ADFOCS 2013 Parameterized Algorithms using Matroids – Exercise II

Instructor: Saket Saurabh

August 8th 2013

- 1. In the *d*-HITTING SET problem, we are given a family \mathcal{F} of sets of size *d* over a universe *U* and a positive integer *k*, and the problem is to test whether there exists a subset $X \subseteq U$ such that $|X| \leq k$ and for every set $F \in \mathcal{F}$, $F \cap X \neq \emptyset$. Obtain a $k^{\mathcal{O}(d)}$ kernel for the problem using the method of representative sets.
- 2. Let A_1, \ldots, A_m be *p*-element sets and B_1, \ldots, B_m be *q*-element sets such that $A_i \cap B_j = \emptyset$ if and only of i = j.
 - (a) Show that $m \leq 2^{p+q}$. (Hint: Think uniform random partition of $U = \bigcup_{i=1}^{m} (A_i \cup B_i)$.)
 - (b) Show that $m \leq {p+q \choose p}$. (Hint: Think of permutations of U.)
 - (c) Show that the bound of $\binom{p+q}{p}$ on m is tight.
 - (d) Let $S = \{S_1, \ldots, S_t\}$ be a family of p element sets. Using the above exercises show that the size of q-representative family is upper bounded by $\binom{p+q}{p}$.
- 3. Let $M = (U, \mathcal{I})$ be a matroid and let S be a *p*-uniform family of subsets of E. Show that if $S' \subseteq_{rep}^{q} S$ and $\widehat{S} \subseteq_{rep}^{q} S'$, then $\widehat{S} \subseteq_{rep}^{q} S$. (If $\widehat{S} \subseteq S$ is *q*-representative for S we write $\widehat{S} \subseteq_{rep}^{q} S$.)
- 4. Let $M = (U, \mathcal{I})$ be a matroid and let S be a *p*-uniform family of subsets of E. Show that if $S = S_1 \cup \cdots \cup S_\ell$ and $\widehat{S}_i \subseteq_{rep}^q S_i$, then $\cup_{i=1}^\ell \widehat{S}_i \subseteq_{rep}^q S$.
- 5. Let G be a connected graph on 2n vertices and \mathcal{L} be a family of forests of G of size n (that is, the number of edges is n). Let $\widehat{\mathcal{L}} \subseteq \mathcal{L}$ be a family of forests such that for any forest F of size n-1, if there exists a forest $X \in \mathcal{L}$ such that $F \cup X$ is a spanning tree of G, then there exists a forest $\widehat{X} \in \widehat{\mathcal{L}}$ such that $F \cup \widehat{X}$ is a spanning tree of G. Could you give a non-trivial upper bound on the size of $|\widehat{\mathcal{L}}|$ (like some c^n)?