Algebraic approaches to exact algorithms, part V: Systems of linear equations

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

• We want to compute some quantity x_1 .

- We want to compute some quantity x_1 .
- We find some related quantities x_2, \ldots, x_t ,

- We want to compute some quantity x_1 .
- We find some related quantities x_2, \ldots, x_t ,
- There are t linear equations in variables x_1, \ldots, x_t such that:
 - we can show the equations are linearly independent,
 - we can compute the coefficients and the constant terms of the equations **efficiently**.

- We want to compute some quantity x_1 .
- We find some related quantities x_2, \ldots, x_t ,
- There are t linear equations in variables x_1, \ldots, x_t such that:
 - we can show the equations are linearly independent,
 - we can compute the coefficients and the constant terms of the equations **efficiently**.
- We solve the system using Gaussian Elimination in $O(t^3)$ time. (Or in $O(t^{\omega})$ time if it matters.)

Recap: Fast Zeta transform ζ

Let $f: 2^U \to \mathbb{N}$.

Zeta transform

 $(\zeta f)(X) = \sum_{Y \subseteq X} f(Y).$

Trimmed zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- For any set family $\mathcal{G} \subseteq 2^U$ we can compute all values of $\zeta f|_{\mathcal{G}}$ in $O^*(|\downarrow \mathcal{G}|)$ time.
- We can compute all values of ζf in $O^*(|\uparrow supp(f)|)$ time.

Łukasz Kowalik (UW)

Recap: Fast up-zeta transform ζ^{\uparrow}

Let $f: 2^U \to \mathbb{N}$.

Up-zeta transform

$$(\zeta^{\uparrow} f)(X) = \sum_{Y \supseteq X} f(Y).$$

Trimmed up-zeta transform (Björklund, Husfeldt, Kaski, Koivisto)

- For any set family $\mathcal{G} \subseteq 2^U$ we can compute all values of $\zeta^{\uparrow} f|_{\mathcal{G}}$ in $O^*(|\uparrow \mathcal{G}|)$ time.
- We can compute all values of $\zeta^{\uparrow} f$ in $O^*(|\downarrow supp(f)|)$ time.

Łukasz Kowalik (UW)

- U is a given set, |U| = n.
- We are given $\mathfrak{F}, \mathfrak{G} \subseteq 2^U$.
- For every $Y \in \mathcal{G}$ and every $\ell \in \{0, \dots, n\}$, compute

$$\iota_{\mathcal{F}}(\ell,Y) = |\{X \in \mathcal{F} \ : \ |X \cap Y| = \ell\}|$$

- n + 1 indeterminates $x_{\ell}^{Y} = \iota_{\mathcal{F}}(\ell, Y)$, for $\ell = 0, \dots, n$
- *n* + 1 linear equations?

$X \in \mathcal{F}$	
ℓ elements	
	/
$Y \in \mathcal{G}$	

Intersection Transform

For every $Y \in \mathcal{G}$ and $\ell \in \{0, \ldots, n\}$, find $x_{\ell}^{Y} = |\{X \in \mathcal{F} : |X \cap Y| = \ell\}|$.

For every $Y \in G$ and $j \in \{0, \ldots, n\}$,

$$b_j^{\mathbf{Y}} = \sum_{\substack{Z \subseteq \mathbf{Y} \\ |Z|=j}} |\{X \in \mathcal{F} : Z \subseteq X\}| =$$

$$= \sum_{\substack{Z \subseteq \mathbf{Y} \\ |Z|=j}} \sum_{\substack{X \in \mathcal{F} \\ Z \subseteq X}} 1 = \sum_{\substack{X \in \mathcal{F} \\ |Z|=j}} \sum_{\substack{Z \subseteq X \cap \mathbf{Y} \\ |Z|=j}} 1 = \sum_{\substack{X \in \mathcal{F} \\ |Z|=j}} \binom{|X \cap \mathbf{Y}|}{j} =$$

$$= \sum_{\ell=0}^n \sum_{\substack{X \in \mathcal{F} \\ |X \cap \mathbf{Y}|=\ell}} \binom{\ell}{j} = \sum_{\ell=0}^n \binom{\ell}{j} \sum_{\substack{X \in \mathcal{F} \\ |X \cap \mathbf{Y}|=\ell}} 1 = \sum_{\ell=0}^n \binom{\ell}{j} x_\ell^{\mathbf{Y}}$$

Intersection Transform

For every
$$Y \in \mathcal{G}$$
 and $\ell \in \{0, \ldots, n\}$, find $x_{\ell}^{Y} = |\{X \in \mathcal{F} : |X \cap Y| = \ell\}|$.

For every $Y \in G$ we got (n+1) linear equations:

$$\sum_{\ell=0}^{n} \binom{\ell}{j} x_{\ell}^{Y} = b_{j}^{Y}, \qquad j = 0, \dots, n$$

where $b_{j}^{Y} = \sum_{\substack{Z \subseteq Y \\ |Z|=j}} |\{X \in \mathcal{F} : Z \subseteq X\}|$

• Since for $\ell < j$, $\binom{\ell}{j} = 0$, and $\binom{\ell}{\ell} = 1$ and the coefficients matrix is non-singular.

Intersection Transform

For every
$$Y \in \mathcal{G}$$
 and $\ell \in \{0, \ldots, n\}$, find $x_{\ell}^{Y} = |\{X \in \mathcal{F} : |X \cap Y| = \ell\}|$.

For every $Y \in G$ we got (n+1) linear equations:

$$\sum_{\ell=0}^{n} \binom{\ell}{j} x_{\ell}^{\mathbf{Y}} = b_{j}^{\mathbf{Y}}, \qquad j = 0, \dots, n$$

where
$$b_j^Y = \sum_{\substack{Z \subseteq Y \ |Z| = j}} |\{X \in \mathfrak{F} \; : \; Z \subseteq X\}|$$

• Since for $\ell < j$, $\binom{\ell}{j} = 0$, and $\binom{\ell}{\ell} = 1$ and the coefficients matrix is non-singular.

• The coefficients can be evaluated fast.

Intersection Transform

For every
$$Y \in \mathcal{G}$$
 and $\ell \in \{0, \ldots, n\}$, find $x_{\ell}^{Y} = |\{X \in \mathcal{F} : |X \cap Y| = \ell\}|$.

For every $Y \in G$ we got (n+1) linear equations:

$$\sum_{\ell=0}^{n} \binom{\ell}{j} x_{\ell}^{\mathbf{Y}} = b_{j}^{\mathbf{Y}}, \qquad j = 0, \dots, n$$

where
$$b_j^Y = \sum_{\substack{Z \subseteq Y \ |Z|=j}} |\{X \in \mathfrak{F} \; : \; Z \subseteq X\}|$$

- Since for $\ell < j$, $\binom{\ell}{j} = 0$, and $\binom{\ell}{\ell} = 1$ and the coefficients matrix is non-singular.
- The coefficients can be evaluated fast.
- How fast can we evaluate b_i^{γ} ?

Evaluating b_i^Y for every $Y \in \mathcal{G}$ and $j = 0, \ldots, n$

$$b_j^{\mathbf{Y}} = \sum_{\substack{Z \subseteq \mathbf{Y} \\ |Z|=j}} |\{X \in \mathcal{F} : Z \subseteq X\}| =$$
$$= \sum_{\substack{Z \subseteq \mathbf{Y} \\ |Z|=j}} \sum_{X \supseteq Z} [X \in \mathcal{F}] = \sum_{\substack{Z \subseteq \mathbf{Y} \\ |Z|=j}} (\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}})(Z) = (\zeta f)(\mathbf{Y}),$$

where for every $Z \in \downarrow \mathcal{G}$,

$$f(Z) = (\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}})(Z) \cdot [|Z| = j].$$

Algorithm for evaluating b_i^Y for every $Y \in \mathcal{G}$.

- Compute $(\zeta^{\uparrow} \mathbf{1}_{\mathcal{F}})(Z)$ for all $Z \in \downarrow \mathcal{G}$ in $O(|\downarrow supp(\mathbf{1}_{\mathcal{F}})|) = O^*(|\downarrow \mathcal{F}|)$ time; from this compute f(Z) easily.
- **2** Compute $(\zeta f)(Y)$ for all $Y \in \mathcal{G}$ in $O^*(\downarrow \mathcal{G})$ time.

Total running time: $O^*(|\downarrow \mathcal{F}| + |\downarrow \mathcal{G}|)$

Łukasz Kowalik (UW)

Algorithm

- Compute b_j^Y for every $Y \in \mathcal{G}$ and j = 0, ..., n in $O^*(|\downarrow \mathcal{F}| + |\downarrow \mathcal{G}|)$ time,
- Por every Y ∈ G, solve the system of linear equations with indeterminates x_ℓ^Y, ℓ = 0,..., n, using Gaussian Elimination in O(n³) time. (Actually one can derive an explicit formula, skipped here.)

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathcal{F}, \mathcal{G} \subseteq 2^U$, the values of

$$\iota_{\mathfrak{F}}(Y,\ell) = |\{X \in \mathfrak{F} : |X \cap Y| = \ell\}|$$

for all $Y \in \mathfrak{G}$, $\ell = 0, \ldots, n$ can be found in $O^*(|\downarrow \mathfrak{F}| + |\downarrow \mathfrak{G}|)$ time.

With minor modifications to what we have just seen we can show:

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathfrak{F}, \mathfrak{G} \subseteq 2^U$, and a function $f : \mathfrak{F} \to \mathbb{N}$, the values of

$$f\iota(Y,\ell) = \sum_{\substack{X\in\mathcal{F}\|X\cap Y\|=\ell}} f(X)$$

for all $Y \in \mathfrak{G}$, $\ell = 0, \ldots, n$ can be found in $O^*(|\downarrow \mathfrak{F}| + |\downarrow \mathfrak{G}|)$ time.

(By putting $f = \mathbf{1}_{\mathcal{F}}$ we get the previous version.)

Corollary

Given two functions $f,g:{U \choose q} o \mathbb{N}$, we can compute the number

$$f \boxtimes_{\ell} g = \sum_{\substack{X,Y \in \binom{U}{q} \\ |X \cap Y| = \ell}} f(X)g(Y)$$

for all $\ell = 0, \ldots, n$ in $O^*(n^q)$ time.

With minor modifications to what we have just seen we can show:

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathfrak{F}, \mathfrak{G} \subseteq 2^U$, and a function $f : \mathfrak{F} \to \mathbb{N}$, the values of

$$f\iota(Y,\ell) = \sum_{\substack{X\in\mathcal{F}\|X\cap Y\|=\ell}} f(X)$$

for all $Y \in \mathfrak{G}$, $\ell = 0, \ldots, n$ can be found in $O^*(|\downarrow \mathfrak{F}| + |\downarrow \mathfrak{G}|)$ time.

(By putting $f = \mathbf{1}_{\mathcal{F}}$ we get the previous version.)

Corollary

Given two functions $f,g: {U \choose q} o \mathbb{N}$, we can compute the number

$$f \boxtimes_{\ell} g = \sum_{\substack{X,Y \in \binom{U}{q} \\ |X \cap Y| = \ell}} f(X)g(Y) = \sum_{Y \in \binom{U}{q}} g(Y) \sum_{\substack{X \in \binom{U}{q} \\ |X \cap Y| = \ell}} f(X)$$

for all $\ell = 0, \ldots, n$ in $O^*(n^q)$ time.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2008)

Given $\mathfrak{F}, \mathfrak{G} \subseteq 2^U$, the values of

$$\iota_{\mathfrak{F}}(Y,\ell) = |\{X \in \mathfrak{F} : |X \cap Y| = \ell\}|$$

for all $Y \in \mathfrak{G}$, $\ell = 0, \ldots, n$ can be found in $O^*(|\downarrow \mathfrak{F}| + |\downarrow \mathfrak{G}|)$ time.

Corollary

Given two functions $f,g:{U \choose q} o \mathbb{N}$, we can compute the number

$$f \boxtimes_{\ell} g = \sum_{\substack{X, Y \in \binom{U}{q} \\ |X \cap Y| = \ell}} f(X)g(Y)$$

for all $\ell = 0, \ldots, n$ in $O^*(n^q)$ time.

30

Application: counting k-paths in $O^*(n^{k/2})$ time

Problem

Given a directed graph G = (V, E) count the number of k-vertex paths.

The problem is #W[1]-hard when parameterized by k.

Algorithm (assume w.l.o.g. k is even)

For every $v \in V$ find the number of paths where v is the k/2-th vertex: Define functions $f, g : \binom{V}{k/2} \to \mathbb{N}$

• f(S) is the number of paths P that end in v and V(P) = S;

2 g(S) is the number of paths P that start in v and $V(P) = S \cup \{v\}$.

Compute
$$f \boxtimes_0 g = \sum_{\substack{X,Y \in \binom{V}{k/2} \\ |X \cap Y| = 0}} f(X)g(Y)$$
 in $O^*(n^{k/2})$ time.

Counting *k*-paths by disjoint triples

Algorithm (w.l.o.g. assume k is a multiple of 3)

For every $v_1, v_2 \in V(G)$ count paths where v_i is the $\frac{i}{3}k$ -th vertex: Define functions $f, g, h: \binom{V}{k/3} \to \mathbb{N}$

- f(S) is the number of paths P that end in v_1 and V(P) = S;
- 2 g(S) is the number of paths P from v_1 to v_2 and $V(P) = S \cup \{v_1\}$.

3 h(S) is the number of paths P that start in v_2 and $V(P) = S \cup \{v_2\}$.

Compute
$$\Delta(f,g,h) = \sum_{A,B,C \in \binom{U}{q}} f(A)g(B)h(C).$$

 $|A \cap B| = |A \cap C| = |B \cap C| = \emptyset$

Problem (slightly simplified)

Let $q \leq |U|/3$. Given $\mathfrak{F} \subseteq inom{U}{q}$, compute

$$x_{3q} = |\{(A, B, C) \in \mathcal{F}^3 : |A \cap B| = |A \cap C| = |B \cap C| = \emptyset\}|.$$

Problem (slightly simplified)

Let
$$q \leq |U|/3$$
. Given $\mathfrak{F} \subseteq {U \choose q}$, compute

 $x_{3q} = |\{(A, B, C) \in \mathfrak{F}^3 : |A \cap B| = |A \cap C| = |B \cap C| = \emptyset\}|.$

For a triple $(A, B, C) \in \mathfrak{F}^3$ define

$$type(A, B, C) = |A \oplus B \oplus C|,$$

where \oplus is the symmetric difference (xor).

Problem (slightly simplified)

Let
$$q \leq |U|/3$$
. Given $\mathfrak{F} \subseteq {\binom{U}{q}}$, compute

 $x_{3q} = |\{(A, B, C) \in \mathfrak{F}^3 : |A \cap B| = |A \cap C| = |B \cap C| = \emptyset\}|.$

For a triple $(A, B, C) \in \mathfrak{F}^3$ define

$$type(A, B, C) = |A \oplus B \oplus C|,$$

where \oplus is the symmetric difference (xor). Note: $|A \oplus B \oplus C| \equiv |A| + |B| + |C| = 3q \equiv q \pmod{2}$.

Problem (slightly simplified)

Let
$$q \leq |U|/3$$
. Given $\mathfrak{F} \subseteq {\binom{U}{q}}$, compute

 $x_{3q} = |\{(A, B, C) \in \mathfrak{F}^3 : |A \cap B| = |A \cap C| = |B \cap C| = \emptyset\}|.$

For a triple $(A, B, C) \in \mathcal{F}^3$ define

$$type(A, B, C) = |A \oplus B \oplus C|,$$

Auxiliary indeterminates $\left(\lfloor \frac{3q}{2} \rfloor \right)$ indeterminates in total) For $j \equiv q \pmod{2}, j \in \{0, \dots, 3q\}$,

$$x_j = \{(A, B, C) \in \mathfrak{F}^3 : |A \oplus B \oplus C| = j\}$$

First source of linear equations: Intersection Parity Counting

Intersection parity

For $W \in 2^U$ and p = 0, 1 let

 $T_{p}(W) = |\{(A, B, C) \in \mathcal{F}^{3} : |(A \oplus B \oplus C) \cap W| \equiv p \pmod{2}\}|$

Linear equations

For
$$\mathit{W} \in inom{U}{\leq i}$$
 and $\mathit{p} = \mathsf{0}, \mathsf{1}$ let

$${\mathcal T}_p(W) = |\{(A,B,C)\in {\mathfrak F}^3: |(A{\oplus}B{\oplus}C){\cap}W| \equiv p \ ({ t mod} \ 2)\}|^2$$

Linear equations

For every
$$i \ge 1$$
, $\sum_{\substack{0 \le j \le 3q \ j \equiv q \pmod{2}}} (n-2j)^i x_j = \sum_{d_1, \dots, d_i \in U} T_0(\oplus \{d_r\}_{r=1}^i) - T_1(\oplus \{d_r\}_{r=1}^i)$

Proof: Let (A, B, C) be a triple of type j. We show that (A, B, C) is counted $(n - 2j)^i$ times in the RHS. Define $v_i^p = |\{(d_1, \ldots, d_i) \in U^i : |(A \oplus B \oplus C) \cap \oplus \{d_r\}_{r=1}^i| \equiv p \pmod{2}\}|$ Then (A, B, C) is counted $v_i^0 - v_i^1$ times in RHS. $\begin{cases}
\underbrace{d_i \notin A \oplus B \oplus C}_{v_i^0 = (n-j)v_{i-1}^0} & \underbrace{d_i \in A \oplus B \oplus C}_{i-1} & v_0^0 = 1, & v_0^1 = 0.\\
\underbrace{v_i^0 = (n-j)v_{i-1}^0}_{v_i^1 - 1} & \underbrace{v_i^0 - v_i^1}_{i-1} & (n-2j)(v_{i-1}^0 - v_{i-1}^1)\\
\underbrace{v_i^1 = jv_{i-1}^0}_{i-1} & +(n-j)v_{i-1}^1
\end{cases}$

Łukasz Kowalik (UW)

August 2013 17 / 30

Computing $b_i = \sum_{d_1,...,d_i \in U} T_0(\oplus \{d_r\}_{r=1}^i) - T_1(\oplus \{d_r\}_{r=1}^i)$ in

 $O^*(n^i + \overline{n^q})$ time

$$T_p(W) = |\{(A, B, C) \in \mathcal{F}^3 : |(A \oplus B \oplus C) \cap W| \equiv p \pmod{2}\}$$

Note: It suffices to compute $T_p(W)$ for every $W \in \binom{U}{\langle j \rangle}$.

$$|(A \oplus B \oplus C) \cap W| = |(A \cap W) \oplus (B \cap W) \oplus (C \cap W)|$$
$$\equiv |A \cap W| + |B \cap W| + |C \cap W| \pmod{2}$$

Observation: $|(A \oplus B \oplus C) \cap W| \equiv 0$ iff

- all $|A \cap W|$, $|B \cap W|$, $|C \cap W|$ even or
- exactly one of $|A \cap W|$, $|B \cap W|$, $|C \cap W|$ even.

Let $n_p(W) = |\{S \in \mathfrak{F} : |S \cap W| \equiv p \pmod{2}\}|$, for p = 0, 1. Then,

$$T_0(W) = n_0(W)^3 + 3n_0(W)n_1(W)^2;$$
 $T_1(W) = |\mathcal{F}|^3 - T_0(W).$

Computing $b_i = \sum_{d_1,...,d_i \in U} T_0(\oplus \{d_r\}_{r=1}^i) - T_1(\oplus \{d_r\}_{r=1}^i)$ in

- $O^*(n^i + n^q)$ time
 - It suffices to compute $T_p(W)$ for every $W \in \binom{U}{\langle i \rangle}$.
 - We showed

$$T_0(W) = n_0(W)^3 + 3n_0(W)n_1(W)^2; \quad T_1(W) = |\mathcal{F}|^3 - T_0(W),$$

where Let $n_p(W) = |\{S \in \mathcal{F} : |S \cap W| \equiv p \pmod{2}\}|$ for $p = 0, 1$.

$$n_p(W) = \sum_{j \equiv p} |\{S \in \mathcal{F} : |S \cap W| = j\}|$$

- We find $\iota_{\mathcal{F}}(W,j) = |\{S \in \mathcal{F} : |S \cap W| = j\}|$ for every j and $W \in \binom{n}{\leq i}$ in $O^*(|\downarrow \mathcal{F}| + |\downarrow \binom{n}{\leq i}|) = O^*(n^q + n^i)$ time using Fast Intersection Transform.
- From the values of $\iota_{\mathcal{F}}(W, j)$ we can compute any value of $n_p(W)$ in $O^*(1)$ time, so b_i can be found in $O(n^i)$ time.

Łukasz Kowalik (UW)

Corollary

The coefficients / constant term of the equation:

$$\sum_{\substack{0 \le j \le 3q \\ i \equiv q \pmod{2}}} (n-2j)^i x_j = \sum_{d_1, \dots, d_i \in U} T_0(\oplus \{d_r\}_{r=1}^i) - T_1(\oplus \{d_r\}_{r=1}^i)$$

can be computed in $O^*(n^i + n^q)$ time, for any $i \ge 0$.

Observation

For the k-path application, q = k/3; If we use only the first source we need $\lfloor \frac{3q}{2} \rfloor + 1 = \lfloor k/2 \rfloor + 1$ equations, which results in total $O^*(n^{k/2})$ time.

Second source of linear equations: computing x_j for small j

Computing x_j for small j: summing over all possible $A \oplus B$

Consider a triple (A, B, C) of type j. Let $\ell = |A \oplus B|$.

Since $|A \oplus B| = |\overrightarrow{A \oplus B \oplus C} \oplus \overrightarrow{C}|$, $q - j \le \ell \le q + j$ Note that $\ell = |A| + |B| - 2|A \cap B| = 2q - 2|A \cap B| \equiv 0 \pmod{2}$. Since $\overrightarrow{|A \oplus B \oplus C|} = \overrightarrow{|A \oplus B|} + \overrightarrow{|C|} - 2|(A \oplus B) \cap C|$, $|(A \oplus B) \cap C| = \frac{\ell + q - j}{2}$

$$x_j = \sum_{\substack{q-j \le \ell \le q+j \\ \ell \equiv 0 \pmod{2}}} \sum_{D \in \binom{U}{\ell}} |\oplus^{-1} (D)| \cdot |\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}|,$$

where $\oplus^{-1}(D) = \{(A, B) \in \mathfrak{F}^2 : A \oplus B = D\}$

$$x_j = \sum_{\substack{q-j \le \ell \le q+j \\ \ell \equiv 0 \pmod{2}}} \sum_{D \in \binom{U}{\ell}} |\oplus^{-1}(D)| \cdot |\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}|,$$

where $\oplus^{-1}(D) = \{(A, B) \in \mathcal{F}^2 : A \oplus B = D\}$

• $|\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}| = \iota_{\mathcal{F}}(D, \frac{\ell+q-j}{2})$ can be computed for all $D \in \binom{U}{\ell}$ in $O^*(|\downarrow\binom{U}{\ell}| + |\downarrow\mathcal{F}|) = O^*(n^{q+j})$ time using fast intersction transform.

• How fast can we compute
$$\oplus^{-1}$$
?

Computing $|\oplus^{-1}(D)| = |\{(A, B) \in \mathfrak{F}^2 : A \oplus B = D\}|$

Let M be a matrix with

- rows indexed by sets $S \in {U \choose \ell/2}$,
- columns indexed by sets $X \in \binom{U}{q-\ell/2}$,
- $M_{SX} = [S \cup X \in \mathcal{F}].$
- Let $B = MM^{T}$. B is indexed by sets $S \in \binom{U}{\ell/2}$.

$$B_{RS} = \sum_{X \in \binom{U}{q-\ell/2}} [R \cup X \in \mathcal{F}] \cdot [S \cup X \in \mathcal{F}] = |\{X \in \binom{U}{q-\ell/2} : R \cup X, S \cup X \in \mathcal{F}\}|.$$

Then,

$$|\oplus^{-1}(D)| = \sum_{R\cup S=D} B_{RS}$$

- B can be computed in $O(\max\{n^{(\omega-2)\ell/2+q}, n^{\omega\ell/2}\})$ time.
- Hence, within the same time we can find $|\oplus^{-1}(D)|$ for all $D \in {U \choose \ell}$.

$$x_{j} = \sum_{\substack{q-j \leq \ell \leq q+j \\ \ell \equiv 0 \pmod{2}}} \sum_{D \in \binom{U}{\ell}} |\oplus^{-1}(D)| \cdot |\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}|,$$

where $\oplus^{-1}(D) = \{(A, B) \in \mathfrak{F}^2 : A \oplus B = D\}$

• $|\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}|$ can be computed for all $D \in {\binom{U}{\ell}}$ in $O^*(|\downarrow {\binom{U}{\ell}}| + |\downarrow \mathcal{F}|) = O^*(n^{q+j})$ time using fast intersction transform.

$$ullet \ \mid \oplus^{-1} (D) ert$$
 can be computed in

$$O(\max\{n^{(\omega-2)\ell/2+q}, n^{\omega\ell/2}\}) = O(\max\{n^{(\omega-2)(q+j)/2+q}, n^{\omega(q+j)/2}\}) = O(\max\{n^{\omega(q+j)/2-j}, n^{\omega(q+j)/2}\}) = O(n^{\omega(q+j)/2})$$

time for all $D \in \binom{U}{\ell}$.

• Overall, x_j can be computed in $O(n^{\omega(q+j)/2})$ time.

Corollary

The constant term of the equation:

$$x_j = \sum_{\substack{q-j \le \ell \le q+j \\ \ell \equiv 0 \pmod{2}}} \sum_{D \in \binom{U}{\ell}} |\oplus^{-1}(D)| \cdot |\{C \in \mathcal{F} : |D \cap C| = \frac{\ell+q-j}{2}\}|$$

can be computed in $O(n^{\omega(q+j)/2})$ time, for any $j=0,\ldots,\lfloor \frac{3q}{2} \rfloor$, $j\equiv q$.

Setting up the system if linear equations

• Pick r equations from the first source :

$$\sum_{\substack{0 \le j \le 3q \\ j \equiv q \pmod{2}}} (n-2j)^{i} x_{j} = \sum_{\substack{d_{1}, \dots, d_{i} \in U \\ d_{1}, \dots, d_{i} \in U}} T_{0}(\oplus \{d_{r}\}_{r=1}^{i}) - T_{1}(\oplus \{d_{r}\}_{r=1}^{i}); \quad i = 0, \dots, r-1$$

in
$$\sum_{i=0}^{r-1} O^*(n^i + n^q) = O^*(n^r + n^q)$$
 time;
• Pick $\lfloor \frac{3q}{2} \rfloor + 1 - r$ equations from the second source:

$$x_j = \sum_{\substack{q-j \le \ell \le q+j \\ \ell \equiv 0 \pmod{2}}} \sum_{D \in \binom{U}{\ell}} |\oplus^{-1}(D)| \cdot \iota_{\mathcal{F}}(D, \frac{l+q-j}{2}), \qquad j \equiv q$$

in
$$O^*(n^{\omega(q+2(\frac{3q}{2}-r))/2}) = O^*(n^{\omega(2q-r)})$$
 time;

• Both running times meet at $r=rac{2\omega q}{1+\omega}pprox 1.408 q$

Łukasz Kowalik (UW)

The missing piece: linear independence

Corollary

One can count disjoint triples of a family of *q*-subsets of *n*-element universe in $O^*(n^{1.408\,q})$ time.

By essentialy the same arguments we can get...

Corollary

One can compute
$$\Delta(f, g, h) = \sum_{\substack{A,B,C \in \binom{U}{q} \\ |A \cap B| = |A \cap C| = |B \cap C| = \emptyset}} f(A)g(B)h(C)$$
 in $O^*(n^{1.408q})$ time.

Corollary

One can count the number of k-paths in an n-vertex graph in $O^*(n^{0.47k})$ time.

Łukasz Kowalik (UW)

August 2013 29 / 30

• • • • • • • • • • •

э

Theorem (Björklund, Kaski, K. 2013)

- One can count disjoint triples of a family of q-subsets of n-element universe in $O^*(n^{1.364q})$ time.
- One can compute $\Delta(f, g, h) = \sum_{\substack{A,B,C \in \binom{U}{q} \\ |A \cap B| = |A \cap C| = |B \cap C| = \emptyset}} f(A)g(B)h(C)$

in $O^*(n^{1.364q})$ time.

- One can count the number of k-paths in an n-vertex graph in $O^*(n^{0.455k})$ time.
- One can count the number of occurences of a fixed k-vertex pathwidth p subgraph in an n-vertex graph in $O^*(n^{0.455k+2p})$ time.