Parameterized Algorithms using Matroids

Lecture I: Matroid Basics and its use as data structure

Saket Saurabh

The Institute of Mathematical Sciences, India and University of Bergen, Norway,

ADFOCS 2013, MPI, August 5-9, 2013

Introduction and Kernelization

Fixed Parameter Tractable (FPT)
 Algorithms

For decision problems with input size n, and a parameter k, (which typically is the solution size), the goal here is to design an algorithm with running time $f(k) \cdot n^{\mathcal{O}(1)}$, where f is a function of k alone.

Problems that have such an algorithm are said to be fixed parameter tractable (FPT).

A Few Examples

Vertex Cover
Input: A graph $G=(V, E)$ and a positive integer k.
Parameter: k
Question: Does there exist a subset $V^{\prime} \subseteq V$ of size at most k such that for every edge $(u, v) \in E$ either $u \in V^{\prime}$ or $v \in V^{\prime}$?

PATH
Input: A graph $G=(V, E)$ and a positive integer k.
Parameter: k
Question: Does there exist a path P in G of length at least k ?

Kernelization: A Method for Everyone

Informally: A kernelization algorithm is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^{*} \times \mathbb{N}$, outputs in $p(|x|+k)$ time a pair $\left(x^{\prime}, k^{\prime}\right) \in \Sigma^{*} \times \mathbb{N}$ such that
where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^{*} \times \mathbb{N}$, outputs in $p(|x|+k)$ time a pair $\left(x^{\prime}, k^{\prime}\right) \in \Sigma^{*} \times \mathbb{N}$ such that

- $(x, k) \in L \Longleftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L$,
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$,
where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Polynomial kernel $\Longrightarrow f$ is polynomial.

Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^{*} \times \mathbb{N}$, outputs in $p(|x|+k)$ time a pair $\left(x^{\prime}, k^{\prime}\right) \in \Sigma^{*} \times \mathbb{N}$ such that

- $(x, k) \in L \Longleftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L$,
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$,
where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Polynomial kernel $\Longrightarrow f$ is polynomial.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and $(G-\{v\}, k-1)$

$k+1$

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and ($G-\{v\}, k-1$)

Apply these rules until no longer possible.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and ($G-\{v\}, k-1$)

Apply these rules until no longer possible. What conclusions can we draw ?
f G is not empty and k drops to 0 - the answer is No
Every vertex has degree at most k - number of edges they can cover is at most

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and ($G-\{v\}, k-1$)

Apply these rules until no longer possible.
What conclusions can we draw ?
Outcome 1: If G is not empty and k drops to 0 - the answer is No.
 they can cover is at most k^{2}

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and ($G-\{v\}, k-1$)

Apply these rules until no longer possible.
What conclusions can we draw ?
Outcome 1: If G is not empty and k drops to 0 - the answer is No.
Observation: Every vertex has degree at most k - number of edges they can cover is at most k^{2}.
and we have polynomial sized kernel of $\mathcal{O}\left(k^{2}\right)$.

Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least $k+1$ then include v in solution and ($G-\{v\}, k-1$)

Apply these rules until no longer possible.
What conclusions can we draw ?
Outcome 1: If G is not empty and k drops to 0 - the answer is No.
Observation: Every vertex has degree at most k - number of edges they can cover is at most k^{2}.
Outcome 2: If $|E|>k^{2}$ - the answer is No. Else $|E| \leq k^{2},|V| \leq 2 k^{2}$ and we have polynomial sized kernel of $\mathcal{O}\left(k^{2}\right)$.

Iterative Compression and Odd Cycle Transversal

Result from
Bruce A. Reed, Kaleigh Smith, Adrian Vetta: Finding odd cycle transversals. Operation Resarch Letters 32(4): 299-301 (2004)

Iterative compression

- A surprisingly small, but very powerful trick.
- Most useful for deletion problems: delete k things to achieve some property.
- Demonstration: Odd Cycle Transversal aka Bipartite Deletion aka Graph Bipartization: Given a graph G and an integer k, delete k vertices to make the graph bipartite.
- Forbidden induced subgraphs: odd cycles. There is no bound on the size of odd cycles.

Odd Cycle Transversal

> Odd CYClE Transversal
> Input: A graph $G=(V, E)$ and a positive integer k.
> Parameter: k
> Question: Does there exist a subset $V^{\prime} \subseteq V$ of size at most k such that $G \backslash V^{\prime}$ is bipartite?

Odd Cycle Transversal

Solution based on iterative compression:

- Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

- Step 2: Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

- Step 3: Apply the idea of iterative compression

Odd Cycle Transversal

Solution based on iterative compression:

- Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

- Step 2: Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

- Step 3: Apply the idea of iterative compression

Odd Cycle Transversal

Solution based on iterative compression:

- Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

- Step 2: Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

- Step 3: Apply the idea of iterative compression...

Step 1: The annotated problem

Given a bipartite graph G , two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

Find an arbitrary 2-coloring $\left(B_{0}, W_{0}\right)$ of G.

Step 1: The annotated problem

Given a bipartite graph G , two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

Find an arbitrary 2-coloring (B_{0}, W_{0}) of G.

Step 1: The annotated problem

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

Find an arbitrary 2-coloring $\left(B_{0}, W_{0}\right)$ of G.
$C:=\left(B_{0} \cap W\right) \cup\left(W_{0} \cap B\right)$ should change color, while

Step 1: The annotated problem

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

Find an arbitrary 2-coloring $\left(B_{0}, W_{0}\right)$ of G.
$C:=\left(B_{0} \cap W\right) \cup\left(W_{0} \cap B\right)$ should change color, while $R:=\left(B_{0} \cap B\right) \cup\left(W_{0} \cap W\right)$ should remain the same color.

Lemma: $G \backslash S$ has the required 2 -coloring if and only if S separates C and R S contains vertices from both $C \backslash S$

Step 1: The annotated problem

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white.

Find an arbitrary 2-coloring (B_{0}, W_{0}) of G.
$C:=\left(B_{0} \cap W\right) \cup\left(W_{0} \cap B\right)$ should change color, while $R:=\left(B_{0} \cap B\right) \cup\left(W_{0} \cap W\right)$ should remain the same color.
Lemma: $G \backslash S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \backslash S$ contains vertices from both $C \backslash S$ and $R \backslash S$.

Step 1: The annotated problem

Lemma: $G \backslash S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \backslash S$ contains vertices from both $C \backslash S$ and $R \backslash S$.

Proof:
\Longrightarrow In a 2 -coloring of $G \backslash S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.
\Leftarrow Flip the coloring of those components of $G \backslash S$ that contain vertices from $C \backslash S$. No vertex of R is flipped.

Step 1: The annotated problem

Lemma: $G \backslash S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \backslash S$ contains vertices from both $C \backslash S$ and $R \backslash S$.

Proof:
\Longrightarrow In a 2-coloring of $G \backslash S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.
> \Leftarrow Flip the coloring of those components of $G \backslash S$ that contain vertices from $C \backslash S$. No vertex of R is flipped.

Step 1: The annotated problem

Lemma: $G \backslash S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \backslash S$ contains vertices from both $C \backslash S$ and $R \backslash S$.

Proof:
\Longrightarrow In a 2-coloring of $G \backslash S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.
\Leftarrow Flip the coloring of those components of $G \backslash S$ that contain vertices from $C \backslash S$. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set S that separates C and R. It can be done in time $O(k|E(G)|)$ using k iterations of the Ford-Fulkerson algorithm

Step 1: The annotated problem

Lemma: $G \backslash S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \backslash S$ contains vertices from both $C \backslash S$ and $R \backslash S$.

Proof:
\Longrightarrow In a 2-coloring of $G \backslash S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.
\Leftarrow Flip the coloring of those components of $G \backslash S$ that contain vertices from $C \backslash S$. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set S that separates C and R. It can be done in time $O(k|E(G)|)$ using k iterations of the Ford-Fulkerson algorithm.

Step 2: The compression problem

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

Step 2: The compression problem

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

black white deleted

Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices.

Step 2: The compression problem

black white deleted
Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices. Neighbors of the black vertices in Q should be white and the neighbors of the white vertices in Q should be black.

Step 2: The compression problem

Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices. Neighbors of the black vertices in Q should be white and the neighbors of the white vertices in Q should be black.

Step 2: The compression problem

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite, find a set S of k vertices such that $G \backslash S$ is bipartite.

The vertices of Q can be disregarded. Thus we need to solve the annotated problem on the bipartite graph $G \backslash Q$.
Running time: $O\left(3^{k} \cdot k|E(G)|\right)$ time.

Step 3: Iterative compression

How do we get a solution of size $k+1$?

Step 3: Iterative compression

How do we get a solution of size $k+1$?
We get it for free!

Step 3: Iterative compression

How do we get a solution of size $k+1$?
We get it for free!
Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and let G_{i} be the graph induced by $\left\{v_{1}, \ldots, v_{i}\right\}$.

For every i, we find a set S_{i} of size k such that $G_{i} \backslash S_{i}$ is bipartite.

- For G_{k}, the set $S_{k}=\left\{v_{1}, \ldots, v_{k}\right\}$ is a trivial solution.
- If S_{i-1} is known, then $S_{i-1} \cup\left\{v_{i}\right\}$ is a set of size $k+1$ whose deletion makes G_{i} bipartite \Longrightarrow We can use the compression algorithm to find a suitable S_{i} in time $O\left(3^{k} \cdot k\left|E\left(G_{i}\right)\right|\right)$.

Step 3: Iterative Compression

Bipartite-Deletion (G, k)
(1) $S_{k}=\left\{v_{1}, \ldots, v_{k}\right\}$
(2) for $i:=k+1$ to n
(3) Invariant: $G_{i-1} \backslash S_{i-1}$ is bipartite.
(4) Call Compression $\left(G_{i}, S_{i-1} \cup\left\{v_{i}\right\}\right)$
(5) If the answer is "NO" \Longrightarrow return "NO"
(6) If the answer is a set $X \Longrightarrow S_{i}:=X$
(c) Return the set S_{n}

Running time: the compression algorithm is called n times and everything else can be done in linear time.
$\Longrightarrow O\left(3^{k} \cdot k|V(G)| \cdot|E(G)|\right)$ time algorithm.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of $k+1$ vertices such that $G \backslash Q$ is bipartite.

- Vertices in G^{\prime} are $A \cup B \cup Q_{A} \cup Q_{B}$. Edges within $G^{\prime}[A \cup B]$ are as in G, while for $q \in Q$ a vertex q_{a} is connected to $N_{G}(q) \cap A$ and q_{b} to $N_{G}(q) \cap B$.

For a partition $Q=L \cup R \cup C$ we are going to compute the minimum $\left(R_{A} \cup L_{B}\right),\left(L_{A} \cup R_{B}\right)$-cut in $G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)$.

Example

For $L=\{w\}, R=\{x, y\}, C=\{z\} \Longrightarrow L_{A} \cup R_{B}=\left\{w_{a}, x_{b}, y_{b}\right\}$ and $L_{B} \cup R_{A}=\left\{w_{b}, x_{a}, y_{a}\right\}$ and $C_{A} \cup C_{B}=\left\{z_{a}, z_{b}\right\}$

Example

For $L=\{w\}, R=\{x, y\}, C=\{z\} \Longrightarrow L_{A} \cup R_{B}=\left\{w_{a}, x_{b}, y_{b}\right\}$ and $L_{B} \cup R_{A}=\left\{w_{b}, x_{a}, y_{a}\right\}$ and $C_{A} \cup C_{B}=\left\{z_{a}, z_{b}\right\}$ Want to compute cut between $L_{A} \cup R_{B}=\left\{w_{a}, x_{b}, y_{b}\right\}$ and $L_{B} \cup R_{A}=\left\{w_{b}, x_{a}, y_{a}\right\}$ in $G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)$.

Final Result

For a partition $Q=L \cup R \cup C$ we are going to compute the minimum $\left(R_{A} \cup L_{B}\right),\left(L_{A} \cup R_{B}\right)$-cut in $G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)$. This is sufficient due to the following lemma:

```
Lemma: Let }G=(V,E)\mathrm{ be a graph and Q}\subseteqV\mathrm{ be such that }
is bipartite with color classes A,B. Then, the size of the minimum odc
cycle transversal is the minimum over all partitions Q =LURUC of the
following value:
```


Final Result

For a partition $Q=L \cup R \cup C$ we are going to compute the minimum $\left(R_{A} \cup L_{B}\right),\left(L_{A} \cup R_{B}\right)$-cut in $G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)$. This is sufficient due to the following lemma:

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that G is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all partitions $Q=L \cup R \cup C$ of the following value:

$$
|C|+\operatorname{mincut}_{G \backslash\left(C_{A} \cup C_{B}\right)}\left(\left(R_{A} \cup L_{B}\right),\left(L_{A} \cup R_{B}\right)\right)
$$

Final Result: Restated

Let S, T and R be a partition of $Q_{A} \cup Q_{B}$. We say that (S, T, Z) is a valid partition if for all $x \in Q$ either

- $\left|\left\{x_{1}, x_{2}\right\} \cap S\right|=\left|\left\{x_{1}, x_{2}\right\} \cap T\right|=1$; or

Final Result: Restated

Let S, T and R be a partition of $Q_{A} \cup Q_{B}$. We say that (S, T, Z) is a valid partition if for all $x \in Q$ either

- $\left|\left\{x_{1}, x_{2}\right\} \cap S\right|=\left|\left\{x_{1}, x_{2}\right\} \cap T\right|=1$; or
- $\left|\left\{x_{1}, x_{2}\right\} \cap Z\right|=2$.

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

Final Result: Restated

Let S, T and R be a partition of $Q_{A} \cup Q_{B}$. We say that (S, T, Z) is a valid partition if for all $x \in Q$ either

- $\left|\left\{x_{1}, x_{2}\right\} \cap S\right|=\left|\left\{x_{1}, x_{2}\right\} \cap T\right|=1$; or
- $\left|\left\{x_{1}, x_{2}\right\} \cap Z\right|=2$.

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

$$
\frac{|Z|}{2}+\operatorname{mincut}_{G^{\prime} \backslash Z}(S, T)
$$

Matroids and its Representation

Matroids

Definition
A pair $M=(E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions:
(I1) $\emptyset \in \mathcal{I}$ or $\mathcal{I} \neq \emptyset$.
(I2) If $A^{\prime} \subset A$ and $A \in \mathcal{I}$ then $A^{\prime} \in \mathcal{I}$.
(I3) If $A, \bar{B} \in \mathcal{I}$ and $|A|<|B|$, then $\exists e \in(B \backslash A)$ such that $A \cup\{e\} \in \mathcal{I}$.

The axiom (12) is also called the hereditary property and a pair $M=(E, \mathcal{I})$ satisfying (I1) and (I2) is called hereditary family or set-family.

Matroids

Definition

A pair $M=(E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions:
(I1) $\emptyset \in \mathcal{I}$ or $\mathcal{I} \neq \emptyset$.
(I2) If $A^{\prime} \subset A$ and $A \in \mathcal{I}$ then $A^{\prime} \in \mathcal{I}$.
(I3) If $A, \bar{B} \in \mathcal{I}$ and $|A|<|B|$, then $\exists e \in(B \backslash A)$ such that $A \cup\{e\} \in \mathcal{I}$.

The axiom (I2) is also called the hereditary property and a pair $M=(E, \mathcal{I})$ satisfying (I1) and (I2) is called hereditary family or set-family.

Rank and Basis

Definition

A pair $M=(E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions:
(I1) $\varphi \in \mathcal{I}$ or $\mathcal{I} \neq \emptyset$.
(I2) If $A^{\prime} \subseteq A$ and $A \in \mathcal{I}$ then $A^{\prime} \in \mathcal{I}$.
(I3) If $A, \bar{B} \in \mathcal{I}$ and $|A|<|B|$, then $\exists e \in(B \backslash A)$ such that

$$
A \cup\{e\} \in \mathcal{I} .
$$

An inclusion wise maximal set of \mathcal{I} is called a basis of the matroid. Using axiom (13) it is easy to show that all the bases of a matroid have the same size. This size is called the rank of the matroid M, and is denoted by $\operatorname{rank}(M)$.

Examples Of Matroids

Uniform Matroid

A pair $M=(E, \mathcal{I})$ over an n-element ground set E, is called a uniform matroid if the family of independent sets is given by

$$
\mathcal{I}=\{A \subseteq E| | A \mid \leq k\}
$$

where k is some constant. This matroid is also denoted as $U_{n, k}$.

Uniform Matroid

A pair $M=(E, \mathcal{I})$ over an n-element ground set E, is called a uniform matroid if the family of independent sets is given by

$$
\mathcal{I}=\{A \subseteq E| | A \mid \leq k\}
$$

where k is some constant. This matroid is also denoted as $U_{n, k}$. Eg: $E=\{1,2,3,4,5\}$ and $k=2$ then

$$
\begin{aligned}
\mathcal{I}= & \{\},\{1\},\{2\},\{3\},\{4\},\{5\},\{1,2\},\{1,3\},\{1,4\}, \\
& \{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}\}
\end{aligned}
$$

Partition Matroid

A partition matroid $M=(E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_{1}, \ldots, E_{ℓ} and by ℓ non-negative integers k_{1}, \ldots, k_{ℓ}. A set $X \subseteq E$ is independent if and only if $\left|X \cap E_{i}\right| \leq k_{i}$ for all $i \in\{1, \ldots, \ell\}$. That is,

$$
\mathcal{I}=\left\{X \subseteq E| | X \cap E_{i} \mid \leq k_{i}, i \in\{1, \ldots, \ell\}\right\} .
$$

Partition Matroid

A partition matroid $M=(E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_{1}, \ldots, E_{ℓ} and by ℓ non-negative integers k_{1}, \ldots, k_{ℓ}. A set $X \subseteq E$ is independent if and only if $\left|X \cap E_{i}\right| \leq k_{i}$ for all $i \in\{1, \ldots, \ell\}$. That is,

$$
\mathcal{I}=\left\{X \subseteq E| | X \cap E_{i} \mid \leq k_{i}, i \in\{1, \ldots, \ell\}\right\} .
$$

- If $X, Y \in \mathcal{I}$ and $|Y|>|X|$, there must exist i such that $\left|Y \cap E_{i}\right|>\left|X \cap E_{i}\right|$ and this means that adding any element e in $E_{i} \cap(Y \backslash X)$ to X will maintain independence.

one can't find an element of Y to add to X

Partition Matroid

A partition matroid $M=(E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_{1}, \ldots, E_{ℓ} and by ℓ non-negative integers k_{1}, \ldots, k_{ℓ}. A set $X \subseteq E$ is independent if and only if $\left|X \cap E_{i}\right| \leq k_{i}$ for all $i \in\{1, \ldots, \ell\}$. That is,

$$
\mathcal{I}=\left\{X \subseteq E| | X \cap E_{i} \mid \leq k_{i}, i \in\{1, \ldots, \ell\}\right\} .
$$

- If $X, Y \in \mathcal{I}$ and $|Y|>|X|$, there must exist i such that $\left|Y \cap E_{i}\right|>\left|X \cap E_{i}\right|$ and this means that adding any element e in $E_{i} \cap(Y \backslash X)$ to X will maintain independence.
- M in general would not be a matroid if E_{i} were not disjoint. Eg: $E_{1}=\{1,2\}$ and $E_{2}=\{2,3\}$ and $k_{1}=1$ and $k_{2}=1$ then both $Y=\{1,3\}$ and $X=\{2\}$ have at most one element of each E_{i} but one can't find an element of Y to add to X.

Graphic Matroid

Given a graph G, a graphic matroid is defined as $M=(E, \mathcal{I})$ where and

- $E=E(G)$ - edges of G are elements of the matroid

$$
\mathcal{I}=\{F \subseteq E(G): F \text { is a forest in the graph } G\}
$$

Co-Graphic Matroid

Given a graph G, a co-graphic matroid is defined as $M=(E, \mathcal{I})$ where and

- $E=E(G)$ - edges of G are elements of the matroid

$$
\mathcal{I}=\{S \subseteq E(G): G \backslash S \text { is connected }\}
$$

Direct Sum

Let $M_{1}=\left(E_{1}, \mathcal{I}_{1}\right), M_{2}=\left(E_{2}, \mathcal{I}_{2}\right), \cdots, M_{t}=\left(E_{t}, \mathcal{I}_{t}\right)$ be t matroids with $E_{i} \cap E_{j}=\emptyset$ for all $1 \leq i \neq j \leq t$.

Direct Sum

Let $M_{1}=\left(E_{1}, \mathcal{I}_{1}\right), M_{2}=\left(E_{2}, \mathcal{I}_{2}\right), \cdots, M_{t}=\left(E_{t}, \mathcal{I}_{t}\right)$ be t matroids with $E_{i} \cap E_{j}=\emptyset$ for all $1 \leq i \neq j \leq t$.
The direct sum $M_{1} \oplus \cdots \oplus M_{t}$ is a matroid $M=(E, \mathcal{I})$ with
$E:=\bigcup_{i=1}^{t} E_{i}$ and $X \subseteq E$ is independent if and only if for all $i \leq t$, $X \cap E_{i} \in \mathcal{I}_{i}$.

$$
\mathcal{I}=\left\{X \mid X \subseteq E,\left(X \cap E_{i}\right) \in \mathcal{I}_{i}, i \in\{1, \ldots, t\}\right\}
$$

Transversal Matroid

Let G be a bipartite graph with the vertex set $V(G)$ being partitioned as A and B.

Transversal Matroid

Let G be a bipartite graph with the vertex set $V(G)$ being partitioned as A and B. The transversal matroid $M=(E, \mathcal{I})$ of G has $E=A$ as its ground set,

$$
\mathcal{I}=\{X \mid X \subseteq A, \text { there is a matching that covers } X\}
$$

Gammoids

Let $D=(V, A)$ be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is said to be linked to S if there are $|X|$ vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S=\emptyset$.

Gammoids

Let $D=(V, A)$ be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is said to be linked to S if there are $|X|$ vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S=\emptyset$.

Gammoids

Let $D=(V, A)$ be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is said to be linked to S if there are $|X|$ vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S=\emptyset$.

Given a digraph $D=(V, A)$ and subsets $S \subseteq V$ and $T \subseteq V$, a gammoid is a matroid $M=(E, \mathcal{I})$ with $E=T$ and

$$
\mathcal{I}=\{X \mid X \subseteq T \text { and } X \text { is linked to } S\}
$$

Gammoid: Example

Strict Gammoids

Given a digraph $D=(V, A)$ and subset $S \subseteq V$, a strict gammoid is a matroid $M=(E, \mathcal{I})$ with $E=V$ and

$$
\mathcal{I}=\{X \mid X \subseteq V \text { and } X \text { is linked to } S\}
$$

Matroid Representation

Remark

- Need a compact representation for the family of independent sets.
- Also should be able to test easily, whether a set belongs to the family of independent sets.

Linear Matroid

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. Given A we define the matroid $M=(E, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are linearly independent over \mathbb{F}.

The matroids that can be defined by such a construction are called linear matroids.

Linear Matroid

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. Given A we define the matroid $M=(E, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are linearly independent over \mathbb{F}.

$$
A=\left[\begin{array}{ccccc}
* & * & * & \cdots & * \\
* & * & * & \cdots & * \\
* & * & * & \cdots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \cdots & *
\end{array}\right] * \text { are elements of } \mathbb{F}
$$

The matroids that can be defined by such a construction are called linear matroids.

Linear Matroids and Representable Matroids

If a matroid can be defined by a matrix A over a field \mathbb{F}, then we say that the matroid is representable over \mathbb{F}.

Linear Matroids and Representable Matroids

A matroid $M=(E, \mathcal{I})$ is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^{ℓ} that correspond to the elements such that the linearly independent sets of vectors precisely correspond to independent sets of the matroid.

A matroid $M=(E, \mathcal{I})$ is called representable or linear if it is representable over some field \mathbb{F}

Linear Matroids and Representable Matroids

A matroid $M=(E, \mathcal{I})$ is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^{ℓ} that correspond to the elements such that the linearly independent sets of vectors precisely correspond to independent sets of the matroid. Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and ℓ be a positive integer.

A matroid $M=(E, \mathcal{I})$ is called representable or linear if it is representable over some field \mathbb{F}.

Linear Matroid

Let $M=(E, \mathcal{I})$ be linear matroid and Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and $d=\operatorname{rank}(M)$.
We can always assume (using Gaussian Elimination) that the matrix has following form:

Here $I_{d \times d}$ is a $d \times d$ identity matrix.

Linear Matroid

Let $M=(E, \mathcal{I})$ be linear matroid and Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and $d=\operatorname{rank}(M)$.
We can always assume (using Gaussian Elimination) that the matrix has following form:

$$
\left[\begin{array}{l|l}
I_{d \times d} & D]_{d \times m} \\
\end{array}\right.
$$

Here $I_{d \times d}$ is a $d \times d$ identity matrix.

Transversal Matroid

For the bipartite graph with partition A and B, form an incidence matrix T as follows. Label the rows by vertices of B and the columns by the vertices of A and define:

where $z_{i j}$ are in-determinants. Think of them as independent variables.

Transversal Matroid

For the bipartite graph with partition A and B, form an incidence matrix T as follows. Label the rows by vertices of B and the columns by the vertices of A and define:

where $z_{i j}$ are in-determinants. Think of them as independent variables.

$$
T=\begin{gathered}
\\
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n}
\end{gathered}\left[\begin{array}{cccccc}
a_{1} & a_{2} & \cdots & a_{j} & \cdots & a_{\ell} \\
z_{11} & z_{12} & \cdots & z_{1 j} & \cdots & z_{1 \ell} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
z_{i 1} & z_{i 2} & \cdots & z_{i j} & \cdots & z_{i \ell} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
z_{n 1} & z_{n 2} & \cdots & z_{n j} & \cdots & z_{n \ell}
\end{array}\right]
$$

Example of the Construction

Example of the Construction

Permutation expansion of Determinants

Theorem: Let

$$
A=\left(a_{i j}\right)_{n \times n}
$$

be a $n \times n$ matrix with entries in \mathbb{F}. Then

$$
\operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)}
$$

Proof that Transversal Matroid is
 Representable over $F[\bar{z}]$

Forward direction: (Board for Picture)

- Suppose some subset $X=\left\{a_{1}, \ldots, a_{q}\right\}$ is independent.
- Then there is a matching that saturates X. Let $Y=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$ be the endpoints of this matching and $a_{i} b_{i}$ are the matching edges.

Proof that Transversal Matroid is
 Representable over $F[\bar{z}]$

Forward direction: (Board for Picture)

- Suppose some subset $X=\left\{a_{1}, \ldots, a_{q}\right\}$ is independent.
- Then there is a matching that saturates X. Let $Y=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$ be the endpoints of this matching and $a_{i} b_{i}$ are the matching edges.
- Consider $T[Y, X]$ - a submatrix with rows in Y and columns in X. Consider the determinant of $T[Y, X]$ then we have a term

$$
\prod_{i=1}^{q} z_{i i}
$$

which can not be cancelled by any other term! So these columns are linearly independent.

Proof that Transversal Matroid is Representable over $F[\bar{z}]$

Reverse direction: (Board for Picture)

- Suppose some subset $X=\left\{a_{1}, \ldots, a_{q}\right\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant - say $T[Y, X]$.

Proof that Transversal Matroid is Representable over $F[\bar{z}]$

Reverse direction: (Board for Picture)

- Suppose some subset $X=\left\{a_{1}, \ldots, a_{q}\right\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant - say $T[Y, X]$.
- Consider the determinant of $T[Y, X]$

$$
0 \neq \operatorname{det}(T[Y, X])=\sum_{\pi \in S(Y)} \operatorname{sgn}(\pi) \prod_{i=1}^{q} z_{i \pi(i)}
$$

Proof that Transversal Matroid is

Representable over $F[\vec{z}]$

Reverse direction: (Board for Picture)

- Suppose some subset $X=\left\{a_{1}, \ldots, a_{q}\right\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant - say $T[Y, X]$.
- Consider the determinant of $T[Y, X]$

$$
0 \neq \operatorname{det}(T[Y, X])=\sum_{\pi \in S(Y)} \operatorname{sgn}(\pi) \prod_{i=1}^{q} z_{i \pi(i)} .
$$

- This implies that we have a term

$$
\prod_{i=1}^{q} z_{i \pi(i)} \neq 0
$$

and this gives us that there is a matching that saturates X in and hence X is independent.

Proof that Transversal Matroid is
 Representable over $F[\bar{z}]$

Reverse direction: (Board for Picture)

- This implies that we have a term

$$
\prod_{i=1}^{q} z_{i \pi(i)} \neq 0
$$

and this gives us that there is a matching that saturates X in and hence X is independent.

- For this direction we do not use $z_{i j}$, the very fact that X forms independent set of column is enough to argue that there is a matching that saturates X.

Removing $z_{i j}$

To remove the $z_{i j}$ we do the following.
Uniformly at random assign $z_{i j}$ from values in finite field \mathbb{F} of size P.

What should be the upper bound on P ? What is the probability that the randomly obtained T is a representation matrix for the transversal matroid.

Removing $z_{i j}$

To remove the $z_{i j}$ we do the following.
Uniformly at random assign $z_{i j}$ from values in finite field \mathbb{F} of size P.

What should be the upper bound on P ? What is the probability that the randomly obtained T is a representation matrix for the transversal matroid.

Using Zippel-Schwartz Lemma

THEOREM: Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree d over some field \mathbb{F} and let S be an N element subset of \mathbb{F}. If each x_{i} is independently assigned a value from S with uniform probability, then $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ with probability at most $\frac{d}{N}$.

Using Zippel-Schwartz Lemma

THEOREM: Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree d over some field \mathbb{F} and let S be an N element subset of \mathbb{F}. If each x_{i} is independently assigned a value from S with uniform probability, then $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ with probability at most $\frac{d}{N}$.

- We think $\operatorname{det}(T[Y, X])$ as polynomial in $z_{i j}$'s of degree at most $n=|A|$.
- Probability that $\operatorname{det}(T[Y, X])=0$ is less than $\frac{n}{P}$. There are at most 2^{n} independent sets in A and thus by union bound probability that not all of them are independent in the matroid represented by T is at most $\frac{2^{n} n}{P}$.

Using Zippel-Schwartz Lemma

- We think $\operatorname{det}(T[Y, X])$ as polynomial in $z_{i j}$'s of degree at most $n=|A|$.
- Probability that $\operatorname{det}(T[Y, X])=0$ is less than $\frac{n}{p}$. There are at most 2^{n} independent sets in A and thus by union bound probability that not all of them are independent in the matroid represented by T is at most $\frac{2^{n} n}{P}$.
- Thus probability that T is the representation is at least $1-\frac{2^{n} n}{P}$. Take P to be some field with at least $2^{n} n 2^{n}$ elements :-).
- size of this representation with be like $n^{O(1)}$ bits!

Representation of Gammoids

- Let $D=(V, A)$ be a directed graph, $\varepsilon>0$ be a given real number, and let S and T be possibly overlapping subsets of V.
- Let $M=(T, \mathcal{I})$, where $\mathcal{I}=\{Z \subseteq T: Z$ is linked to $S\}$, be the gammoid formed by (D, S) restricted to T.
- We can compute a representation of M as an $|S| \times|T|$ matrix over the rationals with entries of bit-length $O(\min \{|T|,|S| \log |T|\}+\log (1 / \varepsilon)+\log |V|)$ in randomized polynomial time with one-sided error bounded by ε.

Representation of Gammoids

- Let $D=(V, A)$ be a directed graph, $\varepsilon>0$ be a given real number, and let S and T be possibly overlapping subsets of V.
- Let $M=(T, \mathcal{I})$, where $\mathcal{I}=\{Z \subseteq T: Z$ is linked to $S\}$, be the gammoid formed by (D, S) restricted to T.
- We can compute a representation of M as an $|S| \times|T|$ matrix over the rationals with entries of bit-length $O(\min \{|T|,|S| \log |T|\}+\log (1 / \varepsilon)+\log |V|)$ in randomized polynomial time with one-sided error bounded by ε.
Stefan Kratsch, Magnus Wahlström: Compression via matroids: A randomized polynomial kernel for odd cycle transversal. SODA 2012:
94-103

Kernelization for OdD CyCLE TRANSVERSAL

Result from

Stefan Kratsch, Magnus Wahlström: Compression via matroids: A randomized polynomial kernel for odd cycle transversal. SODA 2012: 94-103

Algorithm for OCT

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

$$
\frac{|Z|}{2}+\operatorname{mincut}_{G^{\prime} \backslash Z}(S, T)
$$

- The idea is to encode the algorithm given by the above lemma using matroids.

Algorithm for OCT

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

$$
\frac{|Z|}{2}+\operatorname{mincut}_{G^{\prime} \backslash Z}(S, T)
$$

- The idea is to encode the algorithm given by the above lemma using matroids.

Algorithm for OCT

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

$$
\frac{|Z|}{2}+\operatorname{mincut}_{G^{\prime} \backslash Z}(S, T)
$$

- The idea is to encode the algorithm given by the above lemma using matroids.
- Note that if $M=(E, \mathcal{I})$ is representable then the corresponding matrix M succinctly represents all the sets in \mathcal{I}.
- The size of \mathcal{I} could be huge, however the size of M is polynomial in the universe size and whether a set is in \mathcal{I} or not can be tested by looking at the corresponding columns in M.

Algorithm for OCT

Lemma: Let $G=(V, E)$ be a graph and $Q \subseteq V$ be such that $G \backslash Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_{A} \cup Q_{B}=S \cup T \cup Z$ of the following value:

$$
\frac{|Z|}{2}+\operatorname{mincut}_{G^{\prime} \backslash Z}(S, T)
$$

- The idea is to encode the algorithm given by the above lemma using matroids.
- Want to exploit this tiny representation of matroids compared to $|\mathcal{T}|$.

Towards the kernel for OCT

Let $|Q|=q$.

- There are 3^{9} steps in the OCT algorithm. Want each step to be encoded by an independent set of a matroid whose representation matrix has size only $q^{\mathcal{O}(1)}$.
- Each step finds a minimum cut between a pair of subsets of $Q_{A} \cup Q_{B}$.

Towards the kernel for OCT

Let $|Q|=q$.

- There are 3^{q} steps in the OCT algorithm. Want each step to be encoded by an independent set of a matroid whose representation matrix has size only $q^{\mathcal{O}(1)}$.
- Each step finds a minimum cut between a pair of subsets of $Q_{A} \cup Q_{B}$.
Does this ring a bell about which matroid to use for our purpose?

Menger's Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets.
max-dis-path $(S, T)(D)$ denotes the maximum number of vertex disjoint paths (even at ends).
$\operatorname{mincut}(S, T)(D)$ denotes the minimum number of vertices required to disconnect S from T in D.
Mengers Theorem:
max-dis-path $(S, T)(D)=\operatorname{mincut}(S, T)(D)$

Menger's Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets.
max-dis-path $(S, T)(D)$ denotes the maximum number of vertex disjoint paths (even at ends).
$\operatorname{mincut}(S, T)(D)$ denotes the minimum number of vertices required to disconnect S from T in D.
Mengers Theorem:

$$
\text { max-dis-path }(S, T)(D)=\operatorname{mincut}(S, T)(D)
$$

So rather than remembering minimum cut we can remember maximum number of vertex disjoint paths.

Menger's Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets.
max-dis-path $(S, T)(D)$ denotes the maximum number of vertex disjoint paths (even at ends).
$\operatorname{mincut}(S, T)(D)$ denotes the minimum number of vertices required to disconnect S from T in D.
Mengers Theorem:
max-dis-path $(S, T)(D)=$ mincut $(S, T)(D)$
Gammoid!

Recall: Example

For $L=\{w\}, R=\{x, y\}, C=\{z\} \Longrightarrow L_{A} \cup R_{B}=\left\{w_{a}, x_{b}, y_{b}\right\}$ and $L_{B} \cup R_{A}=\left\{w_{b}, x_{a}, y_{a}\right\}$ and $C_{A} \cup C_{B}=\left\{z_{a}, z_{b}\right\}$ Want to compute cut between $L_{A} \cup R_{B}=\left\{w_{a}, x_{b}, y_{b}\right\}$ and $L_{B} \cup R_{A}=\left\{w_{b}, x_{a}, y_{a}\right\}$ in $G^{\prime} \backslash\left(C_{A} \cup C_{B}\right)$.

Gammoid for our purpose

Given $Q_{A} \cup Q_{B}$, we need a gammoid that does the following job:

- For every valid partition of $Q_{A} \cup Q_{B}=S \cup T \cup Z$, remembers the size of minimum cut/maximum number of vertex disjoint paths between S and T in $G^{\prime} \backslash Z$.
We also need to encode deletion of vertices of Z.

Gammoid for our purpose

Given $Q_{A} \cup Q_{B}$, we need a gammoid that does the following job:

- For every valid partition of $Q_{A} \cup Q_{B}=S \cup T \cup Z$, remembers the size of minimum cut/maximum number of vertex disjoint paths between S and T in $G^{\prime} \backslash Z$.
We also need to encode deletion of vertices of Z.

Gammoid for our purpose

Abstractly the problem we want to solve is the following:

- Input: A directed graph D and a subset X of terminals.
- Output: A representation of a gammoid of size $|X|^{(1)}$ which for every partition of X as $S \cup T \cup R \cup U$, has an independent set I from which we can infer the maximum number of vertex disjoint paths between S and T in $D \backslash R$.

Solving the Problem

- Let $X^{\prime}=\left\{x^{\prime} \mid x \in X\right\}$ be a vertex set. The vertices x^{\prime} and x are called conjugates of each other.
- Add X^{\prime} to D and arcs $\left(x^{\prime}, x\right)$ to D for every $x \in X$. Let the resulting digraph be D^{\prime}.

Solving the Problem

- Obtain a gammoid with $\mathcal{S}=X^{\prime}$ and $\mathcal{T}=X^{\prime} \cup X$.
- Clearly, the size of the representation matrix is $|X| \times 2|X|$ (not the number of bits).

Correspondence between an Independent

 Set and a Partition

Let $I \subseteq X \cup X^{\prime}$. Given I we define a partition of X, called P_{l}, as follows:

- S contains all vertices $v \in X$ with $v, v^{\prime} \notin I$
- T contains all vertices $v \in X$ with $v, v^{\prime} \in I$
- R contains all vertices $v \in X$ with $v \in I$ but $v^{\prime} \notin I$
- $U=X \backslash(R \cup T \cup U)$

Correspondence between an Independent Set and a Partition

Given a partition $X=S \cup T \cup R \cup U$, the corresponding subset $I(S, T, R, U) \subseteq X \cup X^{\prime}$ is $T \cup R \cup T^{\prime} \cup U^{\prime}$.

Proof

$I \subseteq X \cup X^{\prime}$ is independent in the gammoid if and only if T is linked to S in $D \backslash R$.
Proof:

Proof

$I \subseteq X \cup X^{\prime}$ is independent in the gammoid if and only if T is linked to S in $D \backslash R$.

There exists $|I|$ vertex disjoint paths from X^{\prime} to I. For every vertex in $X^{\prime} \cap I=T^{\prime} \cup U^{\prime}$ the only path that is possible has the form v^{\prime}. For every vertex w in R there is either a path of the form $w^{\prime} w$ or $v^{\prime} v \cdots w$ with $v^{\prime} \in S^{\prime}$. In later case we can replace the path $v^{\prime} v \cdots w$ with $w^{\prime} w$.

Proof

$I \subseteq X \cup X^{\prime}$ is independent in the gammoid if and only if T is linked to S in $D \backslash R$.

Proof: $\quad \Rightarrow$

There exists |I| vertex disjoint paths from X^{\prime} to $X \cup X^{\prime}$. For every vertex in T there exists a path of the form $v^{\prime} v \cdots w$ with $v^{\prime} \in S^{\prime}$. All these paths do not contain any vertices of R and are vertex disjoint and in fact $v \cdots w$ is a path in $D \backslash R . T$ is linked to S in $D \backslash R$.

Proof

$I \subseteq X \cup X^{\prime}$ is independent in the gammoid if and only if T is linked to S in $D \backslash R$.
Proof:

This obviously follows by taking paths v^{\prime} and $w^{\prime} w$ and appending paths from S to T by its conjugate in S^{\prime}. So there exists vertex disjoint paths from X^{\prime} to I. Thus l is independent.

Key Lemma

Given a partition $X=S \cup T \cup R \cup U$ let $I=I(S, T, R, U) \subseteq X \cup X^{\prime}$ be the corresponding set. That is, $I=T \cup R \cup T^{\prime} \cup U^{\prime}$. Then

$$
\operatorname{mincut}(S, T)(D \backslash R)=r(I)-|X \backslash S|
$$

Compression Algorithm for OCT

Step 1: Create an auxiliary graph $\left(G^{\prime}, Q_{A} \cup Q_{B}\right)$ from (G, Q).

Compression Algorithm for OCT

Step 1: Create an auxiliary graph $\left(G^{\prime}, Q_{A} \cup Q_{B}\right)$ from (G, Q).
Step 2: Now we make directed graph (adding arcs in both directions) (D, X) from $\left(G^{\prime}, X=Q_{A} \cup Q_{B}\right)$.

Compression Algorithm for OCT

Step 1: Create an auxiliary graph $\left(G^{\prime}, Q_{A} \cup Q_{B}\right)$ from (G, Q).
Step 2: Now we make directed graph (adding arcs in both directions) (D, X) from $\left(G^{\prime}, X=Q_{A} \cup Q_{B}\right)$.

Step 3: Obtain an auxiliary directed graph $\left(D^{\prime}, X \cup X^{\prime}\right)$ and consider the gammoid with $\mathcal{S}=X^{\prime}$ and $\mathcal{T}=X \cup X^{\prime}$.

Compression Algorithm for OCT

Step 3: Obtain an auxiliary directed graph ($\left.D^{\prime}, X \cup X^{\prime}\right)$ and consider the gammoid with $\mathcal{S}=X^{\prime}$ and $\mathcal{T}=X \cup X^{\prime}$.

Step 4: Let A be the matrix representing the gammoid. Output A, k.

Compression Algorithm for OCT

Let $I \subseteq X \cup X^{\prime}$. Given I we define a partition of X, called P_{l}, as follows:

- S contains all vertices $v \in X$ with $v, v^{\prime} \notin I$
- T contains all vertices $v \in X$ with $v, v^{\prime} \in I$
- R contains all vertices $v \in X$ with $v \in I$ but $v^{\prime} \notin I$
- $U=X \backslash(R \cup T \cup U)$

Compression Algorithm for OCT

We call $I \subseteq X \cup X^{\prime}$ an interesting set if $P_{I}=S \cup T \cup R(=Z)$ is a valid partition of $X=Q_{A} \cup Q_{B}$.

Compression Algorithm for OCT

We call $I \subseteq X \cup X^{\prime}$ an interesting set if $P_{I}=S \cup T \cup R(=Z)$ is a valid partition of $X=Q_{A} \cup Q_{B}$.
(G, k) has an odd cycle transversal of size k if and only if there exists an interesting set $I \subseteq X \cup X$ such that $\operatorname{rank}(I)-|Z \backslash S| \leq k$.

Compression Algorithm for OCT

\[

\]

We call $I \subseteq X \cup X^{\prime}$ an interesting set if $P_{I}=S \cup T \cup R(=Z)$ is a valid partition of $X=Q_{A} \cup Q_{B}$.
(G, k) has an odd cycle transversal of size k if and only if there exists an interesting set $I \subseteq X \cup X$ such that $\operatorname{rank}(I)-|Z \backslash S| \leq k$.

For proof recall...

$$
\operatorname{mincut}(S, T)(D \backslash R)=r(I)-|X \backslash S|
$$

Size of A

- Let $D=(V, A)$ be a directed graph, $\varepsilon>0$ a given real, and let \mathcal{S} and \mathcal{T} be possibly overlapping subsets of V.
- Let $M=(\mathcal{T}, \mathcal{I})$, where $\mathcal{I}=\{Z \subseteq \mathcal{T}: Z$ is linked to $\mathcal{S}\}$, be the gammoid formed by (D, \mathcal{S}) restricted to \mathcal{T}.
- We can compute a representation of M as an $|S| \times|T|$ matrix over the rationals with entries of bit-length $O(\min \{|\mathcal{T}|,|\mathcal{S}| \log |\mathcal{T}|\}+\log (1 / \varepsilon)+\log |V|)$ in randomized polynomial time with one-sided error bounded by ε.

Size of A

- Let $D=(V, A)$ be a directed graph, $\varepsilon>0$ a given real, and let \mathcal{S} and \mathcal{T} be possibly overlapping subsets of V.
- Let $M=(\mathcal{T}, \mathcal{I})$, where $\mathcal{I}=\{Z \subseteq \mathcal{T}: Z$ is linked to $\mathcal{S}\}$, be the gammoid formed by (D, \mathcal{S}) restricted to \mathcal{T}.
- We can compute a representation of M as an $|S| \times|T|$ matrix over the rationals with entries of bit-length $O(\min \{|\mathcal{T}|,|\mathcal{S}| \log |\mathcal{T}|\}+\log (1 / \varepsilon)+\log |V|)$ in randomized polynomial time with one-sided error bounded by ε.
Size of A in terms of bits $=\mathcal{O}\left(|Q|^{3} \log |Q|+|Q|^{2} \log (1 / \varepsilon)+|Q|^{2} \log |V|\right)$

How do we get Q and the final size.

- If $k \leq \log n$ then run the $\mathcal{O}\left(3^{k} m n\right)$ FPT algorithm and find solution in polynomial time.
- Apply the known $\alpha \sqrt{\log n}$ approximation algorithm for OCT and get a set Q. If the size of $|Q|>k \alpha \sqrt{\log n}$ output NO.
- Else $k>\log n$ and thus $|Q| \leq k \alpha \sqrt{\log n} \leq \mathcal{O}\left(k^{1.5}\right)$
- So the size of A in terms of bits is at most $\mathcal{O}\left(k^{4.5} \log k\right)$.

Finally Kernel for OCT

Given (G, Q) and A checking whether a set I is interesting or not is within NP. And thus there exists a reduction from the compressed instance to an instance of Odd Cycle Transversal such that the size of the graph is $k^{\mathcal{O}(1)}$.

Final Slide

Thank You! Any Questions?

