Parameterized Algorithms using Matroids Lecture I: Matroid Basics and its use as data structure

SAKET SAURABH

The Institute of Mathematical Sciences, India and University of Bergen, Norway,

ADFOCS 2013, MPI, August 5-9, 2013

Introduction and Kernelization

Fixed Parameter Tractable (FPT) Algorithms

For decision problems with input size n, and a parameter k, (which typically is the solution size), the goal here is to design an algorithm with running time $f(k) \cdot n^{\mathcal{O}(1)}$, where f is a function of k alone.

Problems that have such an algorithm are said to be fixed parameter tractable (FPT).

A Few Examples

VERTEX COVER Input: A graph G = (V, E) and a positive integer k. Parameter: k Question: Does there exist a subset $V' \subseteq V$ of size at most k such that for every edge $(u, v) \in E$ either $u \in V'$ or $v \in V'$?

PATH Input: A graph G = (V, E) and a positive integer k. Parameter: kQuestion: Does there exist a path P in G of length at least k?

Kernelization: A Method for Everyone

INFORMALLY: A kernelization algorithm is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter.

Kernel: Formally

FORMALLY: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^* \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^* \times \mathbb{N}$, outputs in p(|x| + k) time a pair $(x', k') \in \Sigma^* \times \mathbb{N}$ such that

- $(x,k) \in L \iff (x',k') \in L$,
- $|x'|, k' \le f(k),$

where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Polynomial kernel \implies *f* is polynomial.

Kernel: Formally

FORMALLY: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^* \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^* \times \mathbb{N}$, outputs in p(|x| + k) time a pair $(x', k') \in \Sigma^* \times \mathbb{N}$ such that

- $(x,k) \in L \iff (x',k') \in L$,
- $|x'|, k' \leq f(k),$

where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Polynomial kernel \implies *f* is polynomial.

Kernel: Formally

FORMALLY: A kernelization algorithm, or in short, a kernel for a parameterized problem $L \subseteq \Sigma^* \times \mathbb{N}$ is an algorithm that given $(x, k) \in \Sigma^* \times \mathbb{N}$, outputs in p(|x| + k) time a pair $(x', k') \in \Sigma^* \times \mathbb{N}$ such that

- $(x,k) \in L \iff (x',k') \in L$,
- $|x'|, k' \le f(k)$,

where f is an arbitrary computable function, and p a polynomial. Any function f as above is referred to as the size of the kernel.

Polynomial kernel \implies *f* is polynomial.

Rule 1: Remove any isolated vertices.

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and $(G - \{v\}, k - 1)$

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and $(G - \{v\}, k - 1)$

Apply these rules until no longer possible.

What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges they can cover is at most k^2 .

Outcome 2: If $|E| > k^2$ — the answer is No. Else $|E| \le k^2$, $|V| \le 2k^2$ and we have polynomial sized kernel of $\mathcal{O}(k^2)$.

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and $(G - \{v\}, k - 1)$

Apply these rules until no longer possible. What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges they can cover is at most k^2 .

Outcome 2: If $|E| > k^2$ — the answer is No. Else $|E| \le k^2$, $|V| \le 2k^2$ and we have polynomial sized kernel of $\mathcal{O}(k^2)$.

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and (G - {v}, k - 1)

Apply these rules until no longer possible. What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges they can cover is at most k^2 .

Outcome 2: If $|E| > k^2$ — the answer is No. Else $|E| \le k^2$, $|V| \le 2k^2$ and we have polynomial sized kernel of $\mathcal{O}(k^2)$.

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and (G - {v}, k - 1)

Apply these rules until no longer possible. What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges they can cover is at most k^2 .

Outcome 2: If $|E| > k^2$ — the answer is No. Else $|E| \le k^2$, $|V| \le 2k^2$ and we have polynomial sized kernel of $\mathcal{O}(k^2)$.

Rule 1: Remove any isolated vertices.
Rule 2: If there is a vertex v of degree at least k + 1 then include v in solution and (G - {v}, k - 1)

Apply these rules until no longer possible. What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

- Observation: Every vertex has degree at most k number of edges they can cover is at most k^2 .
 - Outcome 2: If $|E| > k^2$ the answer is No. Else $|E| \le k^2$, $|V| \le 2k^2$ and we have polynomial sized kernel of $\mathcal{O}(k^2)$.

Iterative Compression and Odd Cycle Transversal

Result from Bruce A. Reed, Kaleigh Smith, Adrian Vetta: Finding odd cycle transversals. Operation Resarch Letters 32(4): 299-301 (2004)

Iterative compression

- A surprisingly small, but very powerful trick.
- Most useful for deletion problems: delete *k* things to achieve some property.
- Demonstration: ODD CYCLE TRANSVERSAL aka BIPARTITE DELETION aka GRAPH BIPARTIZATION: Given a graph *G* and an integer *k*, delete *k* vertices to make the graph bipartite.
- Forbidden induced subgraphs: odd cycles. There is no bound on the size of odd cycles.

Odd Cycle Transversal

ODD CYCLE TRANSVERSAL **Input:** A graph G = (V, E) and a positive integer k. **Parameter:** k**Question:** Does there exist a subset $V' \subseteq V$ of size at most k such that $G \setminus V'$ is bipartite?

ODD CYCLE TRANSVERSAL

Solution based on iterative compression:

• Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

 Step 2: Solve the compression problem for general graphs: Given a graph G, an integer k, and a set Q of k + 1 vertices such that G \ Q is bipartite, find a set S of k vertices such that G \ S is bipartite.

• Step 3: Apply the idea of iterative compression ...

ODD CYCLE TRANSVERSAL

Solution based on iterative compression:

• Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

• Step 2: Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set Q of k + 1vertices such that $G \setminus Q$ is bipartite, find a set S of k vertices such that $G \setminus S$ is bipartite.

• Step 3: Apply the idea of iterative compression

ODD CYCLE TRANSVERSAL

Solution based on iterative compression:

• Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

- Step 2: Solve the compression problem for general graphs: Given a graph G, an integer k, and a set Q of k + 1 vertices such that G \ Q is bipartite, find a set S of k vertices such that G \ S is bipartite.
- Step 3: Apply the idea of iterative compression ...

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

Find an arbitrary 2-coloring (B_0, W_0) of G. $C := (B_0 \cap W) \cup (W_0 \cap B)$ should change color, while $R := (B_0 \cap B) \cup (W_0 \cap W)$ should remain the same color.

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

Find an arbitrary 2-coloring (B_0, W_0) of G.

 $C := (B_0 \cap W) \cup (W_0 \cap B)$ should change color, while $R := (B_0 \cap B) \cup (W_0 \cap W)$ should remain the same color.

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

Find an arbitrary 2-coloring (B_0, W_0) of G. $C := (B_0 \cap W) \cup (W_0 \cap B)$ should change color, while $R := (B_0 \cap B) \cup (W_0 \cap W)$ should remain the same colo

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

Find an arbitrary 2-coloring (B_0, W_0) of G. $C := (B_0 \cap W) \cup (W_0 \cap B)$ should change color, while $R := (B_0 \cap B) \cup (W_0 \cap W)$ should remain the same color.

Given a bipartite graph G, two sets $B, W \subseteq V(G)$, and an integer k, find a set S of at most k vertices such that $G \setminus S$ has a 2-coloring where $B \setminus S$ is black and $W \setminus S$ is white.

Find an arbitrary 2-coloring (B_0, W_0) of G. $C := (B_0 \cap W) \cup (W_0 \cap B)$ should change color, while $R := (B_0 \cap B) \cup (W_0 \cap W)$ should remain the same color.

Lemma: $G \setminus S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \setminus S$ contains vertices from both $C \setminus S$ and $R \setminus S$.

Proof:

 \implies In a 2-coloring of $G \setminus S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.

 \Leftarrow Flip the coloring of those components of $G \setminus S$ that contain vertices from $C \setminus S$. No vertex of R is flipped.

Lemma: $G \setminus S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \setminus S$ contains vertices from both $C \setminus S$ and $R \setminus S$.

Proof:

 \implies In a 2-coloring of $G \setminus S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.

 \Leftarrow Flip the coloring of those components of $G \setminus S$ that contain vertices from $C \setminus S$. No vertex of R is flipped.

Lemma: $G \setminus S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \setminus S$ contains vertices from both $C \setminus S$ and $R \setminus S$.

Proof:

 \implies In a 2-coloring of $G \setminus S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.

 $\Leftarrow Flip the coloring of those components of <math>G \setminus S$ that contain vertices from $C \setminus S$. No vertex of R is flipped.

Lemma: $G \setminus S$ has the required 2-coloring if and only if S separates C and R, i.e., no component of $G \setminus S$ contains vertices from both $C \setminus S$ and $R \setminus S$.

Proof:

 \implies In a 2-coloring of $G \setminus S$, each vertex either remained the same color or changed color. Adjacent vertices do the same, thus every component either changed or remained.

 $\Leftarrow Flip the coloring of those components of <math>G \setminus S$ that contain vertices from $C \setminus S$. No vertex of R is flipped.

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite, find a set S of k vertices such that $G \setminus S$ is bipartite.

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite, find a set S of k vertices such that $G \setminus S$ is bipartite.

Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices.

Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices. Neighbors of the black vertices in Q should be white and the neighbors of the white vertices in Q should be black.

Branch into 3^{k+1} cases: each vertex of Q is either black, white, or deleted. Trivial check: no edge between two black or two white vertices. Neighbors of the black vertices in Q should be white and the neighbors of the white vertices in Q should be black.

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite, find a set S of k vertices such that $G \setminus S$ is bipartite.

The vertices of Q can be disregarded. Thus we need to solve the annotated problem on the bipartite graph $G \setminus Q$.

Running time: $O(3^k \cdot k|E(G)|)$ time.

Step 3: Iterative compression

How do we get a solution of size k + 1?

Step 3: Iterative compression

How do we get a solution of size k + 1? We get it for free!

Step 3: Iterative compression

How do we get a solution of size k + 1? We get it for free! Let $V(G) = \{v_1, \dots, v_n\}$ and let G_i be the graph induced by $\{v_1, \dots, v_i\}$.

For every *i*, we find a set S_i of size *k* such that $G_i \setminus S_i$ is bipartite.

- For G_k , the set $S_k = \{v_1, \dots, v_k\}$ is a trivial solution.
- If S_{i-1} is known, then $S_{i-1} \cup \{v_i\}$ is a set of size k+1 whose deletion makes G_i bipartite \implies We can use the compression algorithm to find a suitable S_i in time $O(3^k \cdot k | E(G_i)|)$.

Step 3: Iterative Compression

Bipartite-Deletion(G, k)

- **1** $S_k = \{v_1, \ldots, v_k\}$
- **2** for i := k + 1 to *n*
- **3** Invariant: $G_{i-1} \setminus S_{i-1}$ is bipartite.
- 4 Call Compression $(G_i, S_{i-1} \cup \{v_i\})$
- **5** If the answer is "NO" \implies return "NO"
- 6 If the answer is a set $X \implies S_i := X$
- **7** Return the set S_n

Running time: the compression algorithm is called n times and everything else can be done in linear time.

 $\implies O(3^k \cdot k | V(G)| \cdot | E(G)|)$ time algorithm.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite.

Useful Reformulation of the Algorithm

Given a graph G, an integer k, and a set Q of k + 1 vertices such that $G \setminus Q$ is bipartite.

 Vertices in G' are A ∪ B ∪ Q_A ∪ Q_B. Edges within G'[A ∪ B] are as in G, while for q ∈ Q a vertex q_a is connected to N_G(q) ∩ A and q_b to N_G(q) ∩ B. For a partition $Q = L \cup R \cup C$ we are going to compute the minimum $(R_A \cup L_B)$, $(L_A \cup R_B)$ -cut in $G' \setminus (C_A \cup C_B)$.

Example

For $L = \{w\}, R = \{x, y\}, C = \{z\} \implies L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ and $C_A \cup C_B = \{z_a, z_b\}$ Want to compute cut between $L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ in $G' \setminus (C_A \cup C_B)$.

Example

For $L = \{w\}, R = \{x, y\}, C = \{z\} \implies L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ and $C_A \cup C_B = \{z_a, z_b\}$ Want to compute cut between $L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ in $G' \setminus (C_A \cup C_B)$.

Final Result

For a partition $Q = L \cup R \cup C$ we are going to compute the minimum $(R_A \cup L_B)$, $(L_A \cup R_B)$ -cut in $G' \setminus (C_A \cup C_B)$. This is sufficient due to the following lemma:

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all partitions $Q = L \cup R \cup C$ of the following value:

 $|C| + \underset{G' \setminus (C_A \cup C_B)}{\operatorname{mincut}} ((R_A \cup L_B), (L_A \cup R_B))$

Final Result

For a partition $Q = L \cup R \cup C$ we are going to compute the minimum $(R_A \cup L_B)$, $(L_A \cup R_B)$ -cut in $G' \setminus (C_A \cup C_B)$. This is sufficient due to the following lemma:

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all partitions $Q = L \cup R \cup C$ of the following value:

 $|C| + \underset{G' \setminus (C_A \cup C_B)}{\operatorname{mincut}} ((R_A \cup L_B), (L_A \cup R_B))$

Final Result: Restated

Let *S*, *T* and *R* be a partition of $Q_A \cup Q_B$. We say that (S, T, Z) is a *valid* partition if for all $x \in Q$ either

- $|\{x_1, x_2\} \cap S| = |\{x_1, x_2\} \cap T| = 1;$ or
- $|\{x_1, x_2\} \cap Z| = 2.$

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

 $\frac{|Z|}{2} + \min_{G' \setminus Z} (S, T)$

Final Result: Restated

Let *S*, *T* and *R* be a partition of $Q_A \cup Q_B$. We say that (S, T, Z) is a *valid* partition if for all $x \in Q$ either

- $|\{x_1, x_2\} \cap S| = |\{x_1, x_2\} \cap T| = 1;$ or
- $|\{x_1, x_2\} \cap Z| = 2.$

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

 $\frac{|Z|}{2} + \min_{G' \setminus Z} (S, T)$

Final Result: Restated

Let *S*, *T* and *R* be a partition of $Q_A \cup Q_B$. We say that (S, T, Z) is a *valid* partition if for all $x \in Q$ either

- $|\{x_1, x_2\} \cap S| = |\{x_1, x_2\} \cap T| = 1;$ or
- $|\{x_1, x_2\} \cap Z| = 2.$

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

$$\frac{|Z|}{2} + \min_{G' \setminus Z} (S, T)$$

Matroids and its Representation

Matroids

Definition

A pair $M = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a *matroid* if it satisfies the following conditions:

(I1)
$$\emptyset \in \mathcal{I}$$
 or $\mathcal{I} \neq \emptyset$.
(I2) If $A' \subseteq A$ and $A \in \mathcal{I}$ then $A' \in \mathcal{I}$.
(I3) If $A, B \in \mathcal{I}$ and $|A| < |B|$, then $\exists e \in (B \setminus A)$ such that $A \cup \{e\} \in \mathcal{I}$.

The axiom (I2) is also called the *hereditary property* and a pair $M = (E, \mathcal{I})$ satisfying (I1) and (I2) is called *hereditary family* or *set-family*.

Matroids

Definition

A pair $M = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a *matroid* if it satisfies the following conditions:

(I1)
$$\emptyset \in \mathcal{I}$$
 or $\mathcal{I} \neq \emptyset$.
(I2) If $A' \subseteq A$ and $A \in \mathcal{I}$ then $A' \in \mathcal{I}$.
(I3) If $A, B \in \mathcal{I}$ and $|A| < |B|$, then $\exists e \in (B \setminus A)$ such that $A \cup \{e\} \in \mathcal{I}$.

The axiom (12) is also called the *hereditary property* and a pair $M = (E, \mathcal{I})$ satisfying (11) and (12) is called *hereditary family* or *set-family*.

Rank and Basis

Definition

A pair $M = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets (called independent sets) of E, is a *matroid* if it satisfies the following conditions:

$$\begin{array}{ll} (I1) & \varphi \in \mathcal{I} \text{ or } \mathcal{I} \neq \emptyset. \\ (I2) & \text{If } A' \subseteq A \text{ and } A \in \mathcal{I} \text{ then } A' \in \mathcal{I}. \\ (I3) & \text{If } A, \overline{B} \in \mathcal{I} \text{ and } |A| < |B|, \text{ then } \exists \ e \in (B \setminus A) \text{ such that} \\ A \cup \{e\} \in \mathcal{I}. \end{array}$$

An inclusion wise maximal set of \mathcal{I} is called a *basis* of the matroid. Using axiom (13) it is easy to show that all the bases of a matroid have the same size. This size is called the *rank* of the matroid M, and is denoted by rank(M).

Examples Of Matroids

Uniform Matroid

A pair M = (E, I) over an *n*-element ground set *E*, is called a *uniform matroid* if the family of independent sets is given by

$$\mathcal{I} = \Big\{ A \subseteq E \mid |A| \le k \Big\},\,$$

where k is some constant. This matroid is also denoted as $U_{n,k}$. Eg: $E = \{1, 2, 3, 4, 5\}$ and k = 2 then

 $\mathcal{I} = \left\{ \{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \\ \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\} \right\}$

Uniform Matroid

A pair $M = (E, \mathcal{I})$ over an *n*-element ground set *E*, is called a *uniform matroid* if the family of independent sets is given by

$$\mathcal{I} = \Big\{ A \subseteq E \mid |A| \le k \Big\},\$$

where k is some constant. This matroid is also denoted as $U_{n,k}$. Eg: $E = \{1, 2, 3, 4, 5\}$ and k = 2 then

 $\mathcal{I} = \left\{ \{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \\ \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\} \right\}$

Partition Matroid

A partition matroid $M = (E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_1, \ldots, E_ℓ and by ℓ non-negative integers k_1, \ldots, k_ℓ . A set $X \subseteq E$ is independent if and only if $|X \cap E_i| \leq k_i$ for all $i \in \{1, \ldots, \ell\}$. That is,

$$\mathcal{I} = \Big\{ X \subseteq E \mid |X \cap E_i| \le k_i, \ i \in \{1, \dots, \ell\} \Big\}.$$

- If $X, Y \in \mathcal{I}$ and |Y| > |X|, there must exist *i* such that $|Y \cap E_i| > |X \cap E_i|$ and this means that adding any element *e* in $E_i \cap (Y \setminus X)$ to X will maintain independence.
- *M* in general would not be a matroid if *E_i* were not disjoint. Eg:
 *E*₁ = {1,2} and *E*₂ = {2,3} and *k*₁ = 1 and *k*₂ = 1 then both
 Y = {1,3} and *X* = {2} have at most one element of each *E_i* but one can't find an element of *Y* to add to *X*.

Partition Matroid

A partition matroid $M = (E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_1, \ldots, E_ℓ and by ℓ non-negative integers k_1, \ldots, k_ℓ . A set $X \subseteq E$ is independent if and only if $|X \cap E_i| \leq k_i$ for all $i \in \{1, \ldots, \ell\}$. That is,

 $\mathcal{I} = \Big\{ X \subseteq E \mid |X \cap E_i| \le k_i, \ i \in \{1, \dots, \ell\} \Big\}.$

- If $X, Y \in \mathcal{I}$ and |Y| > |X|, there must exist *i* such that $|Y \cap E_i| > |X \cap E_i|$ and this means that adding any element *e* in $E_i \cap (Y \setminus X)$ to X will maintain independence.
- *M* in general would not be a matroid if *E_i* were not disjoint. Eg:
 *E*₁ = {1,2} and *E*₂ = {2,3} and *k*₁ = 1 and *k*₂ = 1 then both
 Y = {1,3} and *X* = {2} have at most one element of each *E_i* but one can't find an element of *Y* to add to *X*.

Partition Matroid

A partition matroid $M = (E, \mathcal{I})$ is defined by a ground set E being partitioned into (disjoint) sets E_1, \ldots, E_ℓ and by ℓ non-negative integers k_1, \ldots, k_ℓ . A set $X \subseteq E$ is independent if and only if $|X \cap E_i| \leq k_i$ for all $i \in \{1, \ldots, \ell\}$. That is,

$$\mathcal{I} = \left\{ X \subseteq E \mid |X \cap E_i| \le k_i, \ i \in \{1, \dots, \ell\} \right\}.$$

- If $X, Y \in \mathcal{I}$ and |Y| > |X|, there must exist *i* such that $|Y \cap E_i| > |X \cap E_i|$ and this means that adding any element *e* in $E_i \cap (Y \setminus X)$ to X will maintain independence.
- *M* in general would not be a matroid if *E_i* were not disjoint. Eg:
 *E*₁ = {1,2} and *E*₂ = {2,3} and *k*₁ = 1 and *k*₂ = 1 then both
 Y = {1,3} and *X* = {2} have at most one element of each *E_i* but one can't find an element of *Y* to add to *X*.

Graphic Matroid

Given a graph G, a graphic matroid is defined as $M = (E, \mathcal{I})$ where and

- E = E(G) edges of G are elements of the matroid
- $\mathcal{I} = \left\{ F \subseteq E(G) : F \text{ is a forest in the graph } G \right\}$

Co-Graphic Matroid

Given a graph G, a *co-graphic matroid* is defined as $M = (E, \mathcal{I})$ where and

- E = E(G) edges of G are elements of the matroid
- $\mathcal{I} = \Big\{S \subseteq E(G): G \setminus S ext{ is connected}\Big\}$

Direct Sum

Let $M_1 = (E_1, \mathcal{I}_1)$, $M_2 = (E_2, \mathcal{I}_2)$, \cdots , $M_t = (E_t, \mathcal{I}_t)$ be t matroids with $E_i \cap E_i = \emptyset$ for all $1 \le i \ne j \le t$.

The direct sum $M_1 \oplus \cdots \oplus M_t$ is a matroid $M = (E, \mathcal{I})$ with $E := \bigcup_{i=1}^t E_i$ and $X \subseteq E$ is independent if and only if for all $i \leq t$, $X \cap E_i \in \mathcal{I}_i$.

 $\mathcal{I} = \Big\{X \mid X \subseteq E, \; (X \cap E_i) \in \mathcal{I}_i, \; i \in \{1, \dots, t\}\Big\}$

Direct Sum

Let $M_1 = (E_1, \mathcal{I}_1)$, $M_2 = (E_2, \mathcal{I}_2)$, \cdots , $M_t = (E_t, \mathcal{I}_t)$ be t matroids with $E_i \cap E_j = \emptyset$ for all $1 \le i \ne j \le t$. The direct sum $M_1 \oplus \cdots \oplus M_t$ is a matroid $M = (E, \mathcal{I})$ with $E := \bigcup_{i=1}^t E_i$ and $X \subseteq E$ is independent if and only if for all $i \le t$, $X \cap E_i \in \mathcal{I}_i$.

 $\mathcal{I} = \left\{ X \mid X \subseteq E, \; (X \cap E_i) \in \mathcal{I}_i, \; i \in \{1, \dots, t\} \right\}$

Transversal Matroid

Let G be a bipartite graph with the vertex set V(G) being partitioned as A and B.

Transversal Matroid

Let G be a bipartite graph with the vertex set V(G) being partitioned as A and B. The *transversal matroid* $M = (E, \mathcal{I})$ of G has E = A as its ground set,

 $\mathcal{I} = \left\{ X \mid X \subseteq A, \text{ there is a matching that covers } X \right\}$

Gammoids

Let D = (V, A) be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is *said to be linked to S* if there are |X| vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S = \emptyset$.

Given a digraph D = (V, A) and subsets $S \subseteq V$ and $T \subseteq V$, a *gammoid* is a matroid M = (E, I) with E = T and

 $\mathcal{I} = \left\{ X \mid X \subseteq T \text{ and } X \text{ is linked to } S \right\}$

Gammoids

Let D = (V, A) be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is *said to be linked to S* if there are |X| vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S = \emptyset$.

Given a digraph D = (V, A) and subsets $S \subseteq V$ and $T \subseteq V$, a *gammoid* is a matroid M = (E, I) with E = T and

 $\mathcal{I} = \left\{ X \mid X \subseteq T \text{ and } X \text{ is linked to } S \right\}$

Gammoids

Let D = (V, A) be a directed graph, and let $S \subseteq V$ be a subset of vertices. A subset $X \subseteq V$ is *said to be linked to S* if there are |X| vertex disjoint paths going from S to X.

The paths are disjoint, not only internally disjoint. Furthermore, zero-length paths are also allowed if $X \cap S = \emptyset$.

Given a digraph D = (V, A) and subsets $S \subseteq V$ and $T \subseteq V$, a *gammoid* is a matroid $M = (E, \mathcal{I})$ with E = T and

 $\mathcal{I} = \left\{ X \mid X \subseteq T \text{ and } X \text{ is linked to } S \right\}$

Gammoid: Example

Strict Gammoids

Given a digraph D = (V, A) and subset $S \subseteq V$, a *strict gammoid* is a matroid $M = (E, \mathcal{I})$ with E = V and

$$\mathcal{I} = \Big\{X \mid X \subseteq V ext{ and } X ext{ is linked to } S\Big\}$$

Matroid Representation

Remark

- Need a compact representation for the family of independent sets.
- Also should be able to test easily, whether a set belongs to the family of independent sets.

Linear Matroid

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. Given A we define the matroid $M = (E, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are *linearly independent* over \mathbb{F} .

The matroids that can be defined by such a construction are called *linear matroids*.

Linear Matroid

Let A be a matrix over an arbitrary field \mathbb{F} and let E be the set of columns of A. Given A we define the matroid $M = (E, \mathcal{I})$ as follows. A set $X \subseteq E$ is independent (that is $X \in \mathcal{I}$) if the corresponding columns are *linearly independent* over \mathbb{F} .

$$A = \begin{bmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & \cdots & * \end{bmatrix} * \text{ are elements of } \mathbb{F}$$

The matroids that can be defined by such a construction are called *linear matroids*.

Linear Matroids and Representable Matroids

If a matroid can be defined by a matrix A over a field \mathbb{F} , then we say that the matroid is *representable* over \mathbb{F} .

Linear Matroids and Representable Matroids

A matroid $M = (E, \mathcal{I})$ is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^{ℓ} that correspond to the elements such that the linearly independent sets of vectors precisely correspond to independent sets of the matroid. Let $E = \{e_1, \ldots, e_m\}$ and ℓ be a positive integer.

A matroid $M = (E, \mathcal{I})$ is called *representable* or *linear* if it is representable over some field \mathbb{F} .

Linear Matroids and Representable Matroids

A matroid $M = (E, \mathcal{I})$ is representable over a field \mathbb{F} if there exist vectors in \mathbb{F}^{ℓ} that correspond to the elements such that the linearly independent sets of vectors precisely correspond to independent sets of the matroid. Let $E = \{e_1, \ldots, e_m\}$ and ℓ be a positive integer.

A matroid $M = (E, \mathcal{I})$ is called *representable* or *linear* if it is representable over some field \mathbb{F} .

Linear Matroid

Let $M = (E, \mathcal{I})$ be linear matroid and Let $E = \{e_1, \dots, e_m\}$ and $d=\operatorname{rank}(M)$.

We can always assume (using Gaussian Elimination) that the matrix has following form:

$$\left[I_{d \times d} \mid D \right]_{d \times m}$$

Here $I_{d \times d}$ is a $d \times d$ identity matrix.

Linear Matroid

Let $M = (E, \mathcal{I})$ be linear matroid and Let $E = \{e_1, \dots, e_m\}$ and $d=\operatorname{rank}(M)$.

We can always assume (using Gaussian Elimination) that the matrix has following form:

$$\left[I_{d \times d} \mid D \right]_{d \times m}$$

Here $I_{d \times d}$ is a $d \times d$ identity matrix.

Transversal Matroid

For the bipartite graph with partition A and B, form an incidence matrix T as follows. Label the rows by vertices of B and the columns by the vertices of A and define:

$$a_{ij} = \begin{cases} z_{ij} \text{ if there is an edge between } a_i \text{ and } b_j, \\ 0 \text{ otherwise.} \end{cases}$$

where z_{ij} are in-determinants. Think of them as independent variables.

Transversal Matroid

For the bipartite graph with partition A and B, form an incidence matrix T as follows. Label the rows by vertices of B and the columns by the vertices of A and define:

$$a_{ij} = \begin{cases} z_{ij} \text{ if there is an edge between } a_i \text{ and } b_j, \\ 0 \text{ otherwise.} \end{cases}$$

where z_{ij} are in-determinants. Think of them as independent variables.

Example of the Construction

Example of the Construction

Permutation expansion of Determinants

THEOREM: Let

$$A = (a_{ij})_{n \times n}$$

be a $n \times n$ matrix with entries in \mathbb{F} . Then
 $\det(A) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i\pi(i)}.$

Forward direction: (Board for Picture)

- Suppose some subset $X = \{a_1, \ldots, a_q\}$ is independent.
- Then there is a matching that saturates X. Let $Y = \{b_1, b_2, \dots, b_q\}$ be the endpoints of this matching and $a_i b_i$ are the matching edges.

Forward direction: (Board for Picture)

- Suppose some subset $X = \{a_1, \ldots, a_q\}$ is independent.
- Then there is a matching that saturates X. Let $Y = \{b_1, b_2, \dots, b_q\}$ be the endpoints of this matching and $a_i b_i$ are the matching edges.
- Consider T[Y, X] a submatrix with rows in Y and columns in X. Consider the determinant of T[Y, X] then we have a term

$$\prod_{i=1}^{q} z_{ii}$$

which can not be cancelled by any other term! So these columns are linearly independent.

Reverse direction: (Board for Picture)

- Suppose some subset $X = \{a_1, \dots, a_q\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant say T[Y, X].

Reverse direction: (Board for Picture)

- Suppose some subset $X = \{a_1, \dots, a_q\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant say T[Y, X].
- Consider the determinant of T[Y, X]

$$0 \neq \det(\mathcal{T}[Y,X]) = \sum_{\pi \in \mathcal{S}(Y)} \operatorname{sgn}(\pi) \prod_{i=1}^{q} z_{i\pi(i)}$$

Reverse direction: (Board for Picture)

- Suppose some subset $X = \{a_1, \dots, a_q\}$ of columns is independent in T.
- Then there is a submatrix of $T[\star, X]$ that has non-zero determinant say T[Y, X].
- Consider the determinant of T[Y, X]

$$0 \neq \det(T[Y,X]) = \sum_{\pi \in S(Y)} \operatorname{sgn}(\pi) \prod_{i=1}^{q} z_{i\pi(i)}.$$

• This implies that we have a term

$$\prod_{i=1}^{q} z_{i\pi(i)} \neq 0$$

and this gives us that there is a matching that saturates X in and hence X is independent.

Reverse direction: (Board for Picture)

• This implies that we have a term

$$\prod_{i=1}^{q} z_{i\pi(i)} \neq 0$$

and this gives us that there is a matching that saturates X in and hence X is independent.

 For this direction we do not use z_{ij}, the very fact that X forms independent set of column is enough to argue that there is a matching that saturates X.

Removing z_{ij}

To remove the z_{ij} we do the following.

Uniformly at random assign z_{ij} from values in finite field $\mathbb F$ of size P.

What should be the upper bound on P? What is the probability that the randomly obtained T is a representation matrix for the transversal matroid.

Removing z_{ij}

To remove the z_{ij} we do the following.

Uniformly at random assign z_{ij} from values in finite field \mathbb{F} of size P.

What should be the upper bound on P? What is the probability that the randomly obtained T is a representation matrix for the transversal matroid.

Using Zippel-Schwartz Lemma

THEOREM: Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree d over some field \mathbb{F} and let S be an N element subset of \mathbb{F} . If each x_i is independently assigned a value from S with uniform probability, then $p(x_1, x_2, ..., x_n) = 0$ with probability at most $\frac{d}{N}$.

Using Zippel-Schwartz Lemma

THEOREM: Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree d over some field \mathbb{F} and let S be an N element subset of \mathbb{F} . If each x_i is independently assigned a value from S with uniform probability, then $p(x_1, x_2, ..., x_n) = 0$ with probability at most $\frac{d}{N}$.

- We think det(T[Y, X]) as polynomial in z_{ij}'s of degree at most n = |A|.
- Probability that $\det(T[Y, X]) = 0$ is less than $\frac{n}{P}$. There are at most 2^n independent sets in A and thus by union bound probability that not all of them are independent in the matroid represented by T is at most $\frac{2^n n}{P}$.

Using Zippel-Schwartz Lemma

- We think det(T[Y, X]) as polynomial in z_{ij}'s of degree at most n = |A|.
- Probability that $\det(T[Y, X]) = 0$ is less than $\frac{n}{P}$. There are at most 2^n independent sets in A and thus by union bound probability that not all of them are independent in the matroid represented by T is at most $\frac{2^n n}{P}$.
- Thus probability that T is the representation is at least $1 \frac{2^n n}{P}$. Take P to be some field with at least $2^n n 2^n$ elements :-).
- size of this representation with be like $n^{O(1)}$ bits!

Representation of Gammoids

- Let D = (V, A) be a directed graph, ε > 0 be a given real number, and let S and T be possibly overlapping subsets of V.
- Let M = (T, I), where $I = \{Z \subseteq T : Z \text{ is linked to } S\}$, be the gammoid formed by (D, S) restricted to T.
- We can compute a representation of M as an $|S| \times |T|$ matrix over the rationals with entries of bit-length $O(\min\{|T|, |S| \log |T|\} + \log(1/\varepsilon) + \log |V|)$ in randomized polynomial time with one-sided error bounded by ε .

Representation of Gammoids

- Let D = (V, A) be a directed graph, ε > 0 be a given real number, and let S and T be possibly overlapping subsets of V.
- Let M = (T, I), where $I = \{Z \subseteq T : Z \text{ is linked to } S\}$, be the gammoid formed by (D, S) restricted to T.
- We can compute a representation of M as an $|S| \times |T|$ matrix over the rationals with entries of bit-length $O(\min\{|T|, |S| \log |T|\} + \log(1/\varepsilon) + \log |V|)$ in randomized polynomial time with one-sided error bounded by ε .

Stefan Kratsch, Magnus Wahlström: Compression via matroids: A randomized polynomial kernel for odd cycle transversal. SODA 2012: 94-103

Kernelization for ODD CYCLE TRANSVERSAL

Result from Stefan Kratsch, Magnus Wahlström: Compression via matroids: A randomized polynomial kernel for odd cycle transversal. SODA 2012: 94-103

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

$$\frac{Z|}{2} + \underset{G' \setminus Z}{\operatorname{mincut}}(S, T)$$

• The idea is to encode the algorithm given by the above lemma using matroids.

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

$$\frac{Z|}{2} + \underset{G' \setminus Z}{\operatorname{mincut}}(S, T)$$

• The idea is to encode the algorithm given by the above lemma using matroids.

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

 $\frac{|Z|}{2} + \min_{G' \setminus Z} (S, T)$

- The idea is to encode the algorithm given by the above lemma using matroids.
- Note that if M = (E, I) is representable then the corresponding matrix M succinctly represents all the sets in I.
- The size of \mathcal{I} could be huge, however the size of M is polynomial in the universe size and whether a set is in \mathcal{I} or not can be tested by looking at the corresponding columns in M.

Lemma: Let G = (V, E) be a graph and $Q \subseteq V$ be such that $G \setminus Q$ is bipartite with color classes A, B. Then, the size of the minimum odd cycle transversal is the minimum over all valid partitions of $Q_A \cup Q_B = S \cup T \cup Z$ of the following value:

$$\frac{|Z|}{2} + \min_{G' \setminus Z} (S, T)$$

- The idea is to encode the algorithm given by the above lemma using matroids.
- Want to exploit this $_{ ext{tiny representation of matroids}}$ compared to $|\mathcal{I}|$.

Towards the kernel for OCT

Let |Q| = q.

- There are 3^q steps in the OCT algorithm. Want each step to be encoded by an *independent set* of a matroid whose representation matrix has size only $q^{\mathcal{O}(1)}$.
- Each step finds a minimum cut between a pair of subsets of $Q_A \cup Q_B$.

Towards the kernel for OCT

Let |Q| = q.

- There are 3^q steps in the OCT algorithm. Want each step to be encoded by an *independent set* of a matroid whose representation matrix has size only $q^{\mathcal{O}(1)}$.
- Each step finds a minimum cut between a pair of subsets of $Q_A \cup Q_B$.

Does this ring a bell about which matroid to use for our purpose?

Menger's Theorem

- Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets.
- \max -dis-path(S, T)(D) denotes the maximum number of vertex disjoint paths (even at ends).
- mincut(S, T)(D) denotes the minimum number of vertices required to disconnect S from T in D.

Mengers Theorem:

max-dis-path(S, T)(D) = mincut(S, T)(D)

Menger's Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets. max-dis-path(S, T)(D) denotes the maximum number of vertex disjoint paths (even at ends). mincut(S, T)(D) denotes the minimum number of vertices required to disconnect S from T in D. Mengers Theorem:

max-dis-path(S, T)(D) = mincut(S, T)(D)

So rather than remembering minimum cut we can remember maximum number of vertex disjoint paths.

Menger's Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be vertex subsets. \max -dis-path(S, T)(D) denotes the maximum number of vertex disjoint paths (even at ends). mincut(S, T)(D) denotes the minimum number of vertices required to disconnect S from T in D. Mengers Theorem: max-dis-path(S,T)(D) = mincut(S,T)(D)Gammoid!

Recall: Example

For $L = \{w\}, R = \{x, y\}, C = \{z\} \implies L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ and $C_A \cup C_B = \{z_a, z_b\}$ Want to compute cut between $L_A \cup R_B = \{w_a, x_b, y_b\}$ and $L_B \cup R_A = \{w_b, x_a, y_a\}$ in $G' \setminus (C_A \cup C_B)$.

Gammoid for our purpose

Given $Q_A \cup Q_B$, we need a gammoid that does the following job:

For every valid partition of Q_A ∪ Q_B = S ∪ T ∪ Z, remembers the size of minimum cut/maximum number of vertex disjoint paths between S and T in G' \ Z.

We also need to encode deletion of vertices of Z.

Gammoid for our purpose

Given $Q_A \cup Q_B$, we need a gammoid that does the following job:

For every valid partition of Q_A ∪ Q_B = S ∪ T ∪ Z, remembers the size of minimum cut/maximum number of vertex disjoint paths between S and T in G' \ Z.

We also need to encode deletion of vertices of Z.

Gammoid for our purpose

Abstractly the problem we want to solve is the following:

- Input: A directed graph D and a subset X of terminals.
- Output: A representation of a gammoid of size |X|^{O(1)} which for every partition of X as S ∪ T ∪ R ∪ U, has an independent set I from which we can *infer the maximum number of vertex disjoint paths between S and T in D* \ R.

Solving the Problem

- Let X' = {x' | x ∈ X} be a vertex set. The vertices x' and x are called conjugates of each other.
- Add X' to D and arcs (x', x) to D for every x ∈ X. Let the resulting digraph be D'.

Solving the Problem

- Obtain a gammoid with S = X' and $T = X' \cup X$.
- Clearly, the size of the representation matrix is $|X| \times 2|X|$ (not the number of bits).

Correspondence between an Independent Set and a Partition

Let $I \subseteq X \cup X'$. Given I we define a partition of X, called P_I , as follows:

- S contains all vertices $v \in X$ with $v, v' \notin I$
- T contains all vertices $v \in X$ with $v, v' \in I$
- *R* contains all vertices $v \in X$ with $v \in I$ but $v' \notin I$
- $U = X \setminus (R \cup T \cup U)$

Correspondence between an Independent Set and a Partition

Given a partition $X = S \cup T \cup R \cup U$, the corresponding subset $I(S, T, R, U) \subseteq X \cup X'$ is $T \cup R \cup T' \cup U'$.

 $I \subseteq X \cup X'$ is independent in the gammoid if and only if T is linked to S in $D \setminus R$. **Proof:**

 $I \subseteq X \cup X'$ is independent in the gammoid if and only if T is linked to S in $D \setminus R$.

There exists |I| vertex disjoint paths from X' to I. For every vertex in $X' \cap I = T' \cup U'$ the only path that is possible has the form v'. For every vertex w in R there is either a path of the form w'w or $v'v \cdots w$ with $v' \in S'$. In later case we can replace the path $v'v \cdots w$ with w'w.

 $I \subseteq X \cup X'$ is independent in the gammoid if and only if T is linked to S in $D \setminus R$.

Proof:

vertex disjoint paths from X' to $X \cup X'$. For every vertex in T there exists a path of the form $v'v \cdots w$ with $v' \in S'$. All these paths do not contain any vertices of R and are vertex disjoint and in fact $v \cdots w$ is a path in $D \setminus R$. T is linked to S in $D \setminus R$.

 $I \subseteq X \cup X'$ is independent in the gammoid if and only if T is linked to S in $D \setminus R$.

Proof:

Key Lemma

Given a partition $X = S \cup T \cup R \cup U$ let $I = I(S, T, R, U) \subseteq X \cup X'$ be the corresponding set. That is, $I = T \cup R \cup T' \cup U'$. Then

 $mincut(S, T)(D \setminus R) = r(I) - |X \setminus S|.$

Step 1: Create an auxiliary graph $(G', Q_A \cup Q_B)$ from (G, Q).

Step 1: Create an auxiliary graph $(G', Q_A \cup Q_B)$ from (G, Q).

Step 2: Now we make directed graph (adding arcs in both directions) (D, X) from $(G', X = Q_A \cup Q_B)$.

Step 1: Create an auxiliary graph $(G', Q_A \cup Q_B)$ from (G, Q).

- Step 2: Now we make directed graph (adding arcs in both directions) (D, X) from $(G', X = Q_A \cup Q_B)$.
- Step 3: Obtain an auxiliary directed graph $(D', X \cup X')$ and consider the gammoid with S = X' and $T = X \cup X'$.

Step 3: Obtain an auxiliary directed graph $(D', X \cup X')$ and consider the gammoid with S = X' and $T = X \cup X'$.

Step 4: Let A be the matrix representing the gammoid. Output A, k.

$$\underbrace{\begin{array}{cccccc} U' & S' & T' & R' \\ v' \in I & v' \notin I & v' \in I & v' \notin I \end{array}}_{X'$$

$v \notin I$	$v \notin I$	$v \in I$	$v \in I$	$\int X$
U	S	T	R	-

Let $I \subseteq X \cup X'$. Given I we define a partition of X, called P_I , as follows:

- S contains all vertices $v \in X$ with $v, v' \notin I$
- T contains all vertices $v \in X$ with $v, v' \in I$
- *R* contains all vertices $v \in X$ with $v \in I$ but $v' \notin I$
- $U = X \setminus (R \cup T \cup U)$

We call $I \subseteq X \cup X'$ an interesting set if $P_I = S \cup T \cup R(=Z)$ is a valid partition of $X = Q_A \cup Q_B$.

We call $I \subseteq X \cup X'$ an interesting set if $P_I = S \cup T \cup R(=Z)$ is a valid partition of $X = Q_A \cup Q_B$.

(G, k) has an odd cycle transversal of size k if and only if there exists an interesting set $I \subseteq X \cup X$ such that $\operatorname{rank}(I) - |Z \setminus S| \le k$.

$$\underbrace{\begin{array}{ccccc} U' & S' & T' & R' \\ v' \in I & v' \notin I & v' \in I & v' \notin I \end{array}}_{X'$$

$$\begin{array}{c|ccccc} v \notin I & v \notin I & v \in I & v \in I \\ \hline U & S & T & R \end{array} X$$

We call $I \subseteq X \cup X'$ an interesting set if $P_I = S \cup T \cup R(=Z)$ is a valid partition of $X = Q_A \cup Q_B$.

(G, k) has an odd cycle transversal of size k if and only if there exists an interesting set $I \subseteq X \cup X$ such that $\operatorname{rank}(I) - |Z \setminus S| \le k$. For proof recall...

 $mincut(S, T)(D \setminus R) = r(I) - |X \setminus S|.$

Size of A

- Let D = (V, A) be a directed graph, ε > 0 a given real, and let S and T be possibly overlapping subsets of V.
- Let $M = (\mathcal{T}, \mathcal{I})$, where $\mathcal{I} = \{Z \subseteq \mathcal{T} : Z \text{ is linked to } S\}$, be the gammoid formed by (D, S) restricted to \mathcal{T} .
- We can compute a representation of M as an $|S| \times |T|$ matrix over the rationals with entries of bit-length $O(\min\{|\mathcal{T}|, |S| \log |\mathcal{T}|\} + \log(1/\varepsilon) + \log |V|)$ in randomized polynomial time with one-sided error bounded by ε .

Size of A

- Let D = (V, A) be a directed graph, ε > 0 a given real, and let S and T be possibly overlapping subsets of V.
- Let M = (T, I), where I = {Z ⊆ T : Z is linked to S}, be the gammoid formed by (D, S) restricted to T.
- We can compute a representation of *M* as an |S| × |T| matrix over the rationals with entries of bit-length O(min{|T|, |S| log |T|} + log(1/ε) + log |V|) in randomized polynomial time with one-sided error bounded by ε.

Size of A in terms of bits = $\mathcal{O}(|Q|^3 \log |Q| + |Q|^2 \log(1/\varepsilon) + |Q|^2 \log |V|)$

How do we get Q and the final size.

- If k ≤ log n then run the O(3^kmn) FPT algorithm and find solution in polynomial time.
- Apply the known $\alpha \sqrt{\log n}$ approximation algorithm for OCT and get a set Q. If the size of $|Q| > k\alpha \sqrt{\log n}$ output NO.
- Else $k > \log n$ and thus $|Q| \le k \alpha \sqrt{\log n} \le \mathcal{O}(k^{1.5})$
- So the size of A in terms of bits is at most $O(k^{4.5} \log k)$.

Finally Kernel for OCT

Given (G, Q) and A checking whether a set I is interesting or not is within NP. And thus there exists a reduction from the compressed instance to an instance of ODD CYCLE TRANSVERSAL such that the size of the graph is $k^{\mathcal{O}(1)}$.

Final Slide

Thank You! Any Questions?