Algebraic approaches to exact algorithms, part V: Systems of linear equations

Łukasz Kowalik
University of Warsaw

ADFOCS, Saarbrücken, August 2013

Approach

- We want to compute some quantity x_{1}.

Approach

- We want to compute some quantity x_{1}.
- We find some related quantities x_{2}, \ldots, x_{t},

Approach

- We want to compute some quantity x_{1}.
- We find some related quantities x_{2}, \ldots, x_{t},
- There are t linear equations in variables x_{1}, \ldots, x_{t} such that:
- we can show the equations are linearly independent,
- we can compute the coefficients and the constant terms of the equations efficiently.

Approach

- We want to compute some quantity x_{1}.
- We find some related quantities x_{2}, \ldots, x_{t},
- There are t linear equations in variables x_{1}, \ldots, x_{t} such that:
- we can show the equations are linearly independent,
- we can compute the coefficients and the constant terms of the equations efficiently.
- We solve the system using Gaussian Elimination in $O\left(t^{3}\right)$ time. (Or in $O\left(t^{\omega}\right)$ time if it matters.)

Recap: Fast Zeta transform ζ

Let $f: 2^{U} \rightarrow \mathbb{N}$.
Zeta transform
$(\zeta f)(X)=\sum_{Y \subseteq X} f(Y)$.

Trimmed zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- For any set family $\mathcal{G} \subseteq 2^{U}$ we can compute all values of $\left.\zeta f\right|_{\mathcal{G}}$ in $O^{*}(|\downarrow \mathcal{G}|)$ time.
- We can compute all values of ζf in $O^{*}(|\uparrow \operatorname{supp}(f)|)$ time.

Recap: Fast up-zeta transform ζ^{\uparrow}

Let $f: 2^{U} \rightarrow \mathbb{N}$.
Up-zeta transform
$\left(\zeta^{\uparrow} f\right)(X)=\sum_{Y \supseteq X} f(Y)$.

Trimmed up-zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- For any set family $\mathcal{G} \subseteq 2^{U}$ we can compute all values of $\left.\zeta^{\uparrow} f\right|_{\mathcal{G}}$ in $O^{*}(|\uparrow \mathcal{G}|)$ time.
- We can compute all values of $\zeta^{\uparrow} f$ in $O^{*}(|\downarrow \operatorname{supp}(f)|)$ time.

Intersection Transform

- U is a given set, $|U|=n$.
- We are given $\mathcal{F}, \mathcal{G} \subseteq 2^{U}$.
- For every $Y \in \mathcal{G}$ and every $\ell \in\{0, \ldots, n\}$, compute

$$
\iota_{\mathcal{F}}(\ell, Y)=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|
$$

- $n+1$ indeterminates $x_{\ell}^{Y}=\iota_{\mathcal{F}}(\ell, Y)$, for $\ell=0, \ldots, n$

- $n+1$ linear equations?

Intersection Transform: linear equations

Intersection Transform

For every $Y \in \mathcal{G}$ and $\ell \in\{0, \ldots, n\}$, find $x_{\ell}^{Y}=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|$.
For every $Y \in G$ and $j \in\{0, \ldots, n\}$,

$$
\begin{aligned}
b_{j}^{Y} & =\sum_{\substack{Z \subseteq Y \\
|Z|=j}}|\{X \in \mathcal{F}: Z \subseteq X\}|= \\
& =\sum_{\substack{Z \subseteq Y \\
|Z|=j}} \sum_{\substack{X \in \mathcal{F} \\
Z \subseteq X}} 1=\sum_{X \in \mathcal{F}} \sum_{\substack{Z \subseteq X \cap Y \\
|Z|=j}} 1=\sum_{X \in \mathcal{F}}\binom{|X \cap Y|}{j}= \\
& =\sum_{\ell=0}^{n} \sum_{\substack{X \in \mathcal{F} \\
|X \cap Y|=\ell}}\binom{\ell}{j}=\sum_{\ell=0}^{n}\binom{\ell}{j} \sum_{\substack{X \in \mathcal{F} \\
|X \cap Y|=\ell}} 1=\sum_{\ell=0}^{n}\binom{\ell}{j} x_{\ell}^{Y}
\end{aligned}
$$

Intersection Transform: linear equations

Intersection Transform

For every $Y \in \mathcal{G}$ and $\ell \in\{0, \ldots, n\}$, find $x_{\ell}^{Y}=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|$.
For every $Y \in G$ we got $(n+1)$ linear equations:

$$
\sum_{\ell=0}^{n}\binom{\ell}{j} x_{\ell}^{Y}=b_{j}^{Y}, \quad j=0, \ldots, n
$$

where $b_{j}^{Y}=\sum_{\substack{Z \subseteq Y \\|Z|=j}}|\{X \in \mathcal{F}: Z \subseteq X\}|$

- Since for $\ell<j,\binom{\ell}{j}=0$, and $\binom{\ell}{\ell}=1$ and the coefficients matrix is non-singular.

Intersection Transform: linear equations

Intersection Transform

For every $Y \in \mathcal{G}$ and $\ell \in\{0, \ldots, n\}$, find $x_{\ell}^{Y}=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|$.
For every $Y \in G$ we got $(n+1)$ linear equations:

$$
\sum_{\ell=0}^{n}\binom{\ell}{j} x_{\ell}^{Y}=b_{j}^{Y}, \quad j=0, \ldots, n
$$

where $b_{j}^{Y}=\sum_{\substack{Z \subseteq Y \\|Z|=j}}|\{X \in \mathcal{F}: Z \subseteq X\}|$

- Since for $\ell<j,\binom{\ell}{j}=0$, and $\binom{\ell}{\ell}=1$ and the coefficients matrix is non-singular.
- The coefficients can be evaluated fast.

Intersection Transform: linear equations

Intersection Transform

For every $Y \in \mathcal{G}$ and $\ell \in\{0, \ldots, n\}$, find $x_{\ell}^{Y}=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|$.
For every $Y \in G$ we got $(n+1)$ linear equations:

$$
\sum_{\ell=0}^{n}\binom{\ell}{j} x_{\ell}^{Y}=b_{j}^{Y}, \quad j=0, \ldots, n
$$

where $b_{j}^{Y}=\sum_{\substack{Z \subseteq Y \\|Z|=j}}|\{X \in \mathcal{F}: Z \subseteq X\}|$

- Since for $\ell<j,\binom{\ell}{j}=0$, and $\binom{\ell}{\ell}=1$ and the coefficients matrix is non-singular.
- The coefficients can be evaluated fast.
- How fast can we evaluate b_{j}^{Y} ?

Evaluating b_{j}^{Y} for every $Y \in \mathcal{G}$ and $j=0, \ldots, n$

$$
\begin{aligned}
b_{j}^{Y} & =\sum_{\substack{Z \subseteq Y \\
|Z|=j}}|\{X \in \mathcal{F}: Z \subseteq X\}|= \\
& =\sum_{\substack{Z \subseteq Y Y \\
|Z|=j}} \sum_{X \supseteq Z}[X \in \mathcal{F}]=\sum_{\substack{Z \subseteq Y \\
|Z|=j}}\left(\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}}\right)(Z)=(\zeta f)(Y),
\end{aligned}
$$

where for every $Z \in \downarrow \mathcal{G}$,

$$
f(Z)=\left(\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}}\right)(Z) \cdot[|Z|=j] .
$$

Algorithm for evaluating b_{j}^{Y} for every $Y \in \mathcal{G}$.

(1) Compute $\left(\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}}\right)(Z)$ for all $Z \in \downarrow \mathcal{G}$ in $O\left(\left|\downarrow \operatorname{supp}\left(\mathbf{1}_{\mathcal{F}}\right)\right|\right)=O^{*}(|\downarrow \mathcal{F}|)$ time; from this compute $f(Z)$ easily.
(2) Compute $(\zeta f)(Y)$ for all $Y \in \mathcal{G}$ in $O^{*}(\downarrow \mathcal{G})$ time.

Total running time: $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$

Intersection Transform Algorithm

Algorithm

(1) Compute b_{j}^{Y} for every $Y \in \mathcal{G}$ and $j=0, \ldots, n$ in $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$ time,
(2) For every $Y \in \mathcal{G}$, solve the system of linear equations with indeterminates $x_{\ell}^{Y}, \ell=0, \ldots, n$, using Gaussian Elimination in $O\left(n^{3}\right)$ time. (Actually one can derive an explicit formula, skipped here.)

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathcal{F}, \mathcal{G} \subseteq 2^{U}$, the values of

$$
\iota_{\mathcal{F}}(Y, \ell)=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|
$$

for all $Y \in \mathcal{G}, \ell=0, \ldots, n$ can be found in $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$ time.

With minor modifications to what we have just seen we can show:

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathcal{F}, \mathcal{G} \subseteq 2^{U}$, and a function $f: \mathcal{F} \rightarrow \mathbb{N}$, the values of

$$
f_{\iota}(Y, \ell)=\sum_{\substack{X \in \mathcal{F} \\|X \cap Y|=\ell}} f(X)
$$

for all $Y \in \mathcal{G}, \ell=0, \ldots, n$ can be found in $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$ time.
(By putting $f=\mathbf{1}_{\mathcal{F}}$ we get the previous version.)

Corollary

Given two functions $f, g:\binom{U}{q} \rightarrow \mathbb{N}$, we can compute the number

$$
f \boxtimes_{\ell} g=\sum_{\substack{X, Y \in\left(\begin{array}{c}
u \\
q
\end{array}\right) \\
|X \cap Y|=\ell}} f(X) g(Y)
$$

for all $\ell=0, \ldots, n$ in $O^{*}\left(n^{q}\right)$ time.

With minor modifications to what we have just seen we can show:

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathcal{F}, \mathcal{G} \subseteq 2^{U}$, and a function $f: \mathcal{F} \rightarrow \mathbb{N}$, the values of

$$
f \iota(Y, \ell)=\sum_{\substack{X \in \mathcal{F} \\|X \cap Y|=\ell}} f(X)
$$

for all $Y \in \mathcal{G}, \ell=0, \ldots, n$ can be found in $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$ time.
(By putting $f=\mathbf{1}_{\mathcal{F}}$ we get the previous version.)

Corollary

Given two functions $f, g:\binom{U}{q} \rightarrow \mathbb{N}$, we can compute the number

$$
f \boxtimes_{\ell} g=\sum_{\substack{X, Y \in\left(\begin{array}{c}
U \\
q
\end{array}\right) \\
|X \cap Y|=\ell}} f(X) g(Y)=\sum_{Y \in\binom{U}{q}} g(Y) \sum_{\substack{X \in\left(\begin{array}{c}
U \\
q
\end{array}\right) \\
|X \cap Y|=\ell}} f(X)
$$

for all $\ell=0, \ldots, n$ in $O^{*}\left(n^{q}\right)$ time.

Fast Intersection Trasform

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathcal{F}, \mathcal{G} \subseteq 2^{U}$, the values of

$$
\iota_{\mathcal{F}}(Y, \ell)=|\{X \in \mathcal{F}:|X \cap Y|=\ell\}|
$$

for all $Y \in \mathcal{G}, \ell=0, \ldots, n$ can be found in $O^{*}(|\downarrow \mathcal{F}|+|\downarrow \mathcal{G}|)$ time.

Corollary

Given two functions $f, g:\binom{U}{q} \rightarrow \mathbb{N}$, we can compute the number

$$
f \boxtimes_{\ell} g=\sum_{\substack{X, Y \in\left(\begin{array}{c}
U \\
q
\end{array}\right) \\
|X \cap Y|=\ell}} f(X) g(Y)
$$

for all $\ell=0, \ldots, n$ in $O^{*}\left(n^{q}\right)$ time.

Application: counting k-paths in $O^{*}\left(n^{k / 2}\right)$ time

Problem

Given a directed graph $G=(V, E)$ count the number of k-vertex paths.
The problem is $\# W[1]$-hard when parameterized by k.

Algorithm (assume w.l.o.g. k is even)

For every $v \in V$ find the number of paths where v is the $k / 2$-th vertex: Define functions $f, g:\binom{V}{k / 2} \rightarrow \mathbb{N}$
(1) $f(S)$ is the number of paths P that end in v and $V(P)=S$;
(2) $g(S)$ is the number of paths P that start in v and $V(P)=S \cup\{v\}$.

Compute $f \boxtimes_{0} g=\sum_{\substack{X, Y \in\left(\begin{array}{c}v \\ k / 2 \\|X \cap Y|=0\end{array}\right.}} f(X) g(Y)$ in $O^{*}\left(n^{k / 2}\right)$ time.

Counting k-paths by disjoint

Algorithm (w.l.o.g. assume k is a multiple of 3)

For every $v_{1}, v_{2} \in V(G)$ count paths where v_{i} is the $\frac{i}{3} k$-th vertex: Define functions $f, g, h:\binom{V}{k / 3} \rightarrow \mathbb{N}$
(1) $f(S)$ is the number of paths P that end in v_{1} and $V(P)=S$;
(2) $g(S)$ is the number of paths P from v_{1} to v_{2} and $V(P)=S \cup\left\{v_{1}\right\}$.
(3) $h(S)$ is the number of paths P that start in v_{2} and $V(P)=S \cup\left\{v_{2}\right\}$. Compute $\Delta(f, g, h)=\sum f(A) g(B) h(C)$.

$$
\begin{gathered}
A, B, C \in\binom{u}{a} \\
|A \cap B|=|A \cap C|=|B \cap C|=\emptyset
\end{gathered}
$$

Counting disjoint triples

Problem (slightly simplified)

Let $q \leq|U| / 3$. Given $\mathcal{F} \subseteq\binom{U}{q}$, compute

$$
x_{3 q}=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|A \cap B|=|A \cap C|=|B \cap C|=\emptyset\right\}\right|
$$

Counting disjoint triples

Problem (slightly simplified)

Let $q \leq|U| / 3$. Given $\mathcal{F} \subseteq\binom{U}{q}$, compute

$$
x_{3 q}=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|A \cap B|=|A \cap C|=|B \cap C|=\emptyset\right\}\right| .
$$

For a triple $(A, B, C) \in \mathcal{F}^{3}$ define

$$
\operatorname{type}(A, B, C)=|A \oplus B \oplus C|,
$$

where \oplus is the symmetric difference (xor).

Counting disjoint triples

Problem (slightly simplified)

Let $q \leq|U| / 3$. Given $\mathcal{F} \subseteq\binom{U}{q}$, compute

$$
x_{3 q}=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|A \cap B|=|A \cap C|=|B \cap C|=\emptyset\right\}\right| .
$$

For a triple $(A, B, C) \in \mathcal{F}^{3}$ define

$$
\operatorname{type}(A, B, C)=|A \oplus B \oplus C|,
$$

where \oplus is the symmetric difference (xor).
Note: $|A \oplus B \oplus C| \equiv|A|+|B|+|C|=3 q \equiv q(\bmod 2)$.

Counting disjoint triples

Problem (slightly simplified)

Let $q \leq|U| / 3$. Given $\mathcal{F} \subseteq\binom{U}{q}$, compute

$$
x_{3 q}=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|A \cap B|=|A \cap C|=|B \cap C|=\emptyset\right\}\right|
$$

For a triple $(A, B, C) \in \mathcal{F}^{3}$ define

$$
\operatorname{type}(A, B, C)=|A \oplus B \oplus C|
$$

where \oplus is the symmetric difference (xor).
Note: $|A \oplus B \oplus C| \equiv|A|+|B|+|C|=3 q \equiv q(\bmod 2)$.

Auxiliary indeterminates ($\left\lfloor\frac{3 q}{2}\right\rfloor$ indeterminates in total)

$$
\begin{aligned}
& \text { For } j \equiv q(\bmod 2), j \in\{0, \ldots, 3 q\} \\
& \qquad x_{j}=\left\{(A, B, C) \in \mathcal{F}^{3}:|A \oplus B \oplus C|=j\right\}
\end{aligned}
$$

First source of linear equations: Intersection Parity Counting

Intersection parity

For $W \in 2^{U}$ and $p=0,1$ let

$$
T_{p}(W)=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|(A \oplus B \oplus C) \cap W| \equiv p(\bmod 2)\right\}\right|
$$

Linear equations

For $W \in\binom{U}{\leq i}$ and $p=0,1$ let
$T_{p}(W)=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|(A \oplus B \oplus C) \cap W| \equiv p(\bmod 2)\right\}\right|$

Linear equations

For every $i \geq 1, \quad \sum_{\substack{0 \leq j \leq 3 q \\ j \equiv q(\bmod 2)}}(n-2 j)^{i} x_{j}=\sum_{d_{1}, \ldots, d_{i} \in U} T_{0}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)-T_{1}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)$
Proof: Let (A, B, C) be a triple of type j.
We show that (A, B, C) is counted $(n-2 j)^{i}$ times in the RHS. Define $v_{i}^{p}=\left|\left\{\left(d_{1}, \ldots, d_{i}\right) \in U^{i}:\left|(A \oplus B \oplus C) \cap \oplus\left\{d_{r}\right\}_{r=1}^{i}\right| \equiv p(\bmod 2)\right\}\right|$ Then (A, B, C) is counted $v_{i}^{0}-v_{i}^{1}$ times in RHS.

$$
\left\{\begin{array}{lll}
v_{i}^{0}=\overbrace{(n-j) v_{i-1}^{0}}^{d_{i} \notin A \oplus B \oplus C}+\overbrace{j v_{i-1}^{1}}^{d_{i} \in A \oplus B \oplus C} & \begin{array}{ll}
v_{0}^{0}=1, & v_{0}^{1}=0 . \\
v_{i}^{1}=j v_{i-1}^{0}-v_{i}^{1} & =(n-2 j)\left(v_{i-1}^{0}-v_{i-1}^{1}\right) \\
+(n-j) v_{i-1}^{1}
\end{array} & \\
\hline
\end{array}\right.
$$

Computing $b_{i}=\sum T_{0}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)-T_{1}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)$ in $d_{1}, \ldots, d_{i} \in U$

$O^{*}\left(n^{i}+n^{q}\right)$ time
$T_{p}(W)=\left|\left\{(A, B, C) \in \mathcal{F}^{3}:|(A \oplus B \oplus C) \cap W| \equiv p(\bmod 2)\right\}\right|$
Note: It suffices to compute $T_{p}(W)$ for every $W \in\binom{U}{\leq i}$.

$$
\begin{aligned}
|(A \oplus B \oplus C) \cap W| & =|(A \cap W) \oplus(B \cap W) \oplus(C \cap W)| \\
& \equiv|A \cap W|+|B \cap W|+|C \cap W| \quad(\bmod 2)
\end{aligned}
$$

Observation: $|(A \oplus B \oplus C) \cap W| \equiv 0$ jiff

- all $|A \cap W|,|B \cap W|,|C \cap W|$ even or
- exactly one of $|A \cap W|,|B \cap W|,|C \cap W|$ even.

Let $n_{p}(W)=|\{S \in \mathcal{F}:|S \cap W| \equiv p(\bmod 2)\}|$, for $p=0,1$. Then,

$$
T_{0}(W)=n_{0}(W)^{3}+3 n_{0}(W) n_{1}(W)^{2} ; \quad T_{1}(W)=|\mathcal{F}|^{3}-T_{0}(W)
$$

Computing $b_{i}=\sum T_{0}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)-T_{1}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)$ in $d_{1}, \ldots, d_{i} \in U$

$O^{*}\left(n^{i}+n^{q}\right)$ time

- It suffices to compute $T_{p}(W)$ for every $W \in\binom{U}{\leq i}$.
- We showed

$$
T_{0}(W)=n_{0}(W)^{3}+3 n_{0}(W) n_{1}(W)^{2} ; \quad T_{1}(W)=|\mathcal{F}|^{3}-T_{0}(W)
$$

where Let $n_{p}(W)=|\{S \in \mathcal{F}:|S \cap W| \equiv p(\bmod 2)\}|$ for $p=0,1$.
-

$$
n_{p}(W)=\sum_{j \equiv p}|\{S \in \mathcal{F}:|S \cap W|=j\}|
$$

- We find $\left.\iota \mathcal{F}^{(} W, j\right)=|\{S \in \mathcal{F}:|S \cap W|=j\}|$ for every j and $W \in\binom{n}{\leq i}$ in $O^{*}\left(|\downarrow \mathcal{F}|+\left|\downarrow\binom{n}{\leq i}\right|\right)=O^{*}\left(n^{q}+n^{i}\right)$ time using Fast Intersection Transform.
- From the values of $\iota_{\mathcal{F}}(W, j)$ we can compute any value of $n_{p}(W)$ in $O^{*}(1)$ time, so b_{i} can be found in $O\left(n^{i}\right)$ time.

First source of linear equations: Summary

Corollary

The coefficients / constant term of the equation:

$$
\sum_{\substack{0 \leq j \leq 3 q \\ j \equiv q \\ j=9 \\ \bmod 2)}}(n-2 j)^{i} x_{j}=\sum_{d_{1}, \ldots, d_{i} \in U} T_{0}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)-T_{1}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)
$$

can be computed in $O^{*}\left(n^{i}+n^{q}\right)$ time, for any $i \geq 0$.

Observation

For the k-path application, $q=k / 3$;
If we use only the first source we need $\left\lfloor\frac{3 q}{2}\right\rfloor+1=\lfloor k / 2\rfloor+1$ equations, which results in total $O^{*}\left(n^{k / 2}\right)$ time.

Second source of linear equations: computing x_{j} for small j

Computing x_{j} for small j : summing over all possible $A \oplus B$

Consider a triple (A, B, C) of type j. Let $\ell=|A \oplus B|$.
Since $|A \oplus B|=|\overbrace{A \oplus B \oplus C}^{j} \oplus \overbrace{C}^{q}|$,

$$
q-j \leq \ell \leq q+j
$$

Note that $\ell=|A|+|B|-2|A \cap B|=2 q-2|A \cap B| \equiv 0(\bmod 2)$.
Since $\overbrace{|A \oplus B \oplus C|}^{j}=\overbrace{|A \oplus B|}^{\ell}+\overbrace{|C|}^{q}-2|(A \oplus B) \cap C|$,

$$
|(A \oplus B) \cap C|=\frac{\ell+q-j}{2}
$$

$$
x_{j}=\sum_{\substack{q-j \leq \ell \leq q+j \\ \ell \equiv 0 \\(\bmod 2)}} \sum_{D \in\binom{U}{\ell}}\left|\oplus^{-1}(D)\right| \cdot\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|,
$$

where $\oplus^{-1}(D)=\left\{(A, B) \in \mathcal{F}^{2}: A \oplus B=D\right\}$

Computing x_{j} for small j : summing over all possible $A \oplus B$

$$
x_{j}=\sum_{\substack{q-j \leq \ell \leq q+j \\ \ell \equiv 0 \\(\bmod 2)}} \sum_{D \in\binom{U}{\ell}}\left|\oplus^{-1}(D)\right| \cdot\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|
$$

where $\oplus^{-1}(D)=\left\{(A, B) \in \mathcal{F}^{2}: A \oplus B=D\right\}$

- $\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|=\iota_{\mathcal{F}}\left(D, \frac{\ell+q-j}{2}\right)$ can be computed for all $D \in\binom{U}{\ell}$ in $O^{*}\left(\left|\downarrow\binom{U}{\ell}\right|+|\downarrow \mathcal{F}|\right)=O^{*}\left(n^{q+j}\right)$ time using fast intersction transform.
- How fast can we compute \oplus^{-1} ?

Computing $\left|\oplus^{-1}(D)\right|=\left|\left\{(A, B) \in \mathcal{F}^{2}: A \oplus B=D\right\}\right|$

Let M be a matrix with

- rows indexed by sets $S \in\binom{U}{\ell / 2}$,
- columns indexed by sets $X \in\binom{U}{q-\ell / 2}$,
- $M_{S X}=[S \cup X \in \mathcal{F}]$.

Let $B=M M^{T}$. B is indexed by sets $S \in\binom{U}{\ell / 2}$.

$$
B_{R S}=\sum_{X \in\binom{U}{q-\ell / 2}}[R \cup X \in \mathcal{F}] \cdot[S \cup X \in \mathcal{F}]=\left|\left\{X \in\binom{U}{q-\ell / 2}: R \cup X, S \cup X \in \mathcal{F}\right\}\right|
$$

Then,

$$
\left|\oplus^{-1}(D)\right|=\sum_{R \cup S=D} B_{R S}
$$

- B can be computed in $O\left(\max \left\{n^{(\omega-2) \ell / 2+q}, n^{\omega \ell / 2}\right\}\right)$ time.
- Hence, within the same time we can find $\left|\oplus^{-1}(D)\right|$ for all $D \in\binom{U}{\ell}$.

Computing x_{j} for small j : summing over all possible $A \oplus B$

$$
x_{j}=\sum_{\substack{q-j \leq \ell \leq q+j \\ \ell=0}} \sum_{(\bmod 2)} \sum_{\substack{U \\ \ell \\ \ell}}\left|\oplus^{-1}(D)\right| \cdot\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|
$$

where $\oplus^{-1}(D)=\left\{(A, B) \in \mathcal{F}^{2}: A \oplus B=D\right\}$

- $\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|$ can be computed for all $D \in\binom{U}{\ell}$ in $O^{*}\left(\left|\downarrow\binom{U}{\ell}\right|+|\downarrow \mathcal{F}|\right)=O^{*}\left(n^{q+j}\right)$ time using fast intersction transform.
- $\left|\oplus^{-1}(D)\right|$ can be computed in

$$
\begin{aligned}
& O\left(\max \left\{n^{(\omega-2) \ell / 2+q}, n^{\omega \ell / 2}\right\}\right)=O\left(\max \left\{n^{(\omega-2)(q+j) / 2+q}, n^{\omega(q+j) / 2}\right\}\right)= \\
& O\left(\max \left\{n^{\omega(q+j) / 2-j}, n^{\omega(q+j) / 2}\right\}\right)=O\left(n^{\omega(q+j) / 2}\right)
\end{aligned}
$$

time for all $D \in\binom{U}{\ell}$.

- Overall, x_{j} can be computed in $O\left(n^{\omega(q+j) / 2}\right)$ time.

Second source of linear equations: Summary

Corollary

The constant term of the equation:

$$
x_{j}=\sum_{\substack{q-j \leq \ell \leq q+j \\ \ell \equiv 0}} \sum_{D \in\binom{U}{\ell}}\left|\oplus^{-1}(D)\right| \cdot\left|\left\{C \in \mathcal{F}:|D \cap C|=\frac{\ell+q-j}{2}\right\}\right|
$$

can be computed in $O\left(n^{\omega(q+j) / 2}\right)$ time, for any $j=0, \ldots,\left\lfloor\frac{3 q}{2}\right\rfloor, j \equiv q$.

Setting up the system if linear equations

- Pick r equations from the first source :

$$
\sum_{\substack{0 \leq j \leq 3 q \\=q \\(\bmod 2)}}(n-2 j)^{i} x_{j}=\sum_{d_{1}, \ldots, d_{i} \in U} T_{0}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right)-T_{1}\left(\oplus\left\{d_{r}\right\}_{r=1}^{i}\right) ; \quad i=0, \ldots, r-1
$$

$$
\text { in } \sum_{i=0}^{r-1} O^{*}\left(n^{i}+n^{q}\right)=O^{*}\left(n^{r}+n^{q}\right) \text { time; }
$$

- Pick $\left\lfloor\frac{3 q}{2}\right\rfloor+1-r$ equations from the second source:

$$
x_{j}=\sum_{\substack{q-j \leq \ell \leq q+j \\ \ell \equiv 0 \\(\bmod 2)}} \sum_{D \in\binom{U}{\ell}}\left|\oplus^{-1}(D)\right| \cdot \iota f_{\mathcal{F}}\left(D, \frac{l+q-j}{2}\right), \quad j \equiv q
$$

in $O^{*}\left(n^{\omega\left(q+2\left(\frac{3 q}{2}-r\right)\right) / 2}\right)=O^{*}\left(n^{\omega(2 q-r)}\right)$ time;

- Both running times meet at $r=\frac{2 \omega q}{1+\omega} \approx 1.408 q$

The missing piece: linear independence

Conclusion

Corollary

One can count disjoint triples of a family of q-subsets of n-element universe in $O^{*}\left(n^{1.408 q}\right)$ time.

By essentialy the same arguments we can get...

Corollary

One can compute $\Delta(f, g, h)=\sum f(A) g(B) h(C)$ in $O^{*}\left(n^{1.408 q}\right)$ time.

$$
\begin{gathered}
A, B, C \in\binom{U}{q} \\
|A \cap B|=|A \cap C|=|B \cap C|=\emptyset
\end{gathered}
$$

Corollary

One can count the number of k-paths in an n-vertex graph in $O^{*}\left(n^{0.47 k}\right)$ time.

After some improvements...

Theorem (Björklund, Kaski, K. 2013)

- One can count disjoint triples of a family of q-subsets of n-element universe in $O^{*}\left(n^{1.364 q}\right)$ time.
- One can compute $\Delta(f, g, h)=\sum f(A) g(B) h(C)$

$$
\begin{gathered}
A, B, C \in\binom{U}{q} \\
|A \cap B|=|A \cap C|=|B \cap C|=\emptyset
\end{gathered}
$$

in $O^{*}\left(n^{1.364 q}\right)$ time.

- One can count the number of k-paths in an n-vertex graph in $O^{*}\left(n^{0.455 k}\right)$ time.
- One can count the number of occurences of a fixed k-vertex pathwidth p subgraph in an n-vertex graph in $O^{*}\left(n^{0.455 k+2 p}\right)$ time.

