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e we can show the equations are linearly independent,
e we can compute the coefficients and the constant terms of the
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Approach

o We want to compute some quantity xj.
@ We find some related quantities xo, ..., x¢,

@ There are t linear equations in variables xq, ..., x; such that:

e we can show the equations are linearly independent,
e we can compute the coefficients and the constant terms of the
equations efficiently.

@ We solve the system using Gaussian Elimination in O(t%) time. (Or in
O(t¥) time if it matters.)

tukasz Kowalik (UW) Algebraic approach... August 2013 2 /30



Recap: Fast Zeta transform ¢

Let f: 2V &5 N.

Zeta transform

(CH)(X) = Zygx £(Y).

Trimmed zeta transform (Bjorklund, Husfeldt, Kaski, Koivisto)

o For any set family G C 2Y we can compute all values of ¢f|g in
O*(] 4G]) time.
e We can compute all values of ¢f in O*(| tsupp(f)|) time.
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Recap: Fast up-zeta transform ('

Let f: 2V & N.

Up-zeta transform

(CTf)(X) = ZYQX f(y)_

Trimmed up-zeta transform (Bjorklund, Husfeldt, Kaski, Koivisto)

o For any set family G C 2V we can compute all values of ('f|g in
O*(] 1G]) time.
o We can compute all values of (Tf in O*(| Jsupp(f)|) time.
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Intersection Transform

e U is a given set, |U| = n.
o We are given F,G C 2V,
@ For every Y € G and every £ € {0, ..., n},

compute K ! elements

(L Y)={XeTF . XnY|=10}

o n+ 1 indeterminates x,” = 15(¢, Y),
for{=0,...,n Yeg§

@ n+ 1 linear equations?
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Intersection Transform: linear equations

Intersection Transform

Forevery Y € Gand £ € {0,...,n}, find x\ = [{X €F : |[XNY|=1{}]

For every Y € G and j € {0,...,n},

by = ) {XeF:zZCX}=

ZCy
|Z|=j
|XmY|
- EXey y o=y (M) -
ZCY XeTF XeF ZCXNY XeF
\ZI—JZCX |Z|=j
"/
-y > ()=-2() = =)
=0 Xe&TF /=0 XeF /=0
IXNY|=¢ IXNY|=¢
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Intersection Transform: linear equations

Intersection Transform

Forevery Y € Gand £ € {0,...,n}, find x\ = [{X €TF : [XNY|=1{}

For every Y € G we got (n+ 1) linear equations:

Ny
Z(J_)XZY:ij, jZO,...,n

=0
where bJ-Y = Z HX edF : ZC X}
zcy
1Z|=j

@ Since for ¢ < |, (f) =0, and(}) = 1 and the coefficients matrix is
non-singular.
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Intersection Transform: linear equations

Intersection Transform

Forevery Y € Gand £ € {0,...,n}, find x\ = [{X €TF : [XNY|=1{}

For every Y € G we got (n+ 1) linear equations:

Ny
Z(J_)XZY:ij, jZO,...,n

=0
where bJ-Y = Z HX edF : ZC X}
zcy
1Z|=j

@ Since for ¢ < |, (f) =0, and(}) = 1 and the coefficients matrix is
non-singular.

@ The coefficients can be evaluated fast.

@ How fast can we evaluate bjy?
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Evaluating ij forevery Y € Gand j=0,...,n

by = ) {XeF:zZCX}=

ZCY
|Z|=j

= Y Y xed =Y (("15)(2) = (CFY).
Fat Fa

where for every Z € |G,
f(Z) = (C"15)(2) - 112] = J].

Algorithm for evaluating bjy for every Y € G.

© Compute (¢T15)(Z) for all Z € 1S in O(| {supp(1g)|) = O*(| 1)
time; from this compute f(Z) easily.

@ Compute (¢F)(Y) for all Y € G in O*(]9) time.

Total running time: O*(| {F] +1{9]|)
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Intersection Transform Algorithm

Algorithm

O Compute bjy forevery Y €Gand j=0,...,nin O*(| JF| +| 1G|)
time,

@ For every Y € G, solve the system of linear equations with
indeterminates x,”, £ =0,...,n, using Gaussian Elimination in O(n%)
time. (Actually one can derive an explicit formula, skipped here.)

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G C 2Y, the values of

(Y, ) =[{XeF : XNY|=0¢)

forall Y € G, £=0,...,n can be found in O*(| JF| + | }9]|) time.
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With minor modifications to what we have just seen we can show:

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G C 2Y, and a function f : ¥ — N, the values of

fu(Y,0) = Z f(X

|xm/| ¢

forall Y € G, £=0,...,n can be found in O*(| JF| + | }9]|) time.

(By putting f = 15 we get the previous version.)

Corollary

U
q

fReg= Y f(X)g(Y)
xve(Y)
IXNY|=¢

forall £=0,...,nin O*(n9) time.
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With minor modifications to what we have just seen we can show:

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G C 2Y, and a function f : ¥ — N, the values of

fu(Y,0) = Z f(X

|xm/| ¢

forall Y € G, £=0,...,n can be found in O*(| JF| + | }9]|) time.

(By putting f = 15 we get the previous version.)

Corollary

U
q

fRog= Y f(X)g(Y)= ) s(Y) > f(X
X, Ye(q) ve(q) Xe(])
|XnY|=t IXNY|=¢
forall £=0,...,nin O*(n9) time.
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Fast Intersection Trasform

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

Given F,G C 2Y, the values of
(Y, 0)={XeF : [ XNY|=1{}

forall Y € G, £=0,...,n can be found in O*(| JF| + | 1G]|) time.

Corollary

U

Given two functions f, g : (q

) = N, we can compute the number

fReg= Y f(X)&(Y)
X,ve(q)
IXNY|=¢

forall £=0,...,nin O*(n9) time.

4
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Application: counting k-paths in O*(n*/?) time

Problem
Given a directed graph G = (V, E) count the number of k-vertex paths.

The problem is #W/[1]-hard when parameterized by k.
f g

%
*—eo—© *—© @ @ L

Algorithm (assume w.l.o.g. k is even)

For every v € V find the number of paths where v is the k/2-th vertex:
Define functions f, g : (k‘//2) — N

@ 1(S) is the number of paths P that end in v and V(P) = S;
@ g(S) is the number of paths P that start in v and V(P) =S U {v}.
Compute f Xg g = Z f(X)g(Y) in O*(n*/?) time.

X’Ye(k‘//2)
IXNY|=0
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Counting k-paths by disjoint

Algorithm (w.l.o.g. assume k is a multiple of 3)

For every vi, v, € V(G) count paths where v; is the £k-th vertex:
Define functions f, g, h : (k/3) — N
Q 1(S) is the number of paths P that end in v; and V(P) = S;
@ g(S) is the number of paths P from v; to v» and V(P) =S U {v}.
@ h(S) is the number of paths P that start in v» and V(P) =S U {w}.
Compute A(f, g, h Z f(A)g(B)h(C).

AB,Ce(Y)
|ANB|=|ANC|=|BNC|=0
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Counting disjoint triples

Problem (slightly simplified)

Let g < |U|/3. Given F C (g) compute

x3g = |{(A,B,C) € F® : |JANB|=|ANC|=|BNC|=0}|

tukasz Kowalik (UW Algebraic approach... August 2013 14 / 30
g
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Problem (slightly simplified)
Let g < |U|/3. Given F C (g) compute
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For a triple (A, B, C) € F3 define A

type(A, B, C) =A@ Bo C|,

where @ is the symmetric difference (xor).
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Counting disjoint triples

Problem (slightly simplified)
Let g < |U|/3. Given F C (g) compute

x3g = |{(A,B,C) € F® : |JANB|=|ANC|=|BNC|=0}|

For a triple (A, B, C) € F3 define A
type(A, B, C) =A@ Bo C|,

where @ is the symmetric difference (xor).
Note: |[A® B® C| = |A|+ |B|+|C| =39 =g (mod 2).
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Counting disjoint triples

Problem (slightly simplified)
Let g < |U|/3. Given F C (g) compute

x3g = |{(A,B,C) € F® : |JANB|=|ANC|=|BNC|=0}|

For a triple (A, B, C) € F3 define A

type(A, B, C) =A@ Bo C|,

where @ is the symmetric difference (xor).
Note: |[A® B® C| = |A|+ |B|+|C| =39 =g (mod 2).

Auxiliary indeterminates (| 3Z] indeterminates in total)

For j = g (mod 2), j € {0,...,3q},

xi=1{(AB,C)eF : [A®Ba (| =}
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First source of linear equations:
Intersection Parity Counting
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Intersection parity

For W €2V and p=0,1 let

To(W)=|{(A,B,C) T |[(AeBa C)NW|=p(mod 2)}|
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Linear equations

w
For W e (Z;) and p=0,1 let

; A B
To(W) = [{(A, B, C) € F* : |(A®B&C)NW| = p (mod 2)}] -

Linear equations

For every i > 1, Z (n— 2j)in :ZTO(GB{dr}i:l) = Tl(@{dr}izl)

0<j<3q di,...,d;€U
Jj=q (mod 2)

Proof: Let (A, B, C) be a triple of type j.

We show that (A, B, C) is counted (n — 2j) times in the RHS.

Define v = |{(d1,...,di) e U : |(AeB® C)N@{d,}i_;| = p (mod 2)}|
Then (A, B, C) is counted v? — v} times in RHS.

diAGBHC d;ceADB®C VO -1 V1 =0
0 /—/T r-’l\ 0 ’ 0 )
vi=(n—Jjviii + Jvia Vvt = (n=2)(, —vi))
vi = v, +(n—j)vi, = (n—2j)".
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Computing b; = Z To(@{dr}izl) - Tl(@{dr}izl) in

_ dy,...dicU
O*(n" + n9) time
To(W) = [{(A,B,C) € T : |(A&BaC)NW/| = p (mod 2)}|

Note: It suffices to compute T,(W) for every W € (g,) C

(AeBa C)NW|=|(AnW)a (BN W) (Cn W)
=|ANW|+[BNW|+|CnW| (mod?2)

Observation: (A& B @ C)NW|=0iff
e all [ AnW]|, |IBNW]|, |CnN W] even or
e exactly one of |AN W], |[BN W/, |CN W] even.
Let np(W)={S € F:|SNW|=p (mod 2)}|, for p=0,1. Then,

To(W) = ng(W)? + 3ng(W)ny (W)?;,  To(W) = |F2 — To(W).

18 / 30
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Computing b; = Z To(@{dr}izl) - Tl(@{dr}izl) in

_ dh,....dieU
O*(n" + n9) time

o It suffices to compute T,(W) for every W € (V).
e We showed

To(W) = no(W)* + 3no(W)m(W)*  Ti(W) = |F1° — To(W),
where Let n,(W) =|{S e F:[SNW|=p (mod 2)}| for p=0,1.

°
mp(W)=>_[{S e T |sSnw|=j}]
j=p

e We find 15(W,j) = |{S € F:|SN W|=,}| for every j and WE( P
in O*(| {F] + | L(Z2)]) = O*(n9 + n') time using Fast Intersection
Transform.

@ From the values of t5(W,j) we can compute any value of ny(W) in
O*(1) time, so b; can be found in O(n") time.
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First source of linear equations: Summary

Corollary

The coefficients / constant term of the equation:

Yo (n=2))x= Y To(®{d}iy) — Tu(®{d:}/)

0<j<3q d,...,dicU
Jj=q (mod 2)

can be computed in O*(n’ + n9) time, for any i > 0.

Observation

| \

For the k-path application, g = k/3;
If we use only the first source we need |3 | +1 = |k/2] + 1 equations,
which results in total O*(n*/?) time.
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Second source of linear equations:
computing x; for small j
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Computing x; for small j: summing over all possible A® B

Consider a triple (A, B, C) of type j. Let £ = |A® B|.
J q
. —_— =
Since [ A@B|=|A¢BaCas C |,
g—j<l<q+j

Note that £ = |A| + |B| —2|ANB| =2q —2|AN B| =0 (mod 2).
j ? q

. —— =
Since [ A@Ba C|=]A®B|+ |C|] =2|(Ae B)N (],

i
(Ae B)NC| =

5= Z Z\@ |-{CeT : |DnC| =Ygy,

q—j<t<q+j
(=0 (mod 2) DE( )

where ©~1(D) = {(A,B) € 72 : A® B =D}
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Computing x; for small j: summing over all possible A® B

= Z Z\@ |-{CeF : |DNC| =45y,

q—j<l<q+j pe
¢=0 (mod 2) ( )

where @~ 1(D) = {(A,B) € 72 : A9 B =D}

o {CeTF : IDNC|= ”%H =15(D, H%) can be computed for
all D€ () in 0*(| L(Y)| + | 1F]) = O*(n9%) time using fast
intersction transform.

e How fast can we compute ¢~ 17
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Computing | @1 (D)| = |{(A,B) € 372 : A® B = D}|

Let M be a matrix with
@ rows indexed by sets S € (;/2),

@ columns indexed by sets X € (q—%/2)’
° MSX:[SUXGSF].
Let B = MMT. B is indexed by sets S € (,,).

Brs :Z[RUX e F[SUX e Fl={X € <q _U€/2> : RUX,SUX € F}.

Xe(q—’éﬁ)

Then, | &~ (D) = Xgus—p Brs
o B can be computed in O(max{n(w=2)¢/2+d nwt/21) time,

o Hence, within the same time we can find | =1 (D)| for all D € ((Z)
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Computing x; for small j: summing over all possible A® B

X = Z Z o~ (D)|-{CeT : |DmC|:%}|7
q—j<t<q+j pe(Y)
(=0 (mod 2)

where ®71(D) = {(A,B) €32 : A® B=D}
o {CeT : |IDN(C|= %H can be computed for all D € (%) in
O*(] i( )|+ | 1F]) = O*(n9™/) time using fast intersction transform.
o | ®71(D)| can be computed in
O(max{n(w—2)f/2+q’ ,,wf/2}) — O(max{n(w—2)(q+j)/2+q, ,,w(q+j)/2}) =
O(max{n®(9t)/2=J pela+D/2}y = O(p(a+)/2)

time for all D € (Ll/)

o Overall, x; can be computed in O(n*(9+)/2) time.
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Second source of linear equations: Summary

Corollary

The constant term of the equation:
_ l+qg—j
xi= Y, Y | (D) {CeF : |[DnC|l=YY
i<0<g+t
éqOJ (m(?d é) DE( )
can be computed in O(nw(q+f)/2) time, for any j =0, ..., L32—qJ j=q.
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Setting up the system if linear equations

o Pick r equations from the first source :

Y (1=2))x =) To(@{d}j—y)~ Ta({d,}=y); i=0,...,r—1
0<j<3q di,...,d;€U
Jj=q (mod 2)

in Y1=5 O*(n' + n9) = O*(n" + n9) time;
e Pick L‘%qj + 1 — r equations from the second source:

=y > e D) (D, ), j=gq

9-j<t<q+j pe(Y)
¢=0 (mod 2)

in O*(n*(@ 25 =)/2) _ O%(44(21)) time;
@ Both running times meet at r = lziq ~ 1.408q
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The missing piece: linear independence

Vandermonde matrix

( //

first source < {(n— 2j)i};J:o... r—1

second source 0

Identity matrix
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Conclusion

One can count disjoint triples of a family of g-subsets of n-element

1.408q)

universe in O*(n time.

By essentialy the same arguments we can get...

One can compute A(f, g, h) Z f(A )A(C) in O*(nt4989) time.

A,B,Ce( )
|ANB|=|ANC|=|BNC|=0

0.47k)

One can count the number of k-paths in an n-vertex graph in O*(n
time.
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After some improvements...

Theorem (Bjorklund, Kaski, K. 2013)

@ One can count disjoint triples of a family of g-subsets of n-element
universe in O*(n'-3%49) time.

@ One can compute A(f, g, h Z f(A)g(B)h(C)

A,B,Ce(q)
|ANB|=|ANC|=|BNC|=0

in O*(n'-3%49) time.

@ One can count the number of k-paths in an n-vertex graph in
O*(n%435k) time.

@ One can count the number of occurences of a fixed k-vertex

pathwidth p subgraph in an n-vertex graph in O*(n%4%%k+2P) time.
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