ADFOCS 2013
 Parameterized Algorithms using Matroids - Exercise I

August 6th 2013

Iterative Compression

1. In the Vertex Cover problem, we are given a graph $G=(V, E)$ and a positive integer k, and the problem is to test whether there exists a vertex subset $X \subseteq V(G)$ such that $|X| \leq k$ and $G \backslash X$ is an independent set. Obtain a $2^{k} n^{\mathcal{O}(1)}$-time algorithm for this problem using iterative compression.
2. In the Feedback Vertex Set problem, we are give a graph $G=(V, E)$ and a positive integer k, and the problem is to test whether there exists a vertex subset $X \subseteq V(G)$ such that $|X| \leq k$ and $G \backslash X$ is a forest.
In the following steps, we design an algorithm for this problem with running time $5^{k} n^{\mathcal{O}(1)}$ using the method of iterative compression.
(a) Consider an iterative compression step. Here, we are given a feedback vertex set, say F, of size $k+1$, and the objective is to find another feedback vertex set $X \subseteq V$ such that $X \cap F=\emptyset$ and $|X| \leq k$.

- Devise reduction rules such that every vertex in $V \backslash F$ either has degree at least 3 or has at least two neighbors in F.
- Let $\mu=k+\gamma$, where γ is the number of connected components of $G[F]$. Using μ as a measure devise a branching algorithm to find the desired X (if exists) in time $4^{k} n^{\mathcal{O}(1)}$. Hint: Branch on a vertex of degree at most 1 of $G[V \backslash F]$.
(b) Use the previous step to design a $5^{k} n^{\mathcal{O}(1)}$-time algorithm for Feedback Vertex Set.

3. Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, show that the size of the minimum odd cycle transversal is the minimum over all partitions $Q=L \cup R \cup C$ of the following value:

$$
|C|+\operatorname{mincut}_{G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)}\left(\left(R_{A} \cup L_{B}\right),\left(L_{A} \cup R_{B}\right)\right)
$$

Here, G^{\prime} has been obtained from G as follows. Vertices in G^{\prime} are $A \cup B \cup Q_{A} \cup Q_{B}$. Edges within $G^{\prime}[A \cup B]$ are same as in G, while for $q \in Q$ a vertex q_{a} is connected to $N_{G}(q) \cap A$ and q_{b} to $N_{G}(q) \cap B$.

Matroid Basics

1. Show that the following families form matroid.
(a) Let $G=(V, E)$ be a graph. Let $M=(U, \mathcal{I})$ be a matroid defined on G, where $U=E$ and \mathcal{I} contains all forests of G. (Graphic Matroid)
(b) Let $G=(V, E)$ be a connected graph. Let $M=(U, \mathcal{I})$ be a matroid defined on G, where $U=E$ and \mathcal{I} contains all $E^{\prime} \subseteq E$ such that $G^{\prime}=\left(V, E \backslash E^{\prime}\right)$ is connected. (Co-Graphic Matroid)
2. Obtain a representation matrix for the following matroid.
(a) Graphic Matroid.
(b) Uniform Matroids $-M=(U, \mathcal{I})$ where \mathcal{I} contains all subsets of U of size at most k for some fixed constant k.
(c) Partition Matroids - It is defined by a ground set U being partitioned into (disjoint) sets U_{1}, \ldots, U_{ℓ} and by ℓ non-negative integers k_{1}, \ldots, k_{ℓ}. A set $X \subseteq U$ is independent if and only if $\left|X \cap U_{i}\right| \leq k_{i}$ for all $i \in\{1, \ldots, \ell\}$. That is,

$$
\mathcal{I}=\left\{X \subseteq U| | X \cap U_{i} \mid \leq k_{i}, i \in\{1, \ldots, \ell\}\right\}
$$

(d) Direct Sum of Matroids - Let $M_{1}=\left(U_{1}, \mathcal{I}_{1}\right), M_{2}=\left(U_{2}, \mathcal{I}_{2}\right), \cdots, M_{t}=\left(U_{t}, \mathcal{I}_{t}\right)$ be t matroids with $U_{i} \cap U_{j}=\emptyset$ for all $1 \leq i \neq j \leq t$. The direct sum $M_{1} \oplus \cdots \oplus M_{t}$ is a matroid $M=(U, \mathcal{I})$ with $U:=\bigcup_{i=1}^{t} U_{i}$ and $X \subseteq U$ is independent if and only if for all $i \leq t, X \cap U_{i} \in \mathcal{I}_{i}$.
3. Let $M_{1}=\left(U_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(U_{2}, \mathcal{I}_{2}\right)$ be two matroids such that $U=U_{1}=U_{2}$. Define $M_{1} \cap M_{2}$ as $M=(U, \mathcal{I})$ such that $X \in \mathcal{I}$ if and only if $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$. Is M always a matroid? (Matroid Intersection)
4. Express the following as intersection of matroids (possibly more than two).
(a) Finding a maximum matching in a bipartite graph $G=(A \cup B, E)$.
(b) Testing whether a graph $G=(V, E)$ contains two edge disjoint spanning trees.
(c) Finding a hamiltonian path in a directed graph $D=(V, A)$ between a pair of vertices s and t of D.

