Algebraic approach to exact algorithms, Part III: Polynomials over finite fields of characteristic two

Łukasz Kowalik

University of Warsaw

ADFOCS, Saarbrücken, August 2013

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Sample values $a_1, a_2, ..., a_n$ from S uniformly at random. Then,

$$\Pr[p(a_1, a_2, \ldots, a_n)] = 0] \leq d/|S|.$$

A typical application

- We can efficiently evaluate a polynomial p of degree d.
- We want to test whether *p* is a non-zero polynomial.
- Then, we pick S so that $|S| \ge 2d$ and we evaluate p on a random vector $\mathbf{x} \in S^n$. We answer YES iff we got $p(\mathbf{x}) \ne 0$.
- If p is the zero polynomial we always get NO, otherwise we get YES with probability at least ¹/₂.
- This is called a Monte-Carlo algorithm with one-sided error.

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size *s* can have $2^{\Omega(s)}$ different monomials: $(x_1 + x_2)(x_1 - x_3)(x_2 + x_4)\cdots$.

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size *s* can have $2^{\Omega(s)}$ different monomials: $(x_1 + x_2)(x_1 - x_3)(x_2 + x_4)\cdots$.

Solution

Test whether the polynomial P-Q is non-zero using the Schwartz-Zippel Lemma.

Theorem

Polynomial equality testing for two polynomials represented by circuits of size at most s can be solved in O(s) time with a Monte Carlo algorithm with one-sided error probability bounded by 1/2.

Image: A math a math

Question

What if the bound of 1/2 for the probability of success is not enough for us?

Question

What if the bound of 1/2 for the probability of success is not enough for us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least one YES. Then,

$$Pr[error] \leq rac{1}{2^{1000}}$$

Note

The probability that an earthquake destroys the computer is probably higher than $\frac{1}{2^{1000}}$...

Łukasz Kowalik (UW)

In what follows, we use finite fields of size 2^k . We need to know just three things about such fields:

- They exist (for every $k \in \mathbb{N}$),
- We can perform arithmetic operations fast, in $O(k \log k \log \log k)$ time,
- They are of characteristic two, i.e. 1 + 1 = 0.
- In particular, for any element a, we have

$$a+a=a\cdot(1+1)=a\cdot 0=0$$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

A few facts

• NP-complete (why?)

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Kneis, Mölle, Richter, Rossmanith 2006: $O(4^k n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Kneis, Mölle, Richter, Rossmanith 2006: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Kneis, Mölle, Richter, Rossmanith 2006: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: $O(2^k n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Kneis, Mölle, Richter, Rossmanith 2006: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: $O(2^k n^{O(1)})$
- Björklund 2010: $O(1.66^n n^{O(1)})$, undirected Hamiltonian cycle (k = n)

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Kneis, Mölle, Richter, Rossmanith 2006: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: $O(2^k n^{O(1)})$
- Björklund 2010: $O(1.66^n n^{O(1)})$, undirected Hamiltonian cycle (k = n)
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O(1.66^k n^{O(1)})$, undirected

k-path in $O^*(2^k)$ -time

< 一型

$[k] = \{1, \ldots, k\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rough idea

• Want to construct a polynomial P, $P \not\equiv 0$ iff G has a k-path.

Rough idea

• Want to construct a polynomial P, $P \not\equiv 0$ iff G has a k-path.

• First try:
$$P(\dots) = \sum_{\substack{k \text{-path } R \text{ in } G}} \text{monomial}(R).$$

Seems good, but how to evaluate it?

Rough idea

- Want to construct a polynomial P, $P \not\equiv 0$ iff G has a k-path.
- First try: $P(\dots) = \sum_{\substack{k \text{-path } R \text{ in } G}} \text{monomial}(R).$ Seems good, but how to evaluate it?
- Second try: $P(\dots) = \sum_{\substack{k \text{-walk } W \text{ in } G}} \text{monomial}(W).$

Now we **can** evaluate it but we may get false positives.

Rough idea

- We still can evaluate it,
- It turns out that every monomial corresponding to a walk which is not a path appears an even number of times so it cancels-out!

Our Hero

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W = v_1, \dots, v_k} \sum_{\substack{\ell: [k] \to [k] \\ \ell \text{ is bijective}}} \underbrace{\prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^k y_{v_i, \ell(i)}}_{\text{mon}_{W, \ell}}$$

Variables:

- a variable x_e for every $e \in E$,
- a variable $y_{v,\ell}$ for every $v \in V$ and $\ell \in [k]$.

Łukasz Kowalik (UW)

• Let $W = v_1, \ldots, v_k$ be a walk, and a bijection $\ell \in S_k$.

- Let $W = v_1, \ldots, v_k$ be a walk, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise.} \end{cases}$$

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise}. \end{cases}$$

• $(W, \ell) \neq (W, \ell')$ since ℓ is injective.

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise} \end{cases}$$

•
$$(W, \ell) \neq (W, \ell')$$
 since ℓ is injective.
• $mon_{W,\ell} = \prod_{i=1}^{k-1} x_{v_i,v_{i+1}} \prod_{i=1}^{k} y_{v_i,\ell(i)} = \prod_{i=1}^{k-1} x_{v_i,v_{i+1}} \prod_{i \in [k] \setminus \{a,b\}} y_{v_i,\ell(i)} \underbrace{y_{v_a,\ell(a)}}_{y_{v_b,\ell'(b)}} \underbrace{y_{v_b,\ell(b)}}_{y_{v_a\ell'(a)}} = mon_{W,\ell'}$

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise}. \end{cases}$$

• $(W, \ell) \neq (W, \ell')$ since ℓ is injective.

• $\operatorname{mon}_{W,\ell} = \operatorname{mon}_{W,\ell'}$

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise}. \end{cases}$$

- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $\operatorname{mon}_{W,\ell} = \operatorname{mon}_{W,\ell'}$
- If we start from (W, ℓ') and follow the same way of assignment we get (W, ℓ) back. (This is called <u>a fixed-point free involution</u>)

- Let $W=v_1,\ldots,v_k$ be a walk, and a bijection $\ell\in S_k.$
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell':[k]
 ightarrow [k]$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise}. \end{cases}$$

- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $\operatorname{mon}_{W,\ell} = \operatorname{mon}_{W,\ell'}$
- If we start from (W, ℓ') and follow the same way of assignment we get (W, ℓ) back. (This is called <u>a fixed-point free involution</u>)
- Since the field is of characteristic 2, $mon_{W,\ell}$ and $mon_{W,\ell'}$ cancel out!

Corollary

If $P \neq 0$ then there is a k-path.

Łukasz Kowalik (UW)

э

The second half

Question

Why do we need exactly $\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k-1} x_{v_i,v_{i+1}} \prod_{i=1}^{k} y_{v_i,\ell(i)}$? What if, say, $\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k} y_{v_i,\ell(i)}$?

The second half

Question

Why do we need exactly
$$\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k-1} x_{v_i,v_{i+1}} \prod_{i=1}^{k} y_{v_i,\ell(i)}$$
?
What if, say, $\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k} y_{v_i,\ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The second half

Question

Why do we need exactly
$$\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k-1} x_{v_i,v_{i+1}} \prod_{i=1}^{k} y_{v_i,\ell(i)}$$
?
What if, say, $\operatorname{mon}_{W,\ell} = \prod_{i=1}^{k} y_{v_i,\ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then $P \not\equiv 0$.

Corollary

There is a k-path in G iff $P \not\equiv 0$.

The missing element

How to evaluate P efficiently? ($O^*(2^k)$ is efficiently enough.)

Weighted inclusion-exclusion

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Let $w : U \to F$ be a weight function. For any $X \subseteq U$ denote $w(X) = \sum_{x \in X} w(x)$. Let us also denote $\bigcap_{i \in \emptyset} (U - A_i) = U$.

Then,

$$w\left(\bigcap_{i\in[n]}A_i\right)=\sum_{X\subseteq[n]}(-1)^{|X|}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

Weighted inclusion-exclusion

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Let $w : U \to F$ be a weight function. For any $X \subseteq U$ denote $w(X) = \sum_{x \in X} w(x)$. Let us also denote $\bigcap_{i \in \emptyset} (U - A_i) = U$.

Then,

$$w\left(\bigcap_{i\in[n]}A_i\right)=\sum_{X\subseteq[n]}(-1)^{|X|}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

Counting over a field of characteristic 2 we know that -1 = 1 so we can remove the $(-1)^{|X|}$:

$$w\left(\bigcap_{i\in[n]}A_i\right)=\sum_{X\subseteq[n]}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

Łukasz Kowalik (UW)

Evaluating $P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W} \sum_{\substack{\ell: [k] \to [k] \\ \ell \text{ is bijective}}} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})$

Fix a walk W.

•
$$U = \{\ell : [k] \rightarrow [k]\}$$
 (all functions)
• for $\ell \in U$, define the weight $w(\ell) = \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y})$.
• for $i = 1, \dots, k$ let $A_i = \{\ell \in U : \ell^{-1}(i) \neq \emptyset\}$.
• Then,

$$\sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is bijective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = \sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is surjective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = w(\bigcap_{i=1}^{r} A_i).$$

• By weighted I-E,

$$\sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is surjective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = \sum_{X\subseteq[k]} w\left(\bigcap_{i\in X} (U-A_i)\right) = \sum_{\substack{X\subseteq[k]\\\ell:[k]\to[k]\setminus X}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) + \sum_{\substack{X\subseteq[k]\\Kukasz Kowalik}} \sum_{\{UW\}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) + \sum_{\{W_i\in X\}} \sum_{\{W_i\in X\}} \sum_{\{W_i\in X\}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) + \sum_{\{W_i\in X\}} \sum_{\{W_i\in X\}}$$

Evaluating $P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W} \sum_{\substack{\ell: [k] \to [k] \\ \ell \text{ is bijective}}} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})$

Fix a walk W.

•
$$U = \{\ell : [k] \rightarrow [k]\}$$
 (all functions)
• for $\ell \in U$, define the weight $w(\ell) = \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y})$.
• for $i = 1, \dots, k$ let $A_i = \{\ell \in U : \ell^{-1}(i) \neq \emptyset\}$.
• Then,

$$\sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is bijective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = \sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is surjective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = w(\bigcap_{i=1}^{n} A_i).$$

• By weighted I-E,

$$\sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is surjective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = \sum_{X\subseteq[k]} w\left(\bigcap_{i\in X} (U-A_i)\right) = \sum_{X\subseteq[k]} \sum_{\substack{\ell:[k]\to X}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y})$$

Łukasz Kowalik (UW)

August 2013 16 / 38

We got

$$\sum_{\substack{\ell:[k]\to[k]\\\ell \text{ is bijective}}} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y}) = \sum_{X\subseteq[k]} \sum_{\ell:[k]\to X} \operatorname{mon}_{W,\ell}(\mathbf{x},\mathbf{y})$$

Hence,

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W} \sum_{X \subseteq [k]} \sum_{\ell : [k] \to X} \min_{W, \ell}(\mathbf{x}, \mathbf{y})$$
$$= \sum_{X \subseteq [k]} \sum_{\text{walk } W} \sum_{\ell : [k] \to X} \min_{W, \ell}(\mathbf{x}, \mathbf{y})$$
$$\xrightarrow{P_X(\mathbf{x}, \mathbf{y})}$$

< 口 > < 同

э

Evaluating $P_X(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{of length } k}} \sum_{\substack{\ell:[k] \to X \\ k}} \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y}) \text{ in } n^{O(1)}$

We use dynamic programming. (How?)

Evaluating $P_X(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{of length } k}} \sum_{\substack{\ell:[k] \to X \\ k}} \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y}) \text{ in } n^{O(1)}$

We use dynamic programming. (How?) Fill the 2-dimensional table *T*,

$$T[v,d] = \sum_{\substack{\text{walk } W = v_1, \dots, v_d \\ v_1 = v}} \sum_{\substack{\ell:[k] \to X}} \prod_{i=1}^{d-1} x_{v_i, v_{i+1}} \prod_{i=1}^d y_{v_i, \ell(i)}$$

Then,

$$\mathcal{T}[v,d] = \begin{cases} \sum_{l \in X} y_{vl} & \text{when } d = 1, \\ \sum_{l \in X} y_{vl} \sum_{(v,w) \in E} x_{vw} \cdot \mathcal{T}[w,d-1] & \text{otherwise.} \end{cases}$$

Hence, $P_X(\mathbf{x}, \mathbf{y}) = \sum_{s \in V} T[s, k]$ can be computed in O(k|E|) time.

Łukasz Kowalik (UW)

August 2013

18 / 38

Corollary

The k-path problem can be solved by a $O^*(2^k)$ -time polynomial space one-sided error Monte-Carlo algorithm.

k-path in undirected bipartite graphs in $O^*(2^{k/2})$ time

k-path in undirected bipartite graphs in $O^*(2^{k/2})$ time

Łukasz Kowalik (UW)

August 2013 21 / 38

ldea

Label vertices of V_1 only.

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W = v_1, \dots, v_k} \sum_{\substack{\ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k/2} y_{v_{2i-1}, \ell(i)}$$

Variables:

- a variable x_e for every $e \in E$ $(x_u v = x_v u)$,
- a variable $y_{v,\ell}$ for every $v \in V$ and $\ell \in [k/2]$.

Paths do not cancel-out

If there is a k-path with an endpoint in V_1 then $P \not\equiv 0$. (Proof: We can recover (W, ℓ) from mon_{W,\ell} as before.)

Checking the hero

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W = v_1, \dots, v_k} \sum_{\substack{\ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k/2} y_{v_{2i-1}, \ell(i)}$$

Do non-path walks cancel-out?

Consider a non-path labelled walk (W, ℓ) , $W = v_1, \ldots, v_k$. Case 1 If exist i, j, i < j s.t. $v_i = v_j, v_i \in V_1$: pick lexicographically first such pair; both v_i and v_j have labels so we **swap labels** as before.

Case 2 As in Case 1, but $v_i \in V_2$ and Case 1 does not occur: reverse the cycle:

• $\operatorname{mon}_{W,\ell} = \operatorname{mon}_{W',\ell'}$,

• from
$$(W',\ell')$$
 we get (W,ℓ)

• Does
$$(W, \ell) \neq (W', \ell')$$
 ?

Checking the hero

$$\bigwedge P(\mathbf{x}, \mathbf{y}) = \sum_{\text{walk } W = v_1, \dots, v_k} \sum_{\substack{\ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k/2} y_{v_{2i-1}, \ell(i)}$$

Do non-path walks cancel-out?

Consider a non-path labelled walk (W, ℓ) , $W = v_1, \ldots, v_k$. Case 1 If exist i, j, i < j s.t. $v_i = v_j, v_i \in V_1$: pick lexicographically first such pair; both v_i and v_j have labels so we **swap labels** as before.

Case 2 As in Case 1, but $v_i \in V_2$ and Case 1 does not occur: reverse the cycle:

Łukasz Kowalik (UW)

August 2013 25 / 38

Fixing the hero

Admissible walks

Walk v_1, \ldots, v_k is admissible if: For every $i = 1, \ldots, k - 2$, if $v_i \in V_2$ and $v_{i+1} \in V_1$ then $v_{i+2} \neq v_i$. k/2k-1 $\sum_{i=1}^{n} \sum_{v_{i},v_{i+1}} \prod_{i=1}^{r} y_{v_{2i-1},\ell(i)}$ $P(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W = v_1, \dots, v_k \\ W \text{ is admissible}}} \sum_{\substack{\ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \prod_{i=1} x_{v_i, v_{i+1}} \prod_{i=1}$ mon_{W.ℓ}

(日) (型) (三) (

Checking the fixed hero

W' is admissible.

Evaluating $P(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{admissible walk } W \ \ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \min_{W, \ell} (\mathbf{x}, \mathbf{y})$

As before, from inclusion-exclusion principle we can get

$$\sum_{\substack{\ell: [k/2] \to [k/2] \\ \ell \text{ is bijective}}} \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y}) = \sum_{X \subseteq [k/2]} \sum_{\ell: [k/2] \to X} \operatorname{mon}_{W,\ell}(\mathbf{x}, \mathbf{y})$$

Hence, as before:

ł

$$P(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{admissible walk} \ W \ X \subseteq [k/2] \ \ell: [k/2] \to X \ X \subseteq [k/2]}} \sum_{\substack{W \ X \subseteq [k/2] \ \ell: [k/2] \to X \ Y \ K, \mathbf{y})}} = \sum_{\substack{X \subseteq [k/2] \ ext{admissible walk} \ W \ \ell: [k/2] \to X \ Y \ \ell: [k/2] \to X \ Y \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \sum_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \sum_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \sum_{\substack{W \ K, \mathbf{y} \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y}}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y})}} \max_{\substack{W \ \ell: [k/2] \ K, \mathbf{y}}} \max_{\substack{W \$$

Note: Only $2^{k/2}$ polynomials P_X to evaluate.

Łukasz Kowalik (UW)

28 / 38

Evaluating $P_X(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{admissible} \\ walk W \\ \text{of length } k}} \sum_{\substack{k \geq 2 \\ k \neq k}} \min_{W, \ell} \text{ in poly-time}$

Dynamic programming:

$$T[v, w, d] = \sum_{\substack{\text{admissible walk} \\ W = v_1, \dots, v_d \\ v_1 = v \\ v_2 = w}} \sum_{\substack{\ell: [k/2] \to X \\ i = 1 \\ i = 1}} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k/2} y_{v_{2i-1}, \ell(i)}$$

$$T[v, w, d] = \begin{cases} x_{vw} \sum_{l \in X} y_{vl} & \text{when } d = 2 \text{ and } v \in V_1, \\ x_{vw} \sum_{l \in X} y_{wl} & \text{when } d = 2 \text{ and } v \in V_2, \\ \sum_{l \in X} y_{vl} \sum_{vw} x_{vw} \cdot T[w, u, d-1] & \text{when } d > 2 \text{ and } v \in V_1, \\ \sum_{\substack{l \in X \ (w,u) \in E \\ u \neq v}} x_{vw} \cdot T[w, u, d-1] & \text{when } d > 2 \text{ and } v \in V_2. \end{cases}$$

August 2013 29 / 38

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected bipartite graphs can be solved in $O^*(2^{k/2}) = O^*(1.42^k)$ time and polynomial space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected bipartite graphs can be solved in $O^*(2^{k/2}) = O^*(1.42^k)$ time and polynomial space.

Łukasz Kowalik (UW)

- Choose a random bipartition $V = V_1 \cup V_2$, $||V_1| |V_2|| \le 1$. (V_1 and V_2 need not be independent now.)
- Where does the bipartite case algorithm fail?

$$W \xrightarrow{v_i = v_j} W' \xrightarrow{v_i = v_j} V_i = v_j$$

Then $(W, \ell) = (W', \ell')$.

- Choose a random bipartition $V = V_1 \cup V_2$, $||V_1| |V_2|| \le 1$. (V_1 and V_2 need not be independent now.)
- Where does the bipartite case algorithm fail?

$$W \xrightarrow{v_i = v_j} W' \xrightarrow{v_i = v_j}$$

Then $(W, \ell) = (W', \ell')$.
What if we forbid also \rightarrow ?

- Choose a random bipartition $V = V_1 \cup V_2$, $||V_1| |V_2|| \le 1$. (V_1 and V_2 need not be independent now.)
- Where does the bipartite case algorithm fail?

• Forbidden configuration as before:

 Add more labels: label each V₂ V₂-edge:

Now $\ell' \neq \ell$.

- a different label for each $i=1,\ldots,k$ s.t. $v_i\in V_1$
- a different label for each $i=1,\ldots,k$ s.t. $v_iv_{i+1}\in V_2$

Walk $W = v_1, \ldots, v_k$ is *L*-admissible when

• For every $i = 1, \ldots, k - 2$, if $v_i \in V_2$ and $v_{i+1} \in V_1$ then $v_{i+2} \neq v_i$.

• $|\{i : v_i \in V_1\}| + |\{i : v_i v_{i+1} \in V_2\}| = L$

The ultimate hero

$$P_{L}(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W = v_{1}, \dots, v_{k} \\ W \text{ is } L \text{-admissible}}} \sum_{\substack{\ell: [L] \to [L] \\ \ell \text{ is bijective}}} \prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{L} y_{f(i), \ell(i)},$$

where f(i) = i-th labeled object (V_1 -vertex or V_2V_2 -edge) in walk W.

- We have checked that:
 - $P \not\equiv 0 \Rightarrow \text{exists } k\text{-path}$
 - (i.e. non-path walks cancel-out)

- We have checked that:
 - $P \not\equiv 0 \Rightarrow \text{exists } k\text{-path}$
 - (i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)

- We have checked that:
 - $P \not\equiv 0 \Rightarrow \text{ exists } k\text{-path}$
 - (i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?) it may happen that the only (say) solution P is not L-admissible for all $L \leq \lceil \frac{3}{4}k \rceil$.

• We have checked that:

 $P \not\equiv 0 \Rightarrow \text{exists } k\text{-path}$

- (i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)
 it may happen that the only (say) solution P is not L-admissible for all L ≤ [³/₄k].
- But...

•
$$\mathbb{E}[|\{i : v_i \in V_1\}| + |\{i : v_i v_{i+1} \in V_2\}|] = \frac{k}{2} + \frac{k-1}{4} = \frac{3k-1}{4}$$

• We have checked that:

 $P \not\equiv 0 \Rightarrow \text{exists } k\text{-path}$

- (i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)
 it may happen that the only (say) solution P is not L-admissible for all L ≤ [³/₄k].
- But...

• $\mathbb{E}[|\{i : v_i \in V_1\}| + |\{i : v_i v_{i+1} \in V_2\}|] = \frac{k}{2} + \frac{k-1}{4} = \frac{3k-1}{4}$

• So, by Markov inequality

$$Pr[P ext{ is not } L ext{-admissible for all } L \leq \lceil rac{3}{4}k
ceil] \leq rac{(3k-1)/4}{\lceil rac{3}{4}k
ceil+1} = 1 - 1/O(k)$$

• We have checked that:

 $P \not\equiv 0 \Rightarrow \text{exists } k\text{-path}$

- (i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)
 it may happen that the only (say) solution P is not L-admissible for all L ≤ [³/₄k].
- But...

•
$$\mathbb{E}[|\{i : v_i \in V_1\}| + |\{i : v_i v_{i+1} \in V_2\}|] = \frac{k}{2} + \frac{k-1}{4} = \frac{3k-1}{4}$$

• So, by Markov inequality

$$Pr[P ext{ is not } L ext{-admissible for all } L \leq \lceil rac{3}{4}k
ceil] \leq rac{(3k-1)/4}{\lceil rac{3}{4}k
ceil + 1} = 1 - 1/O(k)$$

• If we repeat the algorithm k log n times this probability drops to

$$(1 - 1/O(k))^{k \log n} = (e^{-1/O(k)})^{k \log n} = e^{-O(\log n)} = 1/n^{\Omega(1)}$$

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected graphs can be solved in $O^*(2^{3k/4}) = O^*(1.682^k)$ time and polynomial space.

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected graphs can be solved in $O^*(2^{3k/4}) = O^*(1.682^k)$ time and polynomial space.

Exercises: tune the algorithm to get $O^*(1.66^k)$.

Corollary (Björklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in $O^*(1.66^k)$ time and polynomial space.