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Approach

We want to compute some quantity x1.

We �nd some related quantities x2, . . . , xt ,

There are t linear equations in variables x1, . . . , xt such that:

we can show the equations are linearly independent,

we can compute the coe�cients and the constant terms of the

equations e�ciently.

We solve the system using Gaussian Elimination in O(t3) time. (Or in
O(tω) time if it matters.)
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Recap: Fast Zeta transform ζ

Let f : 2U → N.

Zeta transform

(ζf )(X ) =
∑

Y⊆X f (Y ).

X

Trimmed zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

For any set family G ⊆ 2U we can compute all values of ζf |G in
O∗(| ↓G|) time.

We can compute all values of ζf in O∗(| ↑supp(f )|) time.
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Recap: Fast up-zeta transform ζ↑

Let f : 2U → N.

Up-zeta transform

(ζ↑f )(X ) =
∑

Y⊇X f (Y ).

X

Trimmed up-zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

For any set family G ⊆ 2U we can compute all values of ζ↑f |G in
O∗(| ↑G|) time.

We can compute all values of ζ↑f in O∗(| ↓supp(f )|) time.
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Intersection Transform

U is a given set, |U| = n.

We are given F,G ⊆ 2U .

For every Y ∈ G and every ` ∈ {0, . . . , n},
compute

ιF(`,Y ) = |{X ∈ F : |X ∩ Y | = `}|

n + 1 indeterminates xY` = ιF(`,Y ),
for ` = 0, . . . , n

n + 1 linear equations?

X ∈ F

Y ∈ G

` elements
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Intersection Transform: linear equations

Intersection Transform

For every Y ∈ G and ` ∈ {0, . . . , n}, �nd xY` = |{X ∈ F : |X ∩ Y | = `}|.

For every Y ∈ G and j ∈ {0, . . . , n},

bYj =
∑
Z⊆Y
|Z |=j

|{X ∈ F : Z ⊆ X}| =

=
∑
Z⊆Y
|Z |=j

∑
X∈F
Z⊆X

1 =
∑
X∈F

∑
Z⊆X∩Y
|Z |=j

1 =
∑
X∈F

(
|X ∩ Y |

j

)
=

=
n∑

`=0

∑
X∈F
|X∩Y |=`

(
`

j

)
=

n∑
`=0

(
`

j

) ∑
X∈F
|X∩Y |=`

1 =
n∑

`=0

(
`

j

)
xY`
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Intersection Transform: linear equations

Intersection Transform

For every Y ∈ G and ` ∈ {0, . . . , n}, �nd xY` = |{X ∈ F : |X ∩ Y | = `}|.

For every Y ∈ G we got (n + 1) linear equations:

n∑
`=0

(
`

j

)
xY` = bYj , j = 0, . . . , n

where bYj =
∑
Z⊆Y
|Z |=j

|{X ∈ F : Z ⊆ X}|

Since for ` < j ,
(
`
j

)
= 0, and

(
`
`

)
= 1 and the coe�cients matrix is

non-singular.

The coe�cients can be evaluated fast.

How fast can we evaluate bYj ?
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Evaluating bYj for every Y ∈ G and j = 0, . . . , n

bYj =
∑
Z⊆Y
|Z |=j

|{X ∈ F : Z ⊆ X}| =

=
∑
Z⊆Y
|Z |=j

∑
X⊇Z

[X ∈ F] =
∑
Z⊆Y
|Z |=j

(ζ↑1F)(Z ) = (ζf )(Y ),

where for every Z ∈ ↓G,

f (Z ) = (ζ↑1F)(Z ) · [|Z | = j ].

Algorithm for evaluating bYj for every Y ∈ G.

1 Compute (ζ↑1F)(Z ) for all Z ∈ ↓G in O(| ↓supp(1F)|) = O∗(| ↓F|)
time; from this compute f (Z ) easily.

2 Compute (ζf )(Y ) for all Y ∈ G in O∗(↓G) time.

Total running time: O∗(| ↓F|+ | ↓G|)
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Intersection Transform Algorithm

Algorithm

1 Compute bYj for every Y ∈ G and j = 0, . . . , n in O∗(| ↓F|+ | ↓G|)
time,

2 For every Y ∈ G, solve the system of linear equations with
indeterminates xY` , ` = 0, . . . , n, using Gaussian Elimination in O(n3)
time. (Actually one can derive an explicit formula, skipped here.)

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G ⊆ 2U , the values of

ιF(Y , `) = |{X ∈ F : |X ∩ Y | = `}|

for all Y ∈ G, ` = 0, . . . , n can be found in O∗(| ↓F|+ | ↓G|) time.
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With minor modi�cations to what we have just seen we can show:

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G ⊆ 2U , and a function f : F → N, the values of

f ι(Y , `) =
∑
X∈F
|X∩Y |=`

f (X )

for all Y ∈ G, ` = 0, . . . , n can be found in O∗(| ↓F|+ | ↓G|) time.

(By putting f = 1F we get the previous version.)

Corollary

Given two functions f , g :
(
U
q

)
→ N, we can compute the number

f �` g =
∑

X ,Y∈(Uq)
|X∩Y |=`

f (X )g(Y )

=
∑

Y∈(Uq)

g(Y )
∑

X∈(Uq)
|X∩Y |=`

f (X )

for all ` = 0, . . . , n in O∗(nq) time.
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Fast Intersection Trasform

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G ⊆ 2U , the values of

ιF(Y , `) = |{X ∈ F : |X ∩ Y | = `}|

for all Y ∈ G, ` = 0, . . . , n can be found in O∗(| ↓F|+ | ↓G|) time.

Corollary

Given two functions f , g :
(
U
q

)
→ N, we can compute the number

f �` g =
∑

X ,Y∈(Uq)
|X∩Y |=`

f (X )g(Y )

for all ` = 0, . . . , n in O∗(nq) time.
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Application: counting k-paths in O∗(nk/2) time

Problem

Given a directed graph G = (V ,E ) count the number of k-vertex paths.

The problem is #W [1]-hard when parameterized by k .

v
f g

Algorithm (assume w.l.o.g. k is even)

For every v ∈ V �nd the number of paths where v is the k/2-th vertex:
De�ne functions f , g :

(
V
k/2

)
→ N

1 f (S) is the number of paths P that end in v and V (P) = S ;

2 g(S) is the number of paths P that start in v and V (P) = S ∪ {v}.
Compute f �0 g =

∑
X ,Y∈( V

k/2)
|X∩Y |=0

f (X )g(Y ) in O∗(nk/2) time.
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Counting k-paths by disjoint triples

v1

f

v2

g h

Algorithm (w.l.o.g. assume k is a multiple of 3)

For every v1, v2 ∈ V (G ) count paths where vi is the
i
3
k-th vertex:

De�ne functions f , g , h :
(
V
k/3

)
→ N

1 f (S) is the number of paths P that end in v1 and V (P) = S ;

2 g(S) is the number of paths P from v1 to v2 and V (P) = S ∪ {v1}.
3 h(S) is the number of paths P that start in v2 and V (P) = S ∪ {v2}.

Compute ∆(f , g , h) =
∑

A,B,C∈(Uq)
|A∩B|=|A∩C |=|B∩C |=∅

f (A)g(B)h(C ).
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Counting disjoint triples

Problem (slightly simpli�ed)

Let q ≤ |U|/3. Given F ⊆
(
U
q

)
, compute

x3q = |{(A,B,C ) ∈ F3 : |A ∩ B| = |A ∩ C | = |B ∩ C | = ∅}|.

For a triple (A,B,C ) ∈ F3 de�ne

type(A,B,C ) = |A⊕ B ⊕ C |,

where ⊕ is the symmetric di�erence (xor).

A B

C
Note: |A⊕ B ⊕ C | ≡ |A|+ |B|+ |C | = 3q ≡ q (mod 2).

Auxiliary indeterminates (b3q
2
c indeterminates in total)

For j ≡ q (mod 2), j ∈ {0, . . . , 3q},

xj = {(A,B,C ) ∈ F3 : |A⊕ B ⊕ C | = j}
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First source of linear equations:

Intersection Parity Counting
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Intersection parity

For W ∈ 2U and p = 0, 1 let

Tp(W ) = |{(A,B,C ) ∈ F3 : |(A⊕ B ⊕ C ) ∩W | ≡ p (mod 2)}|

A B

C

W

(A⊕ B ⊕ C ) ∩W
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Linear equations

For W ∈
(
U
≤i
)
and p = 0, 1 let

Tp(W ) = |{(A,B,C ) ∈ F3 : |(A⊕B⊕C )∩W | ≡ p (mod 2)}|
A B

C

W

Linear equations

For every i ≥ 1,
∑

0≤j≤3q
j≡q (mod 2)

(n − 2j)ixj =
∑

d1,...,di∈U
T0(⊕{dr}ir=1)− T1(⊕{dr}ir=1)

Proof: Let (A,B,C ) be a triple of type j .
We show that (A,B,C ) is counted (n − 2j)i times in the RHS.
De�ne vpi = |{(d1, . . . , di ) ∈ U i : |(A⊕B ⊕C )∩⊕{dr}ir=1| ≡ p (mod 2)}|
Then (A,B,C ) is counted v0i − v1i times in RHS.v0i =

di 6∈A⊕B⊕C︷ ︸︸ ︷
(n − j)v0i−1 +

di∈A⊕B⊕C︷︸︸︷
jv1i−1

v1i = jv0i−1 +(n − j)v1i−1

v00 = 1, v10 = 0.

v0i − v1i = (n − 2j)(v0i−1 − v1i−1)

= (n − 2j)i .
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Computing bi =
∑

d1,...,di∈U

T0(⊕{dr}ir=1)− T1(⊕{dr}ir=1) in

O∗(ni + nq) time

Tp(W ) = |{(A,B,C ) ∈ F3 : |(A⊕B⊕C )∩W | ≡ p (mod 2)}|

Note: It su�ces to compute Tp(W ) for every W ∈
(
U
≤i
)
.

A B

C

W

|(A⊕ B ⊕ C ) ∩W | = |(A ∩W )⊕ (B ∩W )⊕ (C ∩W )|
≡ |A ∩W |+ |B ∩W |+ |C ∩W | (mod 2)

Observation: |(A⊕ B ⊕ C ) ∩W | ≡ 0 i�

all |A ∩W |, |B ∩W |, |C ∩W | even or

exactly one of |A ∩W |, |B ∩W |, |C ∩W | even.
Let np(W ) = |{S ∈ F : |S ∩W | ≡ p (mod 2)}|, for p = 0, 1. Then,

T0(W ) = n0(W )3 + 3n0(W )n1(W )2; T1(W ) = |F|3 − T0(W ).
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Computing bi =
∑

d1,...,di∈U

T0(⊕{dr}ir=1)− T1(⊕{dr}ir=1) in

O∗(ni + nq) time

It su�ces to compute Tp(W ) for every W ∈
(
U
≤i
)
.

We showed

T0(W ) = n0(W )3 + 3n0(W )n1(W )2; T1(W ) = |F|3 − T0(W ),

where Let np(W ) = |{S ∈ F : |S ∩W | ≡ p (mod 2)}| for p = 0, 1.

np(W ) =
∑
j≡p
|{S ∈ F : |S ∩W | = j}|

We �nd ιF(W , j) = |{S ∈ F : |S ∩W | = j}| for every j and W ∈
(
n
≤i
)

in O∗(| ↓F|+ | ↓
(
n
≤i
)
|) = O∗(nq + ni ) time using Fast Intersection

Transform.

From the values of ιF(W , j) we can compute any value of np(W ) in
O∗(1) time, so bi can be found in O(ni ) time.
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First source of linear equations: Summary

Corollary

The coe�cients / constant term of the equation:∑
0≤j≤3q

j≡q (mod 2)

(n − 2j)ixj =
∑

d1,...,di∈U
T0(⊕{dr}ir=1)− T1(⊕{dr}ir=1)

can be computed in O∗(ni + nq) time, for any i ≥ 0.

Observation

For the k-path application, q = k/3;
If we use only the �rst source we need b3q

2
c+ 1 = bk/2c+ 1 equations,

which results in total O∗(nk/2) time.
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Second source of linear equations:

computing xj for small j
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Computing xj for small j : summing over all possible A⊕ B

Consider a triple (A,B,C ) of type j . Let ` = |A⊕ B|.

Since |A⊕ B| = |
j︷ ︸︸ ︷

A⊕ B ⊕ C ⊕
q︷︸︸︷
C |,

q − j ≤ ` ≤ q + j

Note that ` = |A|+ |B| − 2|A ∩ B| = 2q − 2|A ∩ B| ≡ 0 (mod 2).

Since

j︷ ︸︸ ︷
|A⊕ B ⊕ C | =

`︷ ︸︸ ︷
|A⊕ B|+

q︷︸︸︷
|C | −2|(A⊕ B) ∩ C |,

|(A⊕ B) ∩ C | = `+q−j
2

xj =
∑

q−j≤`≤q+j
`≡0 (mod 2)

∑
D∈(U`)

| ⊕−1 (D)| · |{C ∈ F : |D ∩ C | = `+q−j
2
}|,

where ⊕−1(D) = {(A,B) ∈ F2 : A⊕ B = D}
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Computing xj for small j : summing over all possible A⊕ B

xj =
∑

q−j≤`≤q+j
`≡0 (mod 2)

∑
D∈(U`)

| ⊕−1 (D)| · |{C ∈ F : |D ∩ C | = `+q−j
2
}|,

where ⊕−1(D) = {(A,B) ∈ F2 : A⊕ B = D}

|{C ∈ F : |D ∩ C | = `+q−j
2
}| = ιF(D, `+q−j

2
) can be computed for

all D ∈
(
U
`

)
in O∗(| ↓

(
U
`

)
|+ | ↓F|) = O∗(nq+j) time using fast

intersction transform.

How fast can we compute ⊕−1?
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Computing | ⊕−1 (D)| = |{(A,B) ∈ F2 : A⊕ B = D}|

Let M be a matrix with

rows indexed by sets S ∈
(
U
`/2

)
,

columns indexed by sets X ∈
(

U
q−`/2

)
,

MSX = [S ∪ X ∈ F].

Let B = MMT . B is indexed by sets S ∈
(
U
`/2

)
.

`/2

`/2

q − `/2

A

B

D

BRS =
∑

X∈( U
q−`/2)

[R∪X ∈ F]·[S∪X ∈ F] = |{X ∈
(

U

q − `/2

)
: R∪X , S∪X ∈ F}|.

Then, | ⊕−1 (D)| =
∑

R∪S=D BRS

B can be computed in O(max{n(ω−2)`/2+q, nω`/2}) time.

Hence, within the same time we can �nd | ⊕−1 (D)| for all D ∈
(
U
`

)
.
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Computing xj for small j : summing over all possible A⊕ B

xj =
∑
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`≡0 (mod 2)
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| ⊕−1 (D)| · |{C ∈ F : |D ∩ C | = `+q−j
2
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2
}| can be computed for all D ∈

(
U
`

)
in

O∗(| ↓
(
U
`

)
|+ | ↓F|) = O∗(nq+j) time using fast intersction transform.

| ⊕−1 (D)| can be computed in

O(max{n(ω−2)`/2+q, nω`/2}) = O(max{n(ω−2)(q+j)/2+q, nω(q+j)/2}) =

O(max{nω(q+j)/2−j , nω(q+j)/2}) = O(nω(q+j)/2)

time for all D ∈
(
U
`

)
.

Overall, xj can be computed in O(nω(q+j)/2) time.
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Second source of linear equations: Summary

Corollary

The constant term of the equation:

xj =
∑

q−j≤`≤q+j
`≡0 (mod 2)

∑
D∈(U`)

| ⊕−1 (D)| · |{C ∈ F : |D ∩ C | = `+q−j
2
}|

can be computed in O(nω(q+j)/2) time, for any j = 0, . . . , b3q
2
c, j ≡ q.
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Setting up the system if linear equations

Pick r equations from the �rst source :

∑
0≤j≤3q

j≡q (mod 2)

(n−2j)ixj =
∑

d1,...,di∈U
T0(⊕{dr}ir=1)−T1(⊕{dr}ir=1); i = 0, . . . , r−1

in
∑r−1

i=0 O
∗(ni + nq) = O∗(nr + nq) time;

Pick b3q
2
c+ 1− r equations from the second source:

xj =
∑

q−j≤`≤q+j
`≡0 (mod 2)

∑
D∈(U`)

| ⊕−1 (D)| · ιF(D, l+q−j
2

), j ≡ q

in O∗(nω(q+2(
3q
2
−r))/2) = O∗(nω(2q−r)) time;

Both running times meet at r = 2ωq
1+ω ≈ 1.408q
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The missing piece: linear independence

0

{(n − 2j)i}i ,j=0...,r−1

I

�rst source

second source

Vandermonde matrix

Identity matrix
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Conclusion

Corollary

One can count disjoint triples of a family of q-subsets of n-element
universe in O∗(n1.408q) time.

By essentialy the same arguments we can get...

Corollary

One can compute ∆(f , g , h) =
∑

A,B,C∈(Uq)
|A∩B|=|A∩C |=|B∩C |=∅

f (A)g(B)h(C ) in O∗(n1.408q) time.

Corollary

One can count the number of k-paths in an n-vertex graph in O∗(n0.47k)
time.
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After some improvements...

Theorem (Björklund, Kaski, K. 2013)

One can count disjoint triples of a family of q-subsets of n-element
universe in O∗(n1.364q) time.

One can compute ∆(f , g , h) =
∑

A,B,C∈(Uq)
|A∩B|=|A∩C |=|B∩C |=∅

f (A)g(B)h(C )

in O∗(n1.364q) time.

One can count the number of k-paths in an n-vertex graph in
O∗(n0.455k) time.

One can count the number of occurences of a �xed k-vertex
pathwidth p subgraph in an n-vertex graph in O∗(n0.455k+2p) time.
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