Algebraic approach to exact algorithms,
 Part III: Polynomials over finite fields of characteristic two

Łukasz Kowalik
University of Warsaw

ADFOCS, Saarbrücken, August 2013

The Schwartz-Zippel Lemma

Lemma [DeMillo and Lipton 1978, Zippel 1979, Schwartz 1980]

Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Sample values $a_{1}, a_{2}, \ldots, a_{n}$ from S uniformly at random. Then,

$$
\left.\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right]=0\right] \leq d /|S| .
$$

A typical application

- We can efficiently evaluate a polynomial p of degree d.
- We want to test whether p is a non-zero polynomial.
- Then, we pick S so that $|S| \geq 2 d$ and we evaluate p on a random vector $\mathbf{x} \in S^{n}$. We answer YES iff we got $p(\mathbf{x}) \neq 0$.
- If p is the zero polynomial we always get NO, otherwise we get YES with probability at least $\frac{1}{2}$.
- This is called a Monte-Carlo algorithm with one-sided error.

The Schwartz-Zippel Lemma: Example

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size s can have $2^{\Omega(s)}$ different monomials: $\left(x_{1}+x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}+x_{4}\right) \cdots$.

The Schwartz-Zippel Lemma: Example

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size s can have $2^{\Omega(s)}$ different monomials: $\left(x_{1}+x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}+x_{4}\right) \cdots$.

Solution

Test whether the polynomial $P-Q$ is non-zero using the Schwartz-Zippel Lemma.

Theorem

Polynomial equality testing for two polynomials represented by circuits of size at most s can be solved in $O(s)$ time with a Monte Carlo algorithm with one-sided error probability bounded by $1 / 2$.

Question

Question

What if the bound of $1 / 2$ for the probability of success is not enough for us?

Question

Question

What if the bound of $1 / 2$ for the probability of success is not enough for us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least one YES. Then,

$$
\operatorname{Pr}[\text { error }] \leq \frac{1}{2^{1000}}
$$

Note

The probability that an earthquake destroys the computer is probably higher than $\frac{1}{2^{1000} \ldots}$

Finite fields of characteristic 2

In what follows, we use finite fields of size 2^{k}.
We need to know just three things about such fields:

- They exist (for every $k \in \mathbb{N}$),
- We can perform arithmetic operations fast, in $O(k \log k \log \log k)$ time,
- They are of characteristic two, i.e. $1+1=0$.
- In particular, for any element a, we have

$$
a+a=a \cdot(1+1)=a \cdot 0=0
$$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Kneis, Mölle, Richter, Rossmanith 2006: O($\left.4^{k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Kneis, Mölle, Richter, Rossmanith 2006: O($4^{k} n^{O(1)}$)
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Kneis, Mölle, Richter, Rossmanith 2006: O($\left.4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Kneis, Mölle, Richter, Rossmanith 2006: O($\left.4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k} n^{O(1)}\right)$
- Björklund 2010: $O\left(1.66^{n} n^{O(1)}\right)$, undirected Hamiltonian cycle $(k=n)$

k-path problem

Problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Kneis, Mölle, Richter, Rossmanith 2006: O($\left.4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k} n^{O(1)}\right)$
- Björklund 2010: $O\left(1.66^{n} n^{O(1)}\right)$, undirected Hamiltonian cycle $(k=n)$
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O\left(1.66^{k} n^{O(1)}\right)$, undirected

k-path in $O^{*}\left(2^{k}\right)$-time

Notation

$$
[k]=\{1, \ldots, k\}
$$

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P, P \not \equiv 0$ iff G has a k-path.

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P, P \not \equiv 0$ iff G has a k-path.
- First try: $P(\cdots)=\sum_{k \text {-path } R \text { in } G} \operatorname{monomial}(R)$.

Seems good, but how to evaluate it?

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P, P \not \equiv 0$ iff G has a k-path.
- First try: $P(\cdots)=\sum_{k \text {-path } R \text { in } G} \operatorname{monomial}(R)$.

Seems good, but how to evaluate it?

- Second try: $P(\cdots)=\quad \sum$ monomial (W). k-walk W in G
Now we can evaluate it but we may get false positives.

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P, P \not \equiv 0$ iff G has a k-path.
- First try: $P(\cdots)=\sum_{k \text {-path } R \text { in } G} \operatorname{monomial}(R)$.

Seems good, but how to evaluate it?
 k-walk W in G
Now we can evaluate it but we may get false positives.

- Final try: $P(\cdots)=\sum_{k \text {-walk } w \text { in } G} \sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bjective }}} \operatorname{monomial}(w, \ell)$.
- We still can evaluate it,
- It turns out that every monomial corresponding to a walk which is not a path appears an even number of times so it cancels-out!

Our Hero

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk }}^{W=v_{1}, \ldots, v_{k}} \sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bijective }}}^{\prod_{\operatorname{mon}_{W, \ell}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}}}
$$

Variables:

- a variable x_{e} for every $e \in E$,
- a variable $y_{v, \ell}$ for every $v \in V$ and $\ell \in[k]$.

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}_{W, \ell}=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}=$
$k-1$

$$
\prod_{i=1} x_{v_{i}, v_{i+1}} \prod_{i \in[k] \backslash\{a, b\}} y_{v_{i}, \ell(i)} \underbrace{y_{v_{a}, \ell(a)}}_{y_{v_{b} \ell^{\prime}(b)}} \underbrace{y_{v_{b}, \ell(b)}}_{y_{v_{a} \ell^{\prime}(a)}}=\operatorname{mon}_{W, \ell^{\prime}}
$$

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{w, \ell^{\prime}}$

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{w, \ell^{\prime}}$
- If we start from (W, ℓ^{\prime}) and follow the same way of assignment we get (W, ℓ) back. (This is called a fixed-point free involution)

Monomials corresponding to non-path walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:[k] \rightarrow[k]$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{w, \ell^{\prime}}$
- If we start from (W, ℓ^{\prime}) and follow the same way of assignment we get (W, ℓ) back. (This is called a fixed-point free involution)
- Since the field is of characteristic $2, \operatorname{mon}_{W, \ell}$ and $\operatorname{mon}_{W, \ell^{\prime}}$ cancel out!

Half the way...

Corollary

If $P \not \equiv 0$ then there is a k-path.

The second half

Recall:

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk } W=v_{1}, \ldots, v_{k}} \sum_{\ell:[k] \rightarrow[k]} \prod_{\operatorname{mon}_{W, \ell}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}}
$$

Question

Why do we need exactly $\operatorname{mon}_{W, \ell}=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?
What if, say, $\operatorname{mon}_{w, \ell}=\prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

The second half

Recall:

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk } W=v_{1}, \ldots, v_{k}} \sum_{\ell:[k] \rightarrow[k]} \prod_{\operatorname{mon}_{W, \ell}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}}
$$

Question

Why do we need exactly $\operatorname{mon}_{W, \ell}=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?
What if, say, $\operatorname{mon}_{w, \ell}=\prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

The second half

Recall:

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk } W=v_{1}, \ldots, v_{k}} \sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bijective }}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}}
$$

Question

Why do we need exactly $\operatorname{mon}_{W, \ell}=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$? What if, say, $\operatorname{mon}_{w, \ell}=\prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path in G then $P \not \equiv 0$.

Where are we?

Corollary

There is a k-path in G iff $P \not \equiv 0$.

The missing element
How to evaluate P efficiently?
$\left(O^{*}\left(2^{k}\right)\right.$ is efficiently enough.)

Weighted inclusion-exclusion

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.
Let $w: U \rightarrow F$ be a weight function.
For any $X \subseteq U$ denote $w(X)=\sum_{x \in X} w(x)$.
Let us also denote $\bigcap_{i \in \emptyset}\left(U-A_{i}\right)=U$.
Then,

$$
w\left(\bigcap_{i \in[n]} A_{i}\right)=\sum_{X \subseteq[n]}(-1)^{|X|} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)
$$

Weighted inclusion-exclusion

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.
Let $w: U \rightarrow F$ be a weight function.
For any $X \subseteq U$ denote $w(X)=\sum_{x \in X} w(x)$.
Let us also denote $\bigcap_{i \in \emptyset}\left(U-A_{i}\right)=U$.
Then,

$$
w\left(\bigcap_{i \in[n]} A_{i}\right)=\sum_{X \subseteq[n]}(-1)^{|X|} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)
$$

Counting over a field of characteristic 2 we know that $-1=1$ so we can remove the $(-1)^{|X|}$:

$$
w\left(\bigcap_{i \in[n]} A_{i}\right)=\sum_{x \subseteq[n]} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)
$$

Evaluating $P(\mathbf{x}, \mathbf{y})=\sum \sum \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})$ walk $W \quad \ell:[k] \rightarrow[k]$
 ℓ is bijective

Fix a walk W.

- $U=\{\ell:[k] \rightarrow[k]\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell)=\operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})$.
- for $i=1, \ldots, k$ let $A_{i}=\left\{\ell \in U: \ell^{-1}(i) \neq \emptyset\right\}$.
- Then,

$$
\sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bijective }}} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=\sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is surjective }}} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=w\left(\bigcap_{i=1}^{k} A_{i}\right)
$$

- By weighted I-E,

$$
\sum_{\ell:[k] \rightarrow[k]} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=\sum_{x \subseteq[k]} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)=
$$

ℓ is surjective

$$
\sum_{X \subseteq[k] \ell:[k] \rightarrow[k] \backslash X} \sum_{\operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})}
$$

Evaluating $P(\mathbf{x}, \mathbf{y})=\sum \sum \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})$ walk $W \quad \ell:[k] \rightarrow[k]$
 ℓ is bijective

Fix a walk W.

- $U=\{\ell:[k] \rightarrow[k]\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell)=\operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})$.
- for $i=1, \ldots, k$ let $A_{i}=\left\{\ell \in U: \ell^{-1}(i) \neq \emptyset\right\}$.
- Then,

$$
\sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bijective }}} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=\sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is surjective }}} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=w\left(\bigcap_{i=1}^{k} A_{i}\right)
$$

- By weighted I-E,

$$
\sum_{\ell:[k] \rightarrow[k]} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})=\sum_{X \subseteq[k]} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)=
$$

ℓ is surjective

$$
\sum_{x \subseteq[k] \ell:[k] \rightarrow X} \sum_{\ell} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})
$$

Evaluating $P(\mathbf{x}, \mathrm{y})=$ $\sum_{\text {walk } W} \sum_{\substack{\ell:[k] \rightarrow[k] \\ \ell \text { is bijective }}}$
 $\operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})$

We got

Hence,

$$
\begin{aligned}
P(\mathbf{x}, \mathbf{y}) & =\sum_{\text {walk }} \sum_{W \subseteq[k]} \sum_{\ell:[k] \rightarrow X} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y}) \\
& =\sum_{X \subseteq[k]} \underbrace{\sum_{\text {walk }} \sum_{W \ell[k] \rightarrow x} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})}_{P_{X}(\mathbf{x}, \mathbf{y})}
\end{aligned}
$$

Evaluating $P_{X}(\mathbf{x}, \mathbf{y})=\sum$
 $\sum m o n w, e(x, y)$ in $n^{O(1)}$ walk $W \ell:[k] \rightarrow X$ of length k

We use dynamic programming. (How?)

Evaluating $P_{X}(\mathbf{x}, \mathrm{y})=\sum$

We use dynamic programming. (How?)
Fill the 2-dimensional table T,

$$
T[v, d]=\sum_{\text {walk }}^{\substack{w_{v=v_{1}}^{v_{1}=v}}} \sum_{v, v_{d}} \prod_{\ell:[k] \rightarrow X}^{d-1} x_{i=1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{d} y_{v_{i}, \ell(i)}
$$

Then,

$$
T[v, d]= \begin{cases}\sum_{l \in X} y_{v l} & \text { when } d=1 \\ \sum_{l \in X} y_{v l} \sum_{(v, w) \in E} x_{v w} \cdot T[w, d-1] & \text { otherwise. }\end{cases}
$$

Hence, $P_{X}(\mathbf{x}, \mathbf{y})=\sum_{s \in V} T[s, k]$ can be computed in $O(k|E|)$ time.

Conclusion

Corollary

The k-path problem can be solved by a $O^{*}\left(2^{k}\right)$-time polynomial space one-sided error Monte-Carlo algorithm.

k-path in undirected bipartite graphs in $O^{*}\left(2^{k / 2}\right)$ time

k-path in undirected bipartite graphs in $O^{*}\left(2^{k / 2}\right)$ time

A new hero

Idea

Label vertices of V_{1} only.

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk } W=v_{1}, \ldots, v_{k} \ell:[k / 2] \rightarrow[k / 2]} \sum_{\substack{\text { is bijective }}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{n / 2} y_{v_{2 i-1}, \ell(i)}}
$$

Variables:

- a variable x_{e} for every $e \in E\left(x_{u} v=x_{v} u\right)$,
- a variable $y_{v, \ell}$ for every $v \in V$ and $\ell \in[k / 2]$.

Checking the hero

Paths do not cancel-out

If there is a k-path with an endpoint in V_{1} then $P \not \equiv 0$. (Proof: We can recover (W, ℓ) from mon W, ℓ as before.)

Checking the hero

Do non-path walks cancel-out?

Consider a non-path labelled walk $(W, \ell), W=v_{1}, \ldots, v_{k}$. Case 1 If exist $i, j, i<j$ s.t. $v_{i}=v_{j}, v_{i} \in V_{1}$: pick lexicographically first such pair; both v_{i} and v_{j} have labels so we swap labels as before.
Case 2 As in Case 1, but $v_{i} \in V_{2}$ and Case 1 does not occur: reverse the cycle:

- $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{W^{\prime}, \ell^{\prime}}$,
- from $\left(W^{\prime}, \ell^{\prime}\right)$ we get (W, ℓ),
- Does $(W, \ell) \neq\left(W^{\prime}, \ell^{\prime}\right)$?

Checking the hero

$$
\begin{aligned}
& P(\mathbf{x}, \mathbf{y})=\sum_{\text {walk }} \sum_{W=v_{1}, \ldots} \\
& \text { ath walks cancel-out? }
\end{aligned}
$$

Consider a non-path labelled walk $(W, \ell), W=v_{1}, \ldots, v_{k}$. Case 1 If exist $i, j, i<j$ s.t. $v_{i}=v_{j}, v_{i} \in V_{1}$: pick lexicographically first such pair; both v_{i} and v_{j} have labels so we swap labels as before.
Case 2 As in Case 1, but $v_{i} \in V_{2}$ and Case 1 does not occur: reverse the cycle:

Fixing the hero

Admissible walks

Walk v_{1}, \ldots, v_{k} is admissible if:
For every $i=1, \ldots, k-2$, if $v_{i} \in V_{2}$ and $v_{i+1} \in V_{1}$ then $v_{i+2} \neq v_{i}$.

$\sum_{\substack{\text { walk } \\ W \text { is admissible }}} P(\mathbf{x}, \mathrm{v})=\sum_{\substack{\ell:[k / 2] \rightarrow[k / 2] \\ \ell \text { is bijective }}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k / 2} y_{v_{2 i-1}, \ell(i)}}$

Checking the fixed hero

$$
P(\mathbf{x}, \mathbf{y})=\sum_{\substack{\text { walk } W=v_{1}, \ldots, v_{k} \ell:[k / 2] \rightarrow[k / 2] \\ W \text { is admissible }}}^{\sum_{i=1} \sum_{i \text { is bijective }} x_{v_{i}, v_{i+1} \prod_{i=1}^{k-1} y_{v_{2 i-1}, \ell(i)}^{k / 2}}^{\operatorname{mon}_{W, \ell}} \underbrace{}_{i=1}}
$$

Do non-path walks cancel-out?

Consider a non-path labelled walk $(W, \ell), W=v_{1}, \ldots, v_{k}$. Case 1 If exist $i, j, i<j$ s.t. $v_{i}=v_{j}, v_{i} \in V_{1}$: pick lexicographically first such pair; both v_{i} and v_{j} have labels so we swap labels as before.
Case 2 As in Case 1, but $v_{i} \in V_{2}$ and Case 1 does not occur: reverse the cycle:

- $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{W^{\prime}, \ell^{\prime}}$,
- from $\left(W^{\prime}, \ell^{\prime}\right)$ we get (W, ℓ),
- $(W, \ell) \neq\left(W^{\prime}, \ell^{\prime}\right)$ because W admissible,
- W^{\prime} is admissible.

Evaluating $P(\mathbf{x}, \mathbf{y})=$

As before, from inclusion-exclusion principle we can get

$$
\sum_{\substack{\ell:[k / 2] \rightarrow[k / 2] \\ \ell \text { is bijective }}} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})=\sum_{x \subseteq[k / 2]} \sum_{\ell:[k / 2] \rightarrow x} \operatorname{mon}_{w, \ell}(\mathbf{x}, \mathbf{y})
$$

Hence, as before:

$$
\begin{aligned}
P(\mathbf{x}, \mathbf{y}) & =\sum_{\text {admissible walk }} \sum_{X \subseteq[k / 2]} \sum_{\ell:[k / 2] \rightarrow X} \operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y}) \\
& =\sum_{X \subseteq[k / 2]} \sum_{P_{X}(\mathbf{x}, \mathbf{y})} \sum_{\operatorname{mon}_{W, \ell}(\mathbf{x}, \mathbf{y})} \sum_{\operatorname{missible~walk~} \sum_{\ell:[k / 2] \rightarrow x}}
\end{aligned}
$$

Note: Only $2^{k / 2}$ polynomials P_{X} to evaluate.

Evaluating $P_{X}(\mathbf{x}, \mathbf{y})=\sum$

mon W, ℓ in poly-time

walk W of length k

Dynamic programming:

Then,

$$
T[v, w, d]=\sum_{\substack{\text { admissible walk } \\ W \\ w v_{1}, \ldots, v_{d} \\ v_{1}=\\ v_{2}=w}} \sum_{\ell:[k / 2] \rightarrow X} \prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k / 2} y_{v_{2 i-1}, \ell(i)}
$$

$T[v, w, d]= \begin{cases}x_{v w} \sum_{l \in X} y_{v l} & \text { when } d=2 \text { and } v \in V_{1}, \\ x_{v w} \sum_{l \in X} y_{w l} & \text { when } d=2 \text { and } v \in V_{2}, \\ \sum_{l \in X} y_{v l} \sum_{\substack{ \\(w, u) \in E}} x_{v w} \cdot T[w, u, d-1] & \text { when } d>2 \text { and } v \in V_{1}, \\ \sum_{\substack{(w, u) \in E \\ u \neq v}} x_{v w} \cdot T[w, u, d-1] & \text { when } d>2 \text { and } v \in V_{2} .\end{cases}$

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected bipartite graphs can be solved in $O^{*}\left(2^{k / 2}\right)=O^{*}\left(1.42^{k}\right)$ time and polynomial space.

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected bipartite graphs can be solved in $O^{*}\left(2^{k / 2}\right)=O^{*}\left(1.42^{k}\right)$ time and polynomial space.

k-path in undirected graphs in $O^{*}\left(2^{\frac{3}{4} k}\right)$ time

k-path in undirected graphs in $O^{*}\left(2^{\frac{3}{4} k}\right)$ time

- Choose a random bipartition $V=V_{1} \cup V_{2}, \| V_{1}\left|-\left|V_{2}\right|\right| \leq 1$. (V_{1} and V_{2} need not be independent now.)
- Where does the bipartite case algorithm fail?

Then $(W, \ell)=\left(W^{\prime}, \ell^{\prime}\right)$.

k-path in undirected graphs in $O^{*}\left(2^{\frac{3}{4} k}\right)$ time

- Choose a random bipartition $V=V_{1} \cup V_{2}, \| V_{1}\left|-\left|V_{2}\right|\right| \leq 1$. (V_{1} and V_{2} need not be independent now.)
- Where does the bipartite case algorithm fail?

Then $(W, \ell)=\left(W^{\prime}, \ell^{\prime}\right)$.

- What if we forbid also \rightarrow ?

k-path in undirected graphs in $O^{*}\left(2^{\frac{3}{4} k}\right)$ time

- Choose a random bipartition $V=V_{1} \cup V_{2}, \| V_{1}\left|-\left|V_{2}\right|\right| \leq 1$. (V_{1} and V_{2} need not be independent now.)
- Where does the bipartite case algorithm fail?

Then $(W, \ell)=\left(W^{\prime}, \ell^{\prime}\right)$.

- What if we forbid also \rightarrow ?
- Then we run into another trouble:

W^{\prime} contains the forbidden configuration.

The solution

- Forbidden configuration as before:

- Add more labels:
label each $V_{2} V_{2}$-edge:

Now $\ell^{\prime} \neq \ell$.

How many labels do we need now?

- a different label for each $i=1, \ldots, k$ s.t. $v_{i} \in V_{1}$
- a different label for each $i=1, \ldots, k$ s.t. $v_{i} v_{i+1} \in V_{2}$

L-admissible walks

Walk $W=v_{1}, \ldots, v_{k}$ is L-admissible when

- For every $i=1, \ldots, k-2$, if $v_{i} \in V_{2}$ and $v_{i+1} \in V_{1}$ then $v_{i+2} \neq v_{i}$.

- $\left|\left\{i: v_{i} \in V_{1}\right\}\right|+\left|\left\{i: v_{i} v_{i+1} \in V_{2}\right\}\right|=L$

The ultimate hero

$$
P_{L}(\mathbf{x}, \mathbf{y})=\sum_{\substack{\text { walk } W=v_{1}, \ldots, v_{k} \\ W \text { is } L \text {-admissible } \ell \text { is bijective }}} \sum_{\substack{\ell[L] \rightarrow[L]}} \prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{L} y_{f(i), \ell(i)}
$$

where $f(i)=i$-th labeled object (V_{1}-vertex or $V_{2} V_{2}$-edge) in walk W.

$$
P=\sum_{L=k / 2}^{\left\lceil\frac{3}{4} k\right\rceil} P_{L}
$$

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?) it may happen that the only (say) solution P is not L-admissible for all $L \leq\left\lceil\frac{3}{4} k\right\rceil$.

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?) it may happen that the only (say) solution P is not L-admissible for all $L \leq\left\lceil\frac{3}{4} k\right\rceil$.
- But...
- $\mathbb{E}\left[\left|\left\{i: v_{i} \in V_{1}\right\}\right|+\left|\left\{i: v_{i} v_{i+1} \in V_{2}\right\}\right|\right]=\frac{k}{2}+\frac{k-1}{4}=\frac{3 k-1}{4}$

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for all $L \leq\left\lceil\frac{3}{4} k\right\rceil$.
- But...
- $\mathbb{E}\left[\left|\left\{i: v_{i} \in V_{1}\right\}\right|+\left|\left\{i: v_{i} v_{i+1} \in V_{2}\right\}\right|\right]=\frac{k}{2}+\frac{k-1}{4}=\frac{3 k-1}{4}$
- So, by Markov inequality
$\operatorname{Pr}\left[P\right.$ is not L-admissible for all $\left.L \leq\left\lceil\frac{3}{4} k\right\rceil\right] \leq \frac{(3 k-1) / 4}{\left\lceil\frac{3}{4} k\right\rceil+1}=1-1 / O(k)$

Correctness

- We have checked that:
$P \not \equiv 0 \Rightarrow$ exists k-path
(i.e. non-path walks cancel-out)
- The opposite implication not always true! (why?)
it may happen that the only (say) solution P is not L-admissible for all $L \leq\left\lceil\frac{3}{4} k\right\rceil$.
- But...
- $\mathbb{E}\left[\left|\left\{i: v_{i} \in V_{1}\right\}\right|+\left|\left\{i: v_{i} v_{i+1} \in V_{2}\right\}\right|\right]=\frac{k}{2}+\frac{k-1}{4}=\frac{3 k-1}{4}$
- So, by Markov inequality
$\operatorname{Pr}\left[P\right.$ is not L-admissible for all $\left.L \leq\left\lceil\frac{3}{4} k\right\rceil\right] \leq \frac{(3 k-1) / 4}{\left\lceil\frac{3}{4} k\right\rceil+1}=1-1 / O(k)$
- If we repeat the algorithm $k \log n$ times this probability drops to

$$
(1-1 / O(k))^{k \log n}=\left(e^{-1 / O(k)}\right)^{k \log n}=e^{-O(\log n)}=1 / n^{\Omega(1)}
$$

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)
The k-path problem in undirected graphs can be solved in $O^{*}\left(2^{3 k / 4}\right)=O^{*}\left(1.682^{k}\right)$ time and polynomial space.

Conclusion

Theorem (Björklund, Husfeldt, Kaski, Koivisto 2010)

The k-path problem in undirected graphs can be solved in $O^{*}\left(2^{3 k / 4}\right)=O^{*}\left(1.682^{k}\right)$ time and polynomial space.

Exercises: tune the algorithm to get $O^{*}\left(1.66^{k}\right)$.

Corollary (Björklund 2009)

The Hamiltonian Cycle problem in undirected graphs can be solved in $O^{*}\left(1.66^{k}\right)$ time and polynomial space.

