# ADFOCS 2013 <br> Parameterized Algorithms using Matroids - Exercise II 

Instructor: Saket Saurabh

## August 8th 2013

1. In the $d$-Hitting Set problem, we are given a family $\mathcal{F}$ of sets of size $d$ over a universe $U$ and a positive integer $k$, and the problem is to test whether there exists a subset $X \subseteq U$ such that $|X| \leq k$ and for every set $F \in \mathcal{F}, F \cap X \neq \emptyset$. Obtain a $k^{\mathcal{O}(d)}$ kernel for the problem using the method of representative sets.
2. Let $A_{1}, \ldots, A_{m}$ be $p$-element sets and $B_{1}, \ldots, B_{m}$ be $q$-element sets such that $A_{i} \cap B_{j}=\emptyset$ if and only of $i=j$.
(a) Show that $m \leq 2^{p+q}$. (Hint: Think uniform random partition of $U=\cup_{i=1}^{m}\left(A_{i} \cup B_{i}\right)$.)
(b) Show that $\left.m \leq \begin{array}{c}p+q \\ p\end{array}\right)$. (Hint: Think of permutations of $U$.)
(c) Show that the bound of $\binom{p+q}{p}$ on $m$ is tight.
(d) Let $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ be a family of $p$ element sets. Using the above exercises show that the size of $q$-representative family is upper bounded by $\binom{p+q}{p}$.
3. Let $M=(U, \mathcal{I})$ be a matroid and let $\mathcal{S}$ be a $p$-uniform family of subsets of $E$. Show that if $\mathcal{S}^{\prime} \subseteq_{r e p}^{q} \mathcal{S}$ and $\widehat{\mathcal{S}} \subseteq_{r e p}^{q} \mathcal{S}^{\prime}$, then $\widehat{\mathcal{S}} \subseteq_{r e p}^{q} \mathcal{S}$. (If $\widehat{\mathcal{S}} \subseteq \mathcal{S}$ is $q$-representative for $\mathcal{S}$ we write $\left.\widehat{\mathcal{S}} \subseteq_{\text {rep }}^{q} \mathcal{S}.\right)$
4. Let $M=(U, \mathcal{I})$ be a matroid and let $\mathcal{S}$ be a $p$-uniform family of subsets of $E$. Show that if $\mathcal{S}=\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{\ell}$ and $\widehat{\mathcal{S}}_{i} \subseteq_{\text {rep }}^{q} \mathcal{S}_{i}$, then $\cup_{i=1}^{\ell} \widehat{\mathcal{S}}_{i} \subseteq_{\text {rep }}^{q} \mathcal{S}$.
5. Let $G$ be a connected graph on $2 n$ vertices and $\mathcal{L}$ be a family of forests of $G$ of size $n$ (that is, the number of edges is $n$ ). Let $\widehat{\mathcal{L}} \subseteq \mathcal{L}$ be a family of forests such that for any forest $F$ of size $n-1$, if there exists a forest $X \in \mathcal{L}$ such that $F \cup X$ is a spanning tree of $G$, then there exists a forest $\widehat{X} \in \widehat{\mathcal{L}}$ such that $F \cup \widehat{X}$ is a spanning tree of $G$. Could you give a non-trivial upper bound on the size of $|\widehat{\mathcal{L}}|$ (like some $c^{n}$ )?
