

Problem

Given a graph G = (V, E) and $k \in \mathbb{N}$ decide whether there is a k-coloring of G.

Note: If we can do it in time T(n) then we can also find the coloring in $O^*(T(n))$ time when it exists, due to self-reducibility.

History

- (naive) $O^*(k^n)$
- Lawler 1976: Dynamic programming $O(2.45^n)$
- Björklund, Husfeldt, Koivisto 2006: Inclusion-Exclusion O*(2ⁿ)

Observation

We can color a vertex with many colors at the same time – existence of such a coloring is equivalent to the existence of the classic coloring.

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_v = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_v = \{(I_1, ..., I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

• Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_{1}, \ldots, I_{k}) \in U : v \in \bigcup_{j=1}^{k} I_{j}\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| =$$

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}|$$

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y].

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_{1}, \ldots, I_{k}) \in U : v \in \bigcup_{j=1}^{k} I_{j}\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y]. • s(Y) can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y) = s(Y - \{y\}) + s(Y - N[y])$. This takes time (and space) $O^*(2^n)$, since the number of covers takes $O(n \log k)$ bits.

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y].

- s(Y) can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y) = s(Y - \{y\}) + s(Y - N[y])$. This takes time (and space) $O^*(2^n)$, since the number of covers takes $O(n \log k)$ bits.
- Next, we compute $|\bigcap_{v \in X} \overline{A_v}|$ easily in $O^*(1)$ time, so we get $|\bigcap_{v \in V} A_v|$ in $O^*(2^n)$ time.

Theorem

- In $O^*(2^n)$ time and space we can
 - find a k-coloring or conclude it does not exist,
 - find the chromatic number.

Coloring in 2ⁿ, cont'd

Theorem

- In $O^*(2^n)$ time and space we can
 - find a k-coloring or conclude it does not exist,
 - find the chromatic number.

Theorem

In $O^*(2.25^n)$ time and **polynomial space** we can find a k-coloring of a given graph G or conclude that it does not exist.

Proof

We compute s(Y) in $O(1.2377^n)$ time and **polynomial space** by the algorithm of Wahlström (2008). Total time:

$$\sum_{X \subseteq V} 1.2377^{|X|} = \sum_{k=0}^{n} \binom{n}{k} 1.2377^{k} = (1 + 1.2377)^{n} = O(2.24^{n}).$$

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w : E \to \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w : E \to \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Denote n = |V|, k = |K|.

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in $O^*(3^k)$ time and $O^*(2^k)$ space, even in the weighted version.

Definition

Let G = (V, E) be an undirected graph and let $s \in V$. A branching walk is a pair B = (T, h), where

- T is an ordered rooted tree and
- $h: V(T) \to V$ is a homomorphism, i.e. if $(x, y) \in E(T)$ then $h(x)h(y) \in E(G)$.

We say that B is from s, when h(r) = s, where r is the root of T. The length of B is defined as |E(T)|. **Example 1** Every walk is a branching walk

Example 1 Every walk is a branching walk

Example 2 Even this one.

æ

Branching walks

Example 3 An injective homomorphism.

Branching walks

Example 4 A non-injective homomorphism.

Branching walks

Example 5 An even more non-injective homomorphism.

For a branching walk $B = (T_B, h)$ denote $V(B) = h(V(T_B))$. Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff *G* contains a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq V(B)$ and $|E(T_B)| \leq c$.

For a branching walk $B = (T_B, h)$ denote $V(B) = h(V(T_B))$. Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff *G* contains a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq V(B)$ and $|E(T_B)| \leq c$.

• U is the set of all length c branching walks from s.

For a branching walk $B = (T_B, h)$ denote $V(B) = h(V(T_B))$. Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff *G* contains a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq V(B)$ and $|E(T_B)| \leq c$.

• U is the set of all length c branching walks from s.

•
$$A_v = \{B \in U : v \in V(B)\}$$
 for $v \in K$.

For a branching walk $B = (T_B, h)$ denote $V(B) = h(V(T_B))$. Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff *G* contains a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq V(B)$ and $|E(T_B)| \leq c$.

- U is the set of all length c branching walks from s.
- $A_v = \{B \in U : v \in V(B)\}$ for $v \in K$.
- Then $|\bigcap_{v \in K} A_v| \neq 0$ iff there is the desired Steiner Tree.

For a branching walk $B = (T_B, h)$ denote $V(B) = h(V(T_B))$. Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff *G* contains a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq V(B)$ and $|E(T_B)| \leq c$.

- U is the set of all length c branching walks from s.
- $A_v = \{B \in U : v \in V(B)\}$ for $v \in K$.
- Then $|\bigcap_{v \in K} A_v| \neq 0$ iff there is the desired Steiner Tree.
- The simplified problem: for every $X \subseteq K$ compute

$$|\bigcap_{v\in X}\overline{A_v}|=b_c^{V\setminus X}(s),$$

where $b_j^{V \setminus X}(a) =$ the number of length j branching walks from a in $G[V \setminus X]$.

 $b_j^{V\setminus X}(a) =$ the number of length j branching walks from a in $G[V \setminus X]$.

The simplified problem

For any $X \subseteq K$ compute $b_c^{V \setminus X}(s)$.

 $b_j^{V\setminus X}(a) =$ the number of length j branching walks from a in $G[V \setminus X]$.

The simplified problem

For any
$$X \subseteq K$$
 compute $b_c^{V \setminus X}(s)$.

Dynamic Programming: computing $b_c^{V\setminus X}(s)$ in polynomial time

Compute
$$b_j^{V\setminus X}(a)$$
 for all $j = 0, \ldots, c$ and $a \in V \setminus X$ using DP:

$$b_j^{V\setminus X}(a) = \begin{cases} 1 & \text{if } j = 0, \\ \sum_{t \in \mathcal{N}(a)\setminus X} \sum_{j_1+j_2=j-1} b_{j_1}^{V\setminus X}(a) b_{j_2}^{V\setminus X}(t) & \text{otherwise.} \end{cases} \quad \begin{array}{c} t \\ j_1 \\ j_2 \end{array}$$

а

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^*(2^k)$ time and polynomial space.

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^*(2^k)$ time and polynomial space.

Theorem [Nederlof 2009]

The weighted Steiner Tree problem can be solved in $O^*(C \cdot 2^k)$ time and $O^*(C)$ space. (We skip the proof here)

The zeta ζ transform and the Möbius μ transform

We consider functions from subsets of a finite set V to some ring – for simplicity let us fix the ring $(\mathbb{Z}, +, \cdot)$.

$$f : 2^V \to \mathbb{Z}$$

The transforms below transform f into another function $g : 2^V \to \mathbb{Z}$.

The Zeta transform

 $(\zeta f)(X) = \sum_{Y \subseteq X} f(Y).$

The Möbius transform

$$(\mu f)(X) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} f(Y).$$

Łukasz Kowalik (UW)

Why ζ and μ are cool?

The Zeta and Möbius transforms

 $(\zeta f)(X) = \sum_{Y \subseteq X} f(Y)$

$$(\mu f)(X) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} f(Y).$$

Inversion formula

For every
$$X \subseteq V$$
, we have $f(X) = \mu \zeta f(X)$.

Intuition why it is useful

- Assume we want to compute f(X) efficiently, but we do not know how to do it.
- Say that we can compute $(\zeta f)(Y)$ for all $Y \subseteq X$ efficiently. So we compute, and we get the function $g = \zeta f \dots$
- ... and we compute $\mu g(X)$ in $O^*(2^{|V|})$ time (say it is efficient).

Why ζ and μ are cool?

The Zeta and Möbius transforms

 $(\zeta f)(X) = \sum_{Y \subseteq X} f(Y)$

$$(\mu f)(X) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} f(Y).$$

Inversion formula

For every
$$X\subseteq V$$
, we have $f(X)=\mu\zeta f(X).$

Proof.
$$\mu\zeta f(X) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} (\zeta f)(Y) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} \sum_{Z \subseteq Y} f(Z)$$

$$= \sum_{Z \subseteq X} f(Z) \cdot \sum_{Z \subseteq Y \subseteq X} (-1)^{|X \setminus Y|}$$

$$= f(X) + \sum_{Z \subsetneq X} f(Z) \cdot \sum_{Z \subseteq Y \subseteq X} (-1)^{|X \setminus Y|}$$

$$= f(X) + \sum_{Z \subsetneq X} f(Z) \cdot \sum_{X \setminus Y \subseteq X \setminus Z} (-1)^{|X \setminus Y|}$$

For $X \subseteq V$, let f(X) be the number of closed *n*-walks *W* from vertex 1 such that V(W) = X. Then:

For $X \subseteq V$, let f(X) be the number of closed *n*-walks *W* from vertex 1 such that V(W) = X. Then:

• f(V) is the number of Hamiltonian cycles in G.

For $X \subseteq V$, let f(X) be the number of closed *n*-walks *W* from vertex 1 such that V(W) = X. Then:

- f(V) is the number of Hamiltonian cycles in G.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of closed *n*-walks *W* from vertex 1 such that $V(W) \subseteq X$.

For $X \subseteq V$, let f(X) be the number of closed *n*-walks *W* from vertex 1 such that V(W) = X. Then:

- f(V) is the number of Hamiltonian cycles in G.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of closed *n*-walks *W* from vertex 1 such that $V(W) \subseteq X$.
- Hence for every X, the value of ζf(X) can be computed in O(n³) time (DP).

For $X \subseteq V$, let f(X) be the number of closed *n*-walks *W* from vertex 1 such that V(W) = X. Then:

- f(V) is the number of Hamiltonian cycles in G.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of closed *n*-walks *W* from vertex 1 such that $V(W) \subseteq X$.
- Hence for every X, the value of $\zeta f(X)$ can be computed in $O(n^3)$ time (DP).

• So we compute $f(V) = \mu \zeta f(V)$ in $O^*(2^n)$ time and polynomial space.

Computing ζ and μ for all subsets $X \subseteq V$

$$(\zeta f)(X) = \sum_{Y \subseteq X} f(Y) \qquad (\mu f)(X) = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} f(Y)$$

Naive algorithm

- evaluating at single X: $O(2^{|X|})$.
- evaluating at all $X \subseteq V$: $O(\sum_{X \subseteq V} 2^{|X|}) = O(3^{|V|})$.

Yates' algorithm (1937), described in Knuth's TAOCP

Given a function $f: 2^V \to \mathbb{Z}$, we can compute **all** the 2^n values of ζf in $O^*(2^n)$ time. Similarly μf .

Fast Zeta Transform: all values of ζf in $O(2^n \cdot n)$ time

Let $V = \{1, \ldots, n\}$. Represent subsets as characteristic vectors:

$$(\zeta f)(x_1,...,x_n) = \sum_{y_1,...,y_n \in \{0,1\}} [y_1 \le x_1,...,y_n \le x_n] f(y_1,...,y_n).$$

Consider fixing the last n - j bits:

$$\zeta_j(x_1,\ldots,x_n) = \sum_{y_1,\ldots,y_j \in \{0,1\}} [y_1 \leq x_1,\ldots,y_j \leq x_j] f(y_1,\ldots,y_j,\underbrace{x_{j+1},\ldots,x_n}_{\text{fixed}}).$$

Consistently, $\zeta_0(x_1, \ldots, x_n) := f(x_1, \ldots, x_n)$. Note that $\zeta_n(X) = \zeta f(X)$. Dynamic programming:

$$\zeta_{j}(x_{1},...,x_{n}) = \begin{cases} \zeta_{j-1}(x_{1},...,x_{n}) & \text{when } x_{j} = 0, \\ \zeta_{j-1}(x_{1},...,x_{j-1},1,x_{j+1},...,x_{n}) + \\ \zeta_{j-1}(x_{1},...,x_{j-1},0,x_{j+1},...,x_{n}) & \text{when } x_{j} = 1. \end{cases}$$

Łukasz Kowalik (UW)

August 2013 25 / 37

Fast zeta transform trimmed from above

$$\zeta_j(x_1, \dots, x_n) = \begin{cases} \zeta_{j-1}(x_1, \dots, x_n) & \text{when } x_j = 0, \\ \zeta_{j-1}(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) + \\ \zeta_{j-1}(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) & \text{when } x_j = 1. \end{cases}$$

DP in subset notation

$$\zeta_j(X) = \begin{cases} \zeta_{j-1}(X) & \text{when } j \notin X, \\ \zeta_{j-1}(X) + \zeta_{j-1}(X - \{j\}) & \text{when } j \in X. \end{cases}$$

If we need to find $\zeta(X)$ only for $X \in \mathcal{G}$ for some $\mathcal{G} \subset 2^V$, it suffices to compute $\zeta_j(X)$ only for $X \in \downarrow \mathcal{G}$;

Lower closure

$$\downarrow \mathfrak{G} = \{ Y \subseteq V : \text{ for some } X \in \mathfrak{G}, Y \subseteq X \}.$$

Corollary (Björklund, Husfeldt, Kaski, Koivisto)

If we store the values of $\zeta_j(X)$ for $X \subseteq \downarrow \mathcal{G}$ in a dictionary, all values of $(\zeta f)(X)$ for $X \in \mathcal{G}$ can be computed in $O^*(|\downarrow \mathcal{G}|)$ time. Similarly for μf .

Łukasz Kowalik (UW)

Fast zeta transform trimmed from below

Support, upper closure

For $f: 2^V \to \mathbb{Z}$ and $\mathfrak{F} \subseteq 2^V$ define

- $supp(f) = \{X \subseteq V : f(X) \neq 0\},\$
- $\uparrow \mathfrak{F} = \{ Y \subseteq V : \text{ for some } X \in \mathfrak{F}, X \subseteq Y \}.$

Recall:
$$(\zeta f)(X) = \sum_{Y \subseteq X} f(Y)$$

Observation

•
$$supp(\zeta f) \subseteq \uparrow supp(f)$$
.

•
$$\operatorname{supp}(\zeta_j f) \subseteq \operatorname{supp}(\zeta f) \subseteq \uparrow \operatorname{supp}(f).$$

Corollary (Björklund, Husfeldt, Kaski, Koivisto)

If we store only the nonzero values of $\zeta_j(X)$ in a dictionary, all the values of ζf can be computed in $O^*(|\uparrow \sup p(f)|)$ time. Similarly for μf .

< ロ > < 同 > < 回 > <

Up-zeta transform ζ^{\uparrow}

Definition

$$(\zeta^{\uparrow} f)(X) = \sum_{Y \supseteq X} f(Y).$$

Trimmed up-zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- (Trimming from above) For any set family G ⊆ 2^V we can compute all values of ζ[↑]f|_g in O^{*}(|↑G|) time.
- (Trimming from below) We can compute all the values of $\zeta^{\uparrow} f$ in $O^*(|\downarrow supp(f)|)$ time.

• $f(X) \neq 0$ iff G[X] is k-colorable.

- $f(X) \neq 0$ iff G[X] is k-colorable.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of tuples (I_1, \ldots, I_k) , where I_j are independent sets in G and $\bigcup_{j=1}^k I_j \subseteq X$.

- $f(X) \neq 0$ iff G[X] is k-colorable.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of tuples (I_1, \ldots, I_k) , where I_j are independent sets in G and $\bigcup_{i=1}^k I_j \subseteq X$.
- As before, all 2^n values of ζf can be found in $O^*(2^n)$ time and space.

- $f(X) \neq 0$ iff G[X] is k-colorable.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of tuples (I_1, \ldots, I_k) , where I_j are independent sets in G and $\bigcup_{j=1}^k I_j \subseteq X$.
- As before, all 2^n values of ζf can be found in $O^*(2^n)$ time and space.
- Using the Yates' algorithm we find $f = \mu \zeta f$.

- $f(X) \neq 0$ iff G[X] is k-colorable.
- $\zeta f(X) = \sum_{S \subseteq X} f(X)$ is the number of tuples (I_1, \ldots, I_k) , where I_j are independent sets in G and $\bigcup_{i=1}^k I_j \subseteq X$.
- As before, all 2^n values of ζf can be found in $O^*(2^n)$ time and space.
- Using the Yates' algorithm we find $f = \mu \zeta f$.
- Thus we found **all** the induced *k*-colorable subgraphs of *G* in *O*^{*}(2^{*n*}) time and space.

The cover product

The cover product of two functions $f, g : 2^V \to \mathbb{Z}$ is a function $(f *_c g) : 2^V \to \mathbb{Z}$ such that for every $Y \subseteq V$,

$$(f *_c g)(Y) = \sum_{A \cup B = Y} f(A)g(B).$$

The cover product

The cover product of two functions $f, g : 2^V \to \mathbb{Z}$ is a function $(f *_c g) : 2^V \to \mathbb{Z}$ such that for every $Y \subseteq V$,

$$(f *_c g)(Y) = \sum_{A \cup B = Y} f(A)g(B).$$

Why do we define it? Because it is natural. Besides, e.g.:

Let \mathcal{F} be the family of all independent sets in a given graph G. Let $\mathbf{1}_{\mathcal{F}}: 2^{V} \to \{0,1\}$ be the characteristic function of \mathcal{F} , i.e. $\mathbf{1}_{\mathcal{F}}(X) = [X \in \mathcal{F}]$.

The cover product

The cover product of two functions $f, g : 2^V \to \mathbb{Z}$ is a function $(f *_c g) : 2^V \to \mathbb{Z}$ such that for every $Y \subseteq V$,

$$(f *_c g)(Y) = \sum_{A \cup B = Y} f(A)g(B).$$

Why do we define it? Because it is natural. Besides, e.g.:

Let \mathcal{F} be the family of all independent sets in a given graph G. Let $\mathbf{1}_{\mathcal{F}}: 2^{V} \to \{0, 1\}$ be the characteristic function of \mathcal{F} , i.e. $\mathbf{1}_{\mathcal{F}}(X) = [X \in \mathcal{F}]$. Then $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{\mathcal{F}}(V) \neq 0$ iff G is k-colorable.

k times

Computing the cover product

As usual: We cannot compute $(f *_c g)$? Then we compute $\zeta(f *_c g)$.

$$\zeta(f *_{c} g)(Y) = \sum_{X \subseteq Y} \sum_{A \cup B = X} f(A)g(B) = \sum_{A \cup B \subseteq Y} f(A)g(B) =$$
$$= \left(\sum_{A \subseteq Y} f(A)\right) \left(\sum_{B \subseteq Y} g(B)\right) = (\zeta f(Y))(\zeta g(Y)).$$

Computing the cover product

As usual: We cannot compute $(f *_c g)$? Then we compute $\zeta(f *_c g)$.

$$\begin{aligned} \zeta(f *_{c} g)(Y) &= \sum_{X \subseteq Y} \sum_{A \cup B = X} f(A)g(B) = \sum_{A \cup B \subseteq Y} f(A)g(B) = \\ &= \left(\sum_{A \subseteq Y} f(A)\right) \left(\sum_{B \subseteq Y} g(B)\right) = (\zeta f(Y))(\zeta g(Y)). \end{aligned}$$

Hence $(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y)))$. We use the Yates' algorithm 3x and we get $O^*(2^n)$ time (and space).

Computing the cover product

As usual: We cannot compute $(f *_c g)$? Then we compute $\zeta(f *_c g)$.

$$\zeta(f *_{c} g)(Y) = \sum_{X \subseteq Y} \sum_{A \cup B = X} f(A)g(B) = \sum_{A \cup B \subseteq Y} f(A)g(B) =$$
$$= \left(\sum_{A \subseteq Y} f(A)\right) \left(\sum_{B \subseteq Y} g(B)\right) = (\zeta f(Y))(\zeta g(Y)).$$

Hence $(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y)))$. We use the Yates' algorithm 3x and we get $O^*(2^n)$ time (and space).

Corollary

In order to compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V)$ it suffices to perform $O(\log k)$ such operations. Hence we obtain yet another algorithm which finds all k-colorable induced subgraphs in $O^{*}(2^{n})$ time.

Łukasz Kowalik (UW)

August 2013 31 / 37

Subset convolution

Subset convolution

The subset convolution of two functions $f, g : 2^V \to \mathbb{Z}$ is a function $(f * g) : 2^V \to \mathbb{Z}$ such that for every $Y \subseteq V$,

$$(f * g)(Y) = \sum_{X \subseteq Y} f(X)g(Y - X).$$

Equivalently...

$$(f * g)(Y) = \sum_{\substack{A \cup B = Y \\ A \cap B = \emptyset}} f(A)g(B).$$

Subset convolution

Subset convolution

The subset convolution of two functions $f, g: 2^V \to \mathbb{Z}$ is a function $(f * g) : 2^V \to \mathbb{Z}$ such that for every $Y \subset V$,

$$(f * g)(Y) = \sum_{X \subseteq Y} f(X)g(Y - X).$$

Equivalently...

$$(f * g)(Y) = \sum_{\substack{A \cup B = Y \\ A \cap B = \emptyset}} f(A)g(B).$$

Why do we define it? Because it is natural. Besides, e.g.:if
$$k = \chi(G)$$
 then $\underbrace{\mathbf{1}_{\mathcal{F}} * \mathbf{1}_{\mathcal{F}} * \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V)$ is the number of k-colorings of G.Eukasz Kowalik (UW)Algebraic approach...Algebraic approach...August 201332 / 37

32

Computing the subset convolution

For $f: 2^V \to \mathbb{Z}$ let f_k denote f trimmed to the cardinality k subsets, i.e.:

$$f_k(S) = f(S) \cdot [|S| = k].$$

Computing the subset convolution

For $f: 2^V \to \mathbb{Z}$ let f_k denote f trimmed to the cardinality k subsets, i.e.:

$$f_k(S) = f(S) \cdot [|S| = k].$$

Then

$$(f * g)(Y) = \sum_{\substack{A \cup B = Y \\ A \cap B = \emptyset}} f(A)g(B) =$$

= $\sum_{i=0}^{|Y|} \sum_{\substack{A \cup B = Y \\ A \cap B = \emptyset \\ |A| = i}} f(A)g(B) = \sum_{i=0}^{|Y|} \sum_{\substack{A \cup B = Y \\ |A| = i}} f(A)g(B) =$
= $\sum_{i=0}^{|Y|} \sum_{\substack{A \cup B = Y \\ A \cup B = Y}} f_i(A)g_{|Y|-i}(B) = \sum_{i=0}^{|Y|} (f_i *_c g_{|Y|-i})(Y).$

Computing the subset convolution

We got:

(*)
$$(f * g)(Y) = \sum_{i=0}^{|Y|} (f_i *_c g_{|Y|-i})(Y).$$

Algorithm:

- Compute and store $f_i *_c g_j(Y)$ for all i, j = 0, ..., n and $Y \subseteq 2^V$.
- 2 Compute (f * g)(Y) for all $Y \subseteq 2^V$ using (*).

Corollary

One can compute f * g in $O^*(2^n)$ time.

Corollary

There is an algorithm which, for every induced subgraph H of G, finds the number of k-colorings of H in total $O^*(2^n)$ time and space.

Łukasz Kowalik (UW)

August 2013 34 / 37

< ロ > < 同 > < 三 >

э

Observation

Let \mathfrak{F} be the family of (inclusion-wise) maximal independent sets.

$$\underbrace{\mathbf{1}_{\mathcal{F} *_{c}} \mathbf{1}_{\mathcal{F} *_{c}} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V) \neq 0 \text{ iff } G \text{ is } k \text{-colorable}.$$

Observation

Let $\mathcal F$ be the family of (inclusion-wise) maximal independent sets.

$$\underbrace{\mathbf{1}_{\mathcal{F} *_{c}} \mathbf{1}_{\mathcal{F} *_{c}} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V) \neq 0 \text{ iff } G \text{ is } k \text{-colorable.}$$

Denote
$$\mathbf{1}_{\mathcal{F}}^{\prime} = \underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{\prime \text{ times}}.$$

$$(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y))), \text{ so} (\mathbf{1}_{\mathcal{F}}^r *_c \mathbf{1}_{\mathcal{F}}^s)(Y) = \mu((\zeta \mathbf{1}_{\mathcal{F}}^r(Y))(\zeta \mathbf{1}_{\mathcal{F}}^s(Y))).$$

Observation

Let $\mathcal F$ be the family of (inclusion-wise) maximal independent sets.

$$\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V) \neq 0 \text{ iff } G \text{ is } k \text{-colorable.}$$

Denote
$$\mathbf{1}_{\mathcal{F}}^{\prime} = \underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{\prime \text{ times}}.$$

$$(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y))), \text{ so} (\mathbf{1}_{\mathcal{F}}^r *_c \mathbf{1}_{\mathcal{F}}^s)(Y) = \mu((\zeta \mathbf{1}_{\mathcal{F}}^r(Y))(\zeta \mathbf{1}_{\mathcal{F}}^s(Y))).$$

• supp
$$\mathbf{1}_{\mathcal{F}}=\mathcal{F}$$
,

Observation

Let $\mathcal F$ be the family of (inclusion-wise) maximal independent sets.

$$\underbrace{\mathbf{1}_{\mathcal{F} *_{c}} \mathbf{1}_{\mathcal{F} *_{c}} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V) \neq 0 \text{ iff } G \text{ is } k \text{-colorable.}$$

Denote
$$\mathbf{1}_{\mathcal{F}}^{\prime} = \underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{\prime \text{ times}}.$$

$$(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y))), \text{ so} (\mathbf{1}_{\mathcal{F}}^r *_c \mathbf{1}_{\mathcal{F}}^s)(Y) = \mu((\zeta \mathbf{1}_{\mathcal{F}}^r(Y))(\zeta \mathbf{1}_{\mathcal{F}}^s(Y))).$$

Observation

Let $\mathcal F$ be the family of (inclusion-wise) maximal independent sets.

$$\underbrace{\mathbf{1}_{\mathcal{F} *_{c}} \mathbf{1}_{\mathcal{F} *_{c}} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}(V) \neq 0 \text{ iff } G \text{ is } k \text{-colorable.}$$

Denote
$$\mathbf{1}_{\mathcal{F}}^{\prime} = \underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{\prime \text{ times}}$$
.

$$(f *_c g)(Y) = \mu((\zeta f(Y))(\zeta g(Y))), \text{ so} (\mathbf{1}_{\mathcal{F}}^r *_c \mathbf{1}_{\mathcal{F}}^s)(Y) = \mu((\zeta \mathbf{1}_{\mathcal{F}}^r(Y))(\zeta \mathbf{1}_{\mathcal{F}}^s(Y))).$$

•
$$supp \mathbf{1}_{\mathcal{F}} = \mathcal{F}$$
,
• $supp \mathbf{1}_{\mathcal{F}} *_{c} \mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}} \subseteq \uparrow supp \mathbf{1}_{\mathcal{F}} = \uparrow \mathcal{F}$,
• **Corollary:** One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time.
 $k \text{ times}$ $O^{*}(|\uparrow \mathcal{F}|)$ time.
 $O^{*}(|\uparrow \mathcal{F}|)$ time.
 $August 2013 = 35/37$

Corollary One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}$ in $O^{*}(|\uparrow \mathcal{F}|)$ time and space.

Corollary One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}$ in $O^{*}(|\uparrow\mathcal{F}|)$ time and space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

In any *n*-vertex graph of maximum degree Δ there are $\leq (2^{\Delta+1}-1)^{n/(\Delta+1)}$ dominating sets.

Corollary One can compute $\underbrace{\mathbf{1}_{\mathcal{F}} *_{c} \cdots \mathbf{1}_{\mathcal{F}}}_{k \text{ times}}$ in $O^{*}(|\uparrow\mathcal{F}|)$ time and space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

In any *n*-vertex graph of maximum degree Δ there are $\leq (2^{\Delta+1}-1)^{n/(\Delta+1)}$ dominating sets.

Aaaaha!

But $\uparrow \mathcal{F}$ contains only dominating sets!

Corollary (Björklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree Δ in $O^*((2^{\Delta+1}-1)^{n/(\Delta+1)})$ time.

Łukasz Kowalik (UW)

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree Δ in $O^*((2^{\Delta+1} - \Delta - 1)^{n/(\Delta+1)})$ time.

Δ	$ (2^{\Delta+1} - \Delta - 1)^{n/(\Delta+1)}$
3	1.86121
4	1.93318
5	1.96745
6	1.98400
7	1.99208
8	1.99606
9	1.99804
10	1.99902
11	1.99951
12	1.99976