Parameterized Algorithms using Matroids
 Lecture III: Advance Applications of Representative Sets

Saket Saurabh

The Institute of Mathematical Sciences, India and University of Bergen, Norway,

ADFOCS 2013, MPI, August 5-9, 2013

This lecture is based on the following paper:
Stefan Kratsch and Magnus Wahlström, Representative Sets and Irrelevant Vertices: New Tools for Kernelization, FOCS 2012, 450-459.

Given: A a matroid (M, \mathcal{J}), and a family of p-sized subsets from \mathcal{J} :

$$
S_{1}, S_{2}, \ldots, S_{t}
$$

Given: A a matroid (M, \mathcal{J}), and a family of p-sized subsets from J :

$$
S_{1}, S_{2}, \ldots, S_{t}
$$

Want: A subfamily $\hat{\mathcal{F}}$ of \mathcal{F} such that:

Given: A a matroid (M, \mathcal{J}), and a family of p-sized subsets from J :

$$
S_{1}, S_{2}, \ldots, S_{t}
$$

Want: A subfamily $\hat{\mathcal{F}}$ of \mathcal{F} such that:

$$
\text { For any } X \subseteq[n] \text { of size at most } q \text {, }
$$

if there is a set S in \mathcal{F} such that $X \cap S=\varnothing$ and $X \cup S \in \mathcal{J}$, then there is a set \widehat{S} in $\widehat{\mathcal{F}}$ such that $X \cap \widehat{S}=\varnothing$ and $X \cup \widehat{S} \in \mathcal{J}$.

Given: A a matroid (M, \mathcal{J}), and a family of p-sized subsets from J :

$$
S_{1}, S_{2}, \ldots, S_{t}
$$

There is a subfamily $\hat{\mathscr{F}}$ of \mathcal{F} of size at most $\binom{p+q}{p}$ such that:

$$
\text { For any } X \subseteq[n] \text { of size at most } q \text {, }
$$

if there is a set S in \mathcal{F} such that $X \cap S=\varnothing$ and $X \cup S \in \mathcal{J}$, then there is a set \widehat{S} in $\widehat{\mathcal{F}}$ such that $X \cap \widehat{S}=\varnothing$ and $X \cup \widehat{S} \in \mathcal{J}$.

Lovász, 1977

Given: A a matroid (M, \mathcal{J}), and a family of p-sized subsets from J :

$$
S_{1}, S_{2}, \ldots, S_{t}
$$

There is an efficiently computable subfamily $\widehat{\mathcal{F}}$ of \mathcal{F} of size at most $\binom{p+q}{p}$ such that:

$$
\text { For any } X \subseteq[n] \text { of size at most } q \text {, }
$$

if there is a set S in \mathcal{F} such that $X \cap S=\varnothing$ and $X \cup S \in \mathcal{J}$, then there is a set \widehat{S} in $\widehat{\mathcal{F}}$ such that $X \cap \widehat{S}=\varnothing$ and $X \cup \widehat{S} \in \mathcal{J}$.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)

Summary.

We have at hand a p-uniform collection of independent sets, \mathcal{F} and a number q. Let X be any set of size at most q. For any set $S \in \mathcal{F}$, if:
a X is disjoint from S , and
b X and S together form an independent set, then a q-representative family $\widehat{\mathcal{F}}$ contains a set \widehat{S} that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.

Digraph Pair Problem

> Digraph Pair Cut Problem
> Input: A directed graph $D=(V, A)$, a source vertex $s \in V$ and a set \mathcal{P} of pairs of vertices.
> Parameter: k
> Question: Does there exist a set $\mathrm{X} \subseteq \mathrm{V} \backslash\{\mathrm{s}\}$ of size at most k such that every pair in \mathcal{P} is not reachable from s in $\mathrm{D} \backslash \mathrm{X}$?

Renchbillity of vertex pairs

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by paths (need not be disjoint) from S.

Renchbillity of vertex pairs

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by paths (need not be disjoint) from S.
Want to delete vertex w.

S

Renchbility of vertex palis

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by paths (need not be disjoint) from S.
Deleting w makes the pair (u, v) non-reachable from S.

S

> Digraph Pair Cut Problem
> Input: A directed graph $D=(V, A)$, a source vertex $s \in V$ and a set \mathcal{P} of pairs of vertices.
> Parameter: k
> Question: Does there exist a set $\mathrm{X} \subseteq \mathrm{V} \backslash\{\mathrm{s}\}$ of size at most k such that every pair in \mathcal{P} is not reachable from s in $\mathrm{D} \backslash \mathrm{X}$?

Important Observation

Important Observation

- Let X be a solution to the problem.

Important Observation

- Let X be a solution to the problem.
- Clearly no pair $(u, v) \in \mathcal{P}$ is reachable from s in $D \backslash X$.

Important Qbservation

- Let X be a solution to the problem.
- Let T be a set consisting of vertices, say $u \in\{u, v\}$, from each pair (u, v), such that there is no path from s to u in $D \backslash X$.

Important Qbeservation

- Let X be a solution to the problem.
- Clearly, X is a s-T separator in D. In fact, X could be any minimum cut between s and T in D .

Important Qbeservation

- Let X be a solution to the problem and $T=\{a, c, f, g\}$.
- Clearly, X is a s-T separator in D. In fact, X could be any minimum cut between s and T in D.

月 finst htiempt at an FPT hlcorithm: Branching Algorithm

$$
\begin{gathered}
(D, s, T=\emptyset) \\
\bigcirc
\end{gathered}
$$

(1) Initialise a set $\mathrm{T}=\varnothing$

月 finst htiempt at an FPT hlcorithm: Branching Algorithm

($D, s, T=\emptyset$)

(1) Initialise a set $\mathrm{T}=\varnothing$
(2) If the size of the (s, T)-minimum cut is at least $k+1$, then we stop and say NO.
(3) If there is an (s, T)-minimum cut C of size at most k such that no pairs of \mathcal{P} are reachable from s, return YES.

月 finst httempt at an FPT hlcorithm: Branching Algorithm

(1) Initialise a set $\mathrm{T}=\varnothing$
(2) If the size of the (s, T)-minimum cut is at least $k+1$, then we stop and say NO.
(3) If there is an (s, T)-minimum cut C of size at most k such that no pairs of \mathcal{P} are reachable from s, return YES.
(4) Else, there is a pair $(u, v) \in \mathcal{P}$ which is reachable from s in $D \backslash C$
(5) Pick any such reachable pair and make a two-way branch for adding u or v to T. Return to step 2

Drншввскя

We do not know how many iterations are required before all pairs of \mathcal{P} become nonreachable from s . The algorithm could take $2^{|\mathcal{P}|}$ time.

A new strategy

- Show that some parameter, which has to be positive in any graph, drops at every iteration of the branching algorithm.

A new strategy

- Show that some parameter, which has to be positive in any graph, drops at every iteration of the branching algorithm.
- Parameter be $\mu=\mathrm{k}-\lambda$. Here λ is the size of a ($s, \mathrm{~T}$)-minimum cut for the local T of an iteration.

A new strhtegy

- Show that some parameter, which has to be positive in any graph, drops at every iteration of the branching algorithm.
- Suppose, at the beginning of iteration i we find $a(s, T)$-minimum cut C , we find a reachable pair (u, v) in $\mathrm{D} \backslash \mathrm{C}$.

A new strhtegy

- Show that some parameter, which has to be positive in any graph, drops at every iteration of the branching algorithm.
- Suppose, at the beginning of iteration i we find $a(s, T)$-minimum cut C , we find a reachable pair (u, v) in $D \backslash C$.
- Look at any one of the branches (say the one which picks u for T). The size of the minimum cut in the $(i+1)^{\text {st }}$ iteration could be of the same size as C.

A new strategy

- Show that some parameter, which has to be positive in any graph, drops at every iteration of the branching algorithm.
- Suppose, at the beginning of iteration i we find $a(s, T)$-minimum cut C , we find a reachable pair (u, v) in $\mathrm{D} \backslash \mathrm{C}$.
- Is there a minimum cut which will strictly increase in size in every step of the iteration, on both the branches?

Yes there is!

- Input is a digraph $D=(V, A)$ and a set S of vertices (here $S=\{s\})$ that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.

Yes there is!

- Input is a digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ and a set S of vertices (here $\mathrm{S}=\{\mathrm{s}\})$ that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.
- It seems natural that find a minimum cut that is "closest" to S - as this may help in disconnecting other pairs.

Yes there is!

- Input is a digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ and a set S of vertices (here $\mathrm{S}=\{\mathrm{s}\})$ that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.
- It seems natural that find a minimum cut that is "closest" to S - as this may help in disconnecting other pairs.

Yes there is!

- Input is a digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ and a set S of vertices (here $\mathrm{S}=\{\mathrm{s}\})$ that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.
- It seems natural that find a minimum cut that is "closest" to S - as this may help in disconnecting other pairs.

Yes there is!

- Input is a digraph $\mathrm{D}=(\mathrm{V}, \mathcal{A})$ and a set S of vertices (here $\mathrm{S}=\{\mathrm{s}\})$ that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.
- Closest set : A set $X \subseteq V$ is closest to S if X is the unique (S, X)-mincut . That is, the only cut of size at most $|X|$, for paths from S to X, is X itself. X is called closest set.

Yes there is!

- Input is a digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ and a set S of vertices (here $\mathrm{S}=\{\mathrm{s}\}$) that we will call source set. Want to disconnect T from S such that it helps in disconnecting other pairs.
- Closest set : A set $X \subseteq V$ is closest to S if X is the unique (S, X)-mincut . That is, the only cut of size at most $|X|$, for paths from S to X, is X itself. X is called closest set.
- Closest set of a set T: For any set of vertices T, the induced closest set $C(T)$ is the unique (S, T)-mincut which is closest to S. Clearly, if X is closest set then $C(X)=X$.

Example

- S is the source set; X^{\prime} is the closest set of $X ; X^{\prime}$ is a closest set.

S

Example

- S is the source set; X^{\prime} is the closest set of $X ; X^{\prime}$ is a closest set.
- Analogy with important separators.

S

Improved Branching Algorithm

$$
\begin{gathered}
(D, s, T=\emptyset) \\
\bigcirc
\end{gathered}
$$

(1) Initialise a set T $=\varnothing$

Improved Branching Algorithm

($D, s, T=\emptyset$)

(1) Initialise a set $\mathrm{T}=\varnothing$
2. If the size of the (s, T)-mincut is at least $\mathrm{k}+1$, then we stop and say NO .
(3) If there is an closest (s, T)-set $C(T)$ of size at most k such that no pairs of \mathcal{P} are reachable from s , return YES.

Improved Branching Algorithm

(1) Initialise a set $\mathrm{T}=\varnothing$
2. If the size of the (s, T)-mincut is at least $k+1$, then we stop and say NO.
(3) If there is an closest (s, T)-set $C(T)$ of size at most k such that no pairs of \mathcal{P} are reachable from s, return YES.
(4) Else, there is a pair $(u, v) \in \mathcal{P}$ which is reachable from s in $\mathrm{D} \backslash \mathrm{C}(\mathrm{T})$
(5) Pick any such reachable pair and make a two-way branch for adding u or v to T. Return to step 2

- In iteration i let $C(T)=C$ be the closest (s, T) set and let $(u, v) \in \mathcal{P}$ be reachable from sin $D \backslash C$.
- Pick any branch (say the branch where u is picked in T). Any minimum cut C^{\prime} of $(\mathrm{s}, \mathrm{T} \cup \mathrm{u})$ is also a cut for (s, T), so $\left|\mathrm{C}^{\prime}\right| \geqslant|\mathrm{C}|$. Want to show $\left|C^{\prime}\right|>|C|$

Annlysis

- Consider a mincut between $s-C \cup\{u\}$ in $D[R(s, T) \cup C]$ - say Z.

- Consider a mincut between $s-C \cup\{u\}$ in $D[R(s, T) \cup C]-$ say Z.
- Clearly $|Z| \geqslant|C|$. Suppose $|Z|=|C|$. Then clearly $Z \neq C$ - else it can not disconnect path from s to u. But then it contradicts that $C(T)$ is closest set to s.

- Consider a mincut between $s-C \cup\{u\}$ in $D[R(s, T) \cup C]-$ say Z.
- Suppose $|Z|>|C|$. Then there are $|Z|+1$ internally vertex disjoint paths from s to $C \cup\{u\}$ in $D[R(s, T) \cup C]$.
- Using this we get that there are $|\mathrm{C}|+1$ internally vertex disjoint paths from s to $T \cup\{u\}$. Thus, $\left|C^{\prime}\right|>|C|$.

月bstracting out a statement from the proof..

Let D be a digraph S and T be two vertex sets and $\mathrm{C}(\mathrm{T})$ be the induced closest set. Furthermore, let $R(S, C(T))$ denotes the set of vertices that are reachable from S in $D \backslash C(T)$.

Abstracting out a statement from the proof..

Let D be a digraph S and T be two vertex sets and $\mathrm{C}(\mathrm{T})$ be the induced closest set. Furthermore, let $R(S, C(T))$ denotes the set of vertices that are reachable from S in $D \backslash C(T)$. Then
for every vertex $u \in R(S, C(T))$ we have that there are $|C|+1$ vertex disjoint paths (internally vertex disjoint if $S=\{s\}$) from S to $C \cup\{v\}$ in $D[R(S, C(T)) \cup C(T)]$.

Anhlusls:

- If the algorithm finds a set of size at most k then that is a solution for the Digraph Pair Cut problem.

Anhlusis:

- If the algorithm finds a set of size at most k then that is a solution for the Digraph Pair Cut problem.
- Suppose the answer returned is NO. Can there be a solution set that the algorithm has missed? (Think about it!)

Anhlusis:

- If the algorithm finds a set of size at most k then that is a solution for the Digraph Pair Cut problem.
- Suppose the answer returned is NO. Can there be a solution set that the algorithm has missed? (Think about it!)
- Algorithm runs in $2^{\mathrm{k}} \mathrm{n}^{\mathcal{O}(1)}$ time.

Digraph Pair Cut Problem: Kernel

- The number of pairs in the input set \mathcal{P} could be as large as $\mathcal{O}\left(n^{2}\right)$.

Digraph Pair Cut Problem: Kernel

- The number of pairs in the input set \mathcal{P} could be as large as $\mathcal{O}\left(n^{2}\right)$.
- Notice that if we have a solution X of size at most k, then the closest set $C(X)$ from s is also a solution.

FIRst httempt

- Let U be the set of vertices that appear in pairs of \mathcal{P}. Need to make sure that we find a solution which does not contain s : we make $k+1$ copies of s (and give the same adjacencies) and call this set S the source set.

FIIST ATTEmPT

- Look at the gammoid ($\mathrm{D}, \mathrm{S}, \mathrm{U}$) (source set $\mathcal{S}=\mathrm{S}$ and sink set $\mathcal{T}=\mathrm{U}$) and look at its representation matrix A.

Fikst httempt

- Look at the gammoid ($\mathrm{D}, \mathrm{S}, \mathrm{U}$) (source set $\mathcal{S}=\mathrm{S}$ and sink set $\mathcal{T}=\mathrm{U}$) and look at its representation matrix A.
- Consider a subset of columns which correspond to a set W of vertices such that $\forall(u, v) \in \mathcal{P}, W \cap(u, v) \neq \varnothing$ and such that the rank of these columns is at most k, then we know that the minimum (S, W) cut is a solution to the Digraph Pair cut problem.

Finst htiempt

- Look at the gammoid ($\mathrm{D}, \mathrm{S}, \mathrm{U}$) (source set $\mathcal{S}=\mathrm{S}$ and sink set $\mathcal{T}=\mathrm{U}$) and look at its representation matrix A.
- Consider a subset of columns which correspond to a set W of vertices such that $\forall(u, v) \in \mathcal{P}, W \cap(u, v) \neq \varnothing$ and such that the rank of these columns is at most k, then we know that the minimum (S, W) cut is a solution to the Digraph Pair cut problem.
- But, since U could be a very large set, the representation matrix A could be large!
- Suppose we knew that the size of \mathcal{P} was small, then the representation of the gammoid ($\mathrm{D}, \mathrm{S}, \mathrm{U}$) is a compression for Digraph Pair cut .
- If $|\mathcal{P}|$ is very large, then we want to find a small subset of \mathcal{P}, such that making this set of pairs non-reachable is as good as making all pairs of \mathcal{P} nonreachable.
- Suppose we knew that the size of \mathcal{P} was small, then the representation of the gammoid ($\mathrm{D}, \mathrm{S}, \mathrm{U}$) is a compression for Digraph Pair cut .
- If $|\mathcal{P}|$ is very large, then we want to find a small subset of \mathcal{P}, such that making this set of pairs non-reachable is as good as making all pairs of \mathcal{P} nonreachable.
we SEEM to be looking for something like a representative set for the set \mathcal{P} of pairs.

Mantrph of Representative Sets Based Kernellzation

Keep a certificate for every k sized subset that tells why it can not a solution.

What does it menn?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

Шhbt does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

- What is a certificate that a particular k -sized subset is not a solution?

Шhbt does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

- What is a certificate that a particular k-sized subset is not a solution?
- An edge that it does not cover - or intersects!

Шhat does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

- What is a certificate that a particular k-sized subset is not a solution?
- An edge that it does not cover - or intersects!
- So keep a subset of edges, say W, such that every for every k-sized subset that is not a solution there is a corresponding witness in W .

Шhat does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

- What is a certificate that a particular k -sized subset is not a solution?
- An edge that it does not cover - or intersects!
- So keep a subset of edges, say W, such that every for every k-sized subset that is not a solution there is a corresponding witness in W .

Idea is to find this desired W using appropriate matroids.

What does it mean continues with refinement..?

- Sometimes we can also describe a potential solution by saying a subset of size at most k that looks like \cdots.

What does it mean continues with refinement..?

- Sometimes we can also describe a potential solution by saying a subset of size at most k that looks like \ldots.

Keep a certificate for every k sized subset that looks like $\cdot \ldots$ that tells why it can not be a solution.

Шhat does it mean continues with refinement..?

- Sometimes we can also describe a potential solution by saying a subset of size at most k that looks like \ldots.

Idea is to find this desired W using appropriate matroids.

- The idea is to encode the desired witness as an independent set of an appropriate matroid. Clearly, the size of the solution + constraint gives a lower bound on the rank of the matroid.

Applıing the ioea to Digraph Pairs

Digraph D, vertex sets S and pairs \mathcal{P}.

Applıing the ioea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.

- Solution are k-sized subset. In fact if X is a solution then induced closest set $C(X)$ is also a solution.

Applıing the idea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.

- Solution are k-sized subset. In fact if X is a solution then induced closest set $C(X)$ is also a solution.
- Let us keep witness for why a particular closest set X (of size at most k) to S is not a solution.

Applıing the idea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.

- Solution are k-sized subset. In fact if X is a solution then induced closest set $C(X)$ is also a solution.
- Let us keep witness for why a particular closest set X (of size at most k) to S is not a solution.
- A set X is not a solution because a pair $(u, v) \in \mathcal{P}$ is reachable from S in $\mathrm{D} \backslash \mathrm{X}$.

Applıing the idea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.

- Solution are k-sized subset. In fact if X is a solution then induced closest set $C(X)$ is also a solution.
- Let us keep witness for why a particular closest set X (of size at most k) to S is not a solution.
- A set X is not a solution because a pair $(u, v) \in \mathcal{P}$ is reachable from S in $\mathrm{D} \backslash \mathrm{X}$.
- So there are $|X|+1$ vertex disjoint paths from S to $X \cup\{u\}$ in $D[R(S, X) \cup X]$ as well as $|X|+1$ vertex disjoint paths from S to $X \cup\{\nu\}$ in $D[R(S, X) \cup X]$.

Applıing the idea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.

- Solution are k-sized subset. In fact if X is a solution then induced closest set $\mathrm{C}(\mathrm{X})$ is also a solution.
- Let us keep witness for why a particular closest set X (of size at most k) to S is not a solution.
- A set X is not a solution because a pair $(u, v) \in \mathcal{P}$ is reachable from S in $\mathrm{D} \backslash \mathrm{X}$.
- So there are $|X|+1$ vertex disjoint paths from S to $X \cup\{u\}$ in $D[R(S, X) \cup X]$ as well as $|X|+1$ vertex disjoint paths from S to $X \cup\{v\}$ in $D[R(S, X) \cup X]$.

A closest set X is not a solution if and only if there exists a pair $(u, v) \in \mathcal{P}$ such that S is linked to $X \cup\{u\}$ and S is linked to $X \cup\{\nu\}$.

Appliming the idea to Digraph Paiks

Digraph D, vertex sets S and pairs \mathcal{P}.
A closest set X is not a solution if and only if there exists a pair $(u, v) \in \mathcal{P}$ such that S is linked to $X \cup\{u\}$ and S is linked to $X \cup\{\nu\}$.

So we encode this to get our desired W.

Defining the problem in terms of a Thatroid

- Build a matroid M, consisting of 2 disjoint copies of the gammoid (D, S). Call the first gammoid - $M_{1}-\left(D^{1}, S^{1}\right)$ and the second $-M_{2}$ (D^{2}, S^{2}). Refer to all objects of gammoid i with superscript i. Thus, $M=M_{1} \oplus M_{2}$.

Defining the problem in terms of a Thatroid

- Build a matroid M, consisting of 2 disjoint copies of the gammoid (D, S). Call the first gammoid - $M_{1}-\left(D^{1}, S^{1}\right)$ and the second $-M_{2}$ $\left(D^{2}, S^{2}\right)$. Refer to all objects of gammoid i with superscript i. Thus, $M=M_{1} \oplus M_{2}$.
- Let

$$
\mathcal{P}_{\mathfrak{m}}=\left\{\left(u^{1}, v^{2}\right) \mid(u, v) \in \mathcal{P}\right\} .
$$

Compute 2 k -representative for \mathcal{P}_{m}. There is a representative set $\hat{\mathcal{P}}_{\mathrm{m}}$ of $\mathcal{P}_{\mathfrak{m}}$ that extends all independent sets of M of size at most $2 k$. Size of \widehat{P}_{m} is at most $\mathcal{O}\left(\mathrm{k}^{2}\right)$.

Defining the problem in terms of a Thatroid

- Build a matroid M, consisting of 2 disjoint copies of the gammoid (D, S). Call the first gammoid - $M_{1}-\left(D^{1}, S^{1}\right)$ and the second $-M_{2}$ $\left(D^{2}, S^{2}\right)$. Refer to all objects of gammoid i with superscript i. Thus, $M=M_{1} \oplus M_{2}$.
- Let

$$
\mathcal{P}_{\mathfrak{m}}=\left\{\left(u^{1}, v^{2}\right) \mid(u, v) \in \mathcal{P}\right\} .
$$

Compute 2 k -representative for \mathcal{P}_{m}. There is a representative set $\widehat{\mathcal{P}}_{\mathrm{m}}$ of \mathcal{P}_{m} that extends all independent sets of M of size at most $2 k$. Size of \widehat{P}_{m} is at most $\mathcal{O}\left(\mathrm{k}^{2}\right)$.
Let \mathcal{P}^{\prime} be the set of pairs in \mathcal{P} whose corresponding pairs are in $\widehat{\mathrm{P}}_{\mathrm{m}}$.

FIIISHIIGG the proof...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.

FIIISHIIG the proof...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.
\Rightarrow Obvious as $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.

FIIISHIIGG the proof...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.
\Leftarrow Let X be a solution to the problem - assume that X is a closest set to S.

FIIISHIIGG the proof...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.
\Leftarrow Let X be a solution to the problem - assume that X is a closest set to S. If X is not a solution then there exists a pair $(u, v) \in \mathcal{P}$ such that S is linked to $X \cup\{u\}$ and S is linked to $X \cup\{v\}$.

FInISHIIG the Proof...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.
\Leftarrow Let X be a solution to the problem - assume that X is a closest set to S. If X is not a solution then there exists a pair $(u, v) \in \mathcal{P}$ such that S is linked to $X \cup\{u\}$ and S is linked to $X \cup\{v\}$. Since \mathcal{P}^{\prime} corresponds to $2 k$ representative we have that there exists a pair $\left(u^{\prime}, v^{\prime}\right) \in \mathcal{P}^{\prime}$ such that S is linked to $X \cup\left\{u^{\prime}\right\}$ and S is linked to $X \cup\left\{\nu^{\prime}\right\}$.

FIIISHIIG THE PROOF...

Lemma

(G, \mathcal{P}, k) is a yes instance if and only if $\left(G, \mathcal{P}^{\prime}, k\right.$) is a yes instance.
\Leftarrow Let X be a solution to the problem - assume that X is a closest set to S. If X is not a solution then there exists a pair $(u, v) \in \mathcal{P}$ such that S is linked to $X \cup\{u\}$ and S is linked to $X \cup\{v\}$. Since \mathcal{P}^{\prime} corresponds to $2 k$ representative we have that there exists a pair $\left(u^{\prime}, v^{\prime}\right) \in \mathcal{P}^{\prime}$ such that S is linked to $X \cup\left\{u^{\prime}\right\}$ and S is linked to $X \cup\left\{v^{\prime}\right\}$. Contradiction that X is a solution to ($\left.G, \mathcal{P}^{\prime}, k\right)$!

Cut-Covering Problem

Cut-Covering Probiem

Cut-Covering Problem Input: A digraph D and vertex subsets S and T. Question: Find a set Z such that for any $A \subseteq S, B \subseteq T, Z$ contains a minimum (A, B)-cut.

Cut-Covering Problem

Cut-Covering Problem

Input: A digraph D and vertex subsets S and T.
Question: Find a set Z such that for any $A \subseteq S, B \subseteq T, Z$ contains a minimum (A, B)-cut.

Clearly $Z=V(D)$ suffices!

Cut-Covering Probiem

Cut-Covering Problem
 Input: A digraph D and vertex subsets S and T.
 Question: Find a set Z (as small as possible) such that for any $A \subseteq S, B \subseteq T$, Z contains a minimum (A, B)-cut.

Cut-Covering Problem

Cut-Covering Problem
 Input: A digraph D and vertex subsets S and T.
 Question: Find a set Z (as small as possible) such that for any $A \subseteq S, B \subseteq T$, Z contains a minimum (A, B)-cut.

It is not yet clear what this small should be. We will see at the end that it is not too large.

Cut-Covering Problem
 Input: A digraph D and vertex subsets S and T .
 Question: Find a set Z (as small as possible) such that for any $A \subseteq S, B \subseteq T$, Z contains a minimum (A, B)-cut.

- Which vertices must be in the set Z ?

> Cut-Covering Problem
> Input: A digraph D and vertex subsets S and T.
> Question: Find a set Z (as small as possible) such that for any $A \subseteq S, B \subseteq T$, Z contains a minimum (A, B)-cut.

- Which vertices must be in the set Z ?
- If a vertex w appears in every minimum cut between some $A \subseteq S$ and $B \subseteq T$, then it must be in Z.

```
Cut-Covering Problem
Input: A digraph D and vertex subsets S and T.
Question: Find a set }Z\mathrm{ (as small as possible) such that for any }A\subseteqS,B\subseteqT \(Z\) contains a minimum ( \(A, B\) )-cut.
```

- Which vertices must be in the set Z ?
- If a vertex w appears in every minimum cut between some $A \subseteq S$ and $B \subseteq T$, then it must be in Z.
- These vertices are called essential vertices

Cut-Covering Problem

Input: A digraph D and vertex subsets S and T .
Question: Find a set Z (as small as possible) such that for any $A \subseteq S, B \subseteq T$, Z contains a minimum (A, B)-cut.

- Which vertices must be in the set Z ?
- If a vertex w appears in every minimum cut between some $A \subseteq S$ and $\mathrm{B} \subseteq \mathrm{T}$, then it must be in Z .
- These vertices are called essential vertices

We will show that just having these"essential vertices in Z are almost sufficient."

```
Cut-Covering Problem
Input: A digraph D and vertex subsets S and T.
Question: Find a set Z (as small as possible) such that for any A}\subseteqS,B\subseteqT
Z contains a minimum (A, B)-cut.
```

- Which vertices must be in the set Z ?

We will show that just having these"essential vertices in Z are almost sufficient."

More precisely we will show that (a) either all the vertices are essential; or (b) we can obtain an equivalent instance of the problem with strictly smaller number of vertices.

- Question 1: How to find the set of essential vertices?
- Question 2: If there are non-essential vertices then how do we obtain the equivalent instance.
- Question 1: How to find the set of essential vertices?
- Question 2: If there are non-essential vertices then how do we obtain the equivalent instance.

We first answer Question 2.

Defling with nonessentill vertices

- Let v be a non-essential vertex.

Dehling with nonessentill vertices

- Delete v and transform D to digraph D^{\prime} such that there is a complete bipartite graph between the in-neighbours $\mathrm{N}^{-}(v)$ and out-neighbours $\mathrm{N}^{+}(v)$ of v, with edges directed from $\mathrm{N}^{-}(v)$ to $\mathrm{N}^{+}(v)$.

Want to argue that the size of minimum cuts remains exactly the same for D and D^{\prime}. In fact, we show that a minimum cut in the new graph D^{\prime} is actually a minimum cut in D itself.

Want to argue that the size of minimum cuts remains exactly the same for D and D^{\prime}. In fact, we show that a minimum cut in the new graph D^{\prime} is actually a minimum cut in D itself.

This implies our construction.

Since for every $A \subseteq S$ and $B \subseteq T$ there is a minimum cut that avoids v, we have that D and D^{\prime} are equivalent instance of Cut-Covering Problem.

Bounoing the cutin D^{\prime}

- Take a minimum cut C of (A, B) in D that did not contain v. Such a cut exists. Let C_{A}, C_{B} be the components containing A and B respectively in $\mathrm{D} \backslash \mathrm{C}$.

Bounoing the cutin D^{\prime}

- Suppose this is not a cut of A, B in D^{\prime}. This implies that the transformation introduced an edge from a vertex $u \in C_{A}$ to $w \in C_{B}$.
- This happens if $u \in \mathbf{N}^{-}(v)$ and $w \in \mathbf{N}^{+}(v)$.

Bounoing the cutin D^{\prime}

- This implies that there was a path from A to B through u, v, w in $\mathrm{D} \backslash \mathrm{C}$ (contradiction to C being an (A, B)-cut in D).
- So, for any (A, B) size of a minimum cut in D^{\prime} is at most the size of a minimum cut in D.

Bounoing the cut in D

- Take a cut C^{\prime} of (A, B) in D^{\prime}.

Bounoing the cut in D

- Suppose this is not a cut of A, B in D. This implies there is a path P from A to B in $\mathrm{D} \backslash \mathrm{C}^{\prime}$ and $v \in \mathrm{P}$.
- This happens if $u \in \mathrm{~N}^{-}(v) \cap \mathrm{P}$ and $w \in \mathrm{~N}^{+}(v) \cap \mathrm{P}$ and $u, w \notin \mathrm{C}^{\prime}$.

Bounoing the cut in D

- In D^{\prime} there was an arc $a=(u, w)$ and a path $P^{\prime}=P u a w P$ from A to B avoiding C^{\prime} (contradiction to C^{\prime} being an (A, B)-cut on D^{\prime}).
- So, for any (A, B) size of a minimum cut in D^{\prime} is equal to the size of a minimum cut in D.

Algorithm for finoing set Z

- Start from the given graph D.

hlgorithm for finoing set Z

- Start from the given graph D.
- Iteratively throw out a nonessential vertex of the present graph and make the above transformation, that preserves the size of the minimum cut between any $A \subseteq S, B \subseteq T$.

hlgorithm for finding set Z

- Start from the given graph D.
- Iteratively throw out a nonessential vertex of the present graph and make the above transformation, that preserves the size of the minimum cut between any $A \subseteq S, B \subseteq T$.
- Stop when there are no more nonessential vertices in the current graph.

Remarks

- Notice that there may a nonessential vertex of D that became essential in one of the iterations.

Remarks

- Notice that there may a nonessential vertex of D that became essential in one of the iterations.
- An essential vertex remains essential throughout the algorithm: we showed that by the property of the transformation from D to D^{\prime}, any minimum cut of D^{\prime} is a minimum cut of D.

Remarks

- Notice that there may a nonessential vertex of D that became essential in one of the iterations.
- An essential vertex remains essential throughout the algorithm: we showed that by the property of the transformation from D to D^{\prime}, any minimum cut of D^{\prime} is a minimum cut of D.
- By the property of the transformation, the final graph contains a minimum cut in D for any A, B.
- Question 1: How to find the set of essential vertices?
- Question 2: If there are non-essential vertices then how do we obtain the equivalent instance.
- Question 1: How to find the set of essential vertices?
- Question 2: If there are non-essential vertices then how do we obtain the equivalent instance.

We now answer Question 1.

Essential Vertices

- Recall that we have a directed graph $\mathrm{D}=(\mathrm{V}, \mathrm{E})$ and two sets of vertices S and T. A vertex is called essential for $A \subseteq S$ and $B \subseteq T$ if it occurs in every minimum (A, B) cut

How do essential vertices Look like

Properties of Essential Vertices

Lemma

Suppose that v is essential for A and B and let C be any minimum (A, B) cut. Then,
(1) there is a set of $|C|+1$ paths from A to C in $R(A, C)$ which are pairwise vertex disjoint, except for 2 of these paths which intersect in v and
(2) there is a set of $|C|+1$ paths from C to B in $N R(A, C)$ which are pairwise vertex disjoint, except for 2 of these paths which intersect in v.

Essential Vertices

- Construct the graph G^{\prime} by taking $\mathrm{G}[\mathrm{R}(\mathrm{A}, \mathrm{C})] \cup \mathrm{C}$ and adding a new vertex v^{\prime} and adding all arcs from the in-neighborhood of v to v^{\prime}.

Essential Vertices

- What is the value of the maximum flow from A to $C \cup v^{\prime}$ in G^{\prime} ?

Essential Vertices

- What is the value of the maximum flow from A to $C \cup v^{\prime}$ in G^{\prime} ?
- If this value is $|\mathrm{C}|+1$, then we are done!

Essential Vertices

- Value of the max flow is not $|C|+1 \Longrightarrow$ an $A-\left(C \cup v^{\prime}\right)$ separator Z of size at most $|\mathrm{C}|$.

Essential Vertices

- Value of the max flow is not $|C|+1 \Longrightarrow$ an $A-\left(C \cup v^{\prime}\right)$ separator Z of size at most $|\mathrm{C}|$.
- If Z contains v and v^{\prime}, then at least one of the vertex disjoint paths from A to $\mathrm{C} \backslash v$ is not hit. $\Longrightarrow \mathrm{Z}$ does not contain both v and v^{\prime}.

Essential Vertices

- Value of the max flow is not $|C|+1 \Longrightarrow$ an $A-\left(C \cup v^{\prime}\right)$ separator Z of size at most $|\mathrm{C}|$.
- If Z contains neither v nor v^{\prime}, then Z is a minimum (A, B) cut disjoint from $\nu \Longrightarrow$ contradiction.

Essential Vertices

- Value of the max flow is not $|C|+1 \Longrightarrow$ an $A-\left(C \cup v^{\prime}\right)$ separator Z of size at most $|\mathrm{C}|$.
- If Z contains v but not v^{\prime}, then v^{\prime} is reachable from A in $\mathrm{G}^{\prime} \backslash Z \Longrightarrow$ contradiction.

Proof of Cut Covering Lemma

- Recall that we have a directed graph $G(V, E)$ and two sets of vertices S and T. A vertex is called essential if it occurs in every minimum (A, B) cut, for some $A \in S$ and $B \in T$.

Proof of Cut Covering Lemma

- Recall that we have a directed graph $G(V, E)$ and two sets of vertices S and T. A vertex is called essential if it occurs in every minimum (A, B) cut, for some $A \in S$ and $B \in T$.

- We wish to compute the set of essential vertices, Z in the graph G.

Proof of Cut Covering Lemma

- Recall that we have a directed graph $G(V, E)$ and two sets of vertices S and T. A vertex is called essential if it occurs in every minimum (A, B) cut, for some $A \in S$ and $B \in T$.

- We wish to compute the set of essential vertices, Z in the graph G.
- It will be sufficient to compute a set $R(G)$ such that $Z \subseteq R(G)$, and $R(G)$ is of bounded size.

Proof of the Cut Covering Lemma

Observe the following :
Let r the size of the minimum (S, T) cut. Observe that the size of any (A, B) cut is bounded by r .

Proof of the Cut Covering Lemmin

Observe the following :
Let r the size of the minimum (S, T) cut. Observe that the size of any (A, B) cut is bounded by r .

We will compute Z in the following manner :

- We will describe a linear matroid M.

Proof of the Cut Covering Lemma

Observe the following :
Let r the size of the minimum (S, T) cut. Observe that the size of any (A, B) cut is bounded by r .

We will compute Z in the following manner :

- We will describe a linear matroid M.
- Then we will describe a family \mathcal{F} of independent sets of rank 3 , such that each independent set corresponds to a vertex of G .

Constreution of the Thtroio M

The Matroid M is a direct-sum of the following three matroids.

Constreution of the Thtroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r. It is defined on the universe $\mathrm{V}[0]$, where $\mathrm{V}[0]$ is a copy of V . For a vertex $v \in \mathrm{~V}$, we will use $v[0]$ to denote the corresponding vertex in $\mathrm{V}[0]$.

Constreution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S. It is defined as follows,

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S. It is defined as follows,
- Let $\mathrm{G}[1]$ be the graph constructed as follows,

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $\mathrm{M}[1]$ is a gammoid defined using S . It is defined as follows,
- Let G[1] be the graph constructed as follows,
- Make a copy of the graph G, called $\mathrm{G}[1]$ with vertex set V[1].

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $\mathrm{M}[1]$ is a gammoid defined using S . It is defined as follows,
- Let G[1] be the graph constructed as follows,
- Make a copy of the graph G, called G[1] with vertex set V[1].
- Introduce a sink only vertex $v[1]^{\prime}$ for every vertex $v[1]$.

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $\mathrm{M}[1]$ is a gammoid defined using S . It is defined as follows,
- Let $\mathrm{G}[1]$ be the graph constructed as follows,
- Make a copy of the graph G, called G[1] with vertex set V[1].
- Introduce a sink only vertex $v[1]^{\prime}$ for every vertex $v[1]$.
- $M[1]$ is a gammoid ($\mathrm{V}[1] \cup \mathrm{V}[1]^{\prime}, \mathrm{I}[1]$) where I[1] consists of all the vertices linked to the set $\mathrm{S}[1]$.

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T. It is defined as follows,

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T . It is defined as follows,
- Let $\mathrm{G}[2]$ be the graph constructed as follows,

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T. It is defined as follows,
- Let $\mathrm{G}[2]$ be the graph constructed as follows,
- Make a copy of the graph G, called G [2] with vertex set V[2].

Constrcution of the Thatroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T. It is defined as follows,
- Let $\mathrm{G}[2]$ be the graph constructed as follows,
- Make a copy of the graph G, called G[2] with vertex set V[2].
- Reverse every arc of G[2].

Constreution of the Thtroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T. It is defined as follows,
- Let $\mathrm{G}[2]$ be the graph constructed as follows,
- Make a copy of the graph G, called $\mathrm{G}[2]$ with vertex set $\mathrm{V}[2]$.
- Reverse every arc of G[2].
- Introduce a sink only vertex $v[2]^{\prime}$ for every $v[2]$.

Constreution of the Thtroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T. It is defined as follows,
- Let $\mathrm{G}[2]$ be the graph constructed as follows,
- Make a copy of the graph G, called G[2] with vertex set V[2].
- Reverse every arc of G[2].
- Introduce a sink only vertex $\nu[2]^{\prime}$ for every $v[2]$.
- $M[2]$ is a gammoid (V[2] $\left.\bigcup \mathrm{V}[2]^{\prime}, \mathrm{I}[2]\right)$ where I[2] consists of all the vertices linked to the set $\mathrm{T}[2]$.

Constreution of the Thtroio M

The Matroid M is a direct-sum of the following three matroids.

- $M[0]$ is the uniform matroid of rank r.
- $M[1]$ is a gammoid defined using S.
- $M[2]$ is a gammoid defined using T.
- Observe that the rank of M is $|S|+|T|+r$.

Proof: The family \mathcal{F} fחod the set $R(G)$

Proof: The family \mathcal{F} and the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.

Proof: The family \mathcal{F} and the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.

Proof: The family \mathcal{F} and the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(S \cup T)\}$.

Proof: The frmily \mathcal{F} fпп the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(S \cup T)\}$.
- We compute $\widehat{\mathcal{F}}$ which is $\mathrm{a}|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.

Proof: The frmily \mathcal{F} fпп the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(S \cup T)\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|S|+|T|+r-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(\nu) \in \hat{\mathcal{F}}\}$

Proof: The family \mathcal{F} and the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(S \cup T)\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|S|+|T|+r-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(\nu) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.

Proof: The family \mathcal{F} and the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $f(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(\mathrm{~S} \cup \mathrm{~T})\}$.
- We compute $\widehat{\mathcal{F}}$ which is $\mathrm{a}|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(\nu) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.
- It is sufficient to show the following :

Proof: The family \mathcal{F} fחd the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in V \backslash(S \cup T)\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.
- Let $R(G)=\{\nu \in V \mid f(v) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.
- It is sufficient to show the following :

For every essential vertex q, there is a independent set $C_{q} \in M$ such that,

Proof: The family \mathcal{F} fחd the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in V \backslash(S \cup T)\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(\nu) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.
- It is sufficient to show the following :

For every essential vertex q, there is a independent set $C_{q} \in M$ such that,

- $f(q)$ and C_{q} are disjoint, and $f(q) \cup C_{q}$ is an independent set in M.

Proof: The family \mathcal{F} fחd the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(\mathrm{~S} \cup \mathrm{~T})\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(v) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.
- It is sufficient to show the following :

For every essential vertex q, there is a independent set $C_{q} \in M$ such that,

- $f(q)$ and C_{q} are disjoint, and $f(q) \cup C_{q}$ is an independent set in M.
- For any other vertex $s \in \mathrm{~V}$,
- either $f(s) \cup C_{q}$ is not independent,

Proof: The frmily \mathcal{F} fпd the set $R(G)$

- The set \mathcal{F} is defined as follows,
- For vertex $v \in \mathrm{~V}$ let $\mathrm{f}(v)=\left\{v[0], v[1]^{\prime}, v[2]^{\prime}\right\}$.
- Observe that, $\mathrm{f}(v)$ is an independent set of rank 3 in M.
- $\mathcal{F}=\{f(v) \mid v \in \mathrm{~V} \backslash(\mathrm{~S} \cup \mathrm{~T})\}$.
- We compute $\widehat{\mathcal{F}}$ which is a $|\mathrm{S}|+|\mathrm{T}|+\mathrm{r}-3$ representative set for \mathcal{F}.
- Let $\mathrm{R}(\mathrm{G})=\{\nu \in \mathrm{V} \mid \mathrm{f}(\nu) \in \hat{\mathcal{F}}\}$
- We have to show that every essential vertex is in $R(G)$.
- It is sufficient to show the following :

For every essential vertex q, there is a independent set $C_{q} \in M$ such that,

- $f(q)$ and C_{q} are disjoint, and $f(q) \cup C_{q}$ is an independent set in M.
- For any other vertex $s \in \mathrm{~V}$,
- either $f(s) \cup C_{q}$ is not independent,
- or $f(s)$ and C_{q} are not disjoint.

Proof: The set C_{q}.

- Let q be an essential vertex in G , w.r.t $A \subseteq S$ and $B \subseteq T$. And let C be a A, B minumum cut.

Proof: The set C_{q}.

- Let q be an essential vertex in G , w.r.t $A \subseteq S$ and $B \subseteq T$. And let C be a A, B minumum cut.
- Recall that by Proposition $|C| \leqslant|A|,|B|$.

Proof: The set C_{q}.

- Let q be an essential vertex in G , w.r.t $A \subseteq S$ and $B \subseteq T$. And let C be a A, B minumum cut.
- Recall that by Proposition $|C| \leqslant|A|,|B|$.
- Let C_{q} be the union of (C[0]
{q[0]\}), } $(S[1] \backslash A[1]) \cup C[1]$ and $(T[2] \backslash B[2]) \cup C[2]$.

Proof: The set C_{q}.

- Let q be an essential vertex in G , w.r.t $A \subseteq S$ and $B \subseteq T$. And let C be a A, B minumum cut.
- Recall that by Proposition $|C| \leqslant|\mathcal{A}|,|B|$.
- Let C_{q} be the union of (C[0]
{q[0]\}), } $(S[1] \backslash A[1]) \cup C[1]$ and $(\mathrm{T}[2] \backslash \mathrm{B}[2]) \cup \mathrm{C}[2]$.
- Observe that C_{q} is an independent set of rank at most $(|S|+|T|+r-3)$.

Proof: The set C_{q}.

- Observe that
$\mathrm{f}(\mathrm{q})=\left\{\mathrm{q}[0], \mathrm{q}[1]^{\prime}, \mathrm{q}[2]^{\prime}\right\}$ and C_{q} are disjoint.

Proof: The set C_{q}.

- We will show that $f(q) \cup C_{q}$ is an independent set.

Proof: The set C_{q}.

- We will show that $f(q) \cup C_{q}$ is an independent set.
- $\mathrm{q}[0] \cup(\mathrm{C}[0] \backslash \mathrm{q}[0])$ is independent in $M[0]$.

Proof: The set C_{q}.

- We will show that $f(q) \cup C_{q}$ is an independent set.
- $\mathrm{q}[0] \cup(\mathrm{C}[0] \backslash \mathrm{q}[0])$ is independent in $M[0]$.
- By Proposition there are two vertex disjoint paths from A to q in $G \backslash(C \backslash\{q\})$.

Proof: The set C_{q}.

- We will show that $f(q) \cup C_{q}$ is an independent set.
- $\mathrm{q}[0] \cup(\mathrm{C}[0] \backslash \mathrm{q}[0])$ is independent in $M[0]$.
- By Proposition there are two vertex disjoint paths from A to q in $G \backslash(C \backslash\{q\})$.
Therefore $(S[1] \backslash A[1]) \cup C[1] \cup\left\{q[1]^{\prime}\right\}$

is independent in M [1].

Proof: The set C_{q}.

- We will show that $f(q) \cup C_{q}$ is an independent set.
- $\mathrm{q}[0] \cup(\mathrm{C}[0] \backslash \mathrm{q}[0])$ is independent in $M[0]$.
- By Proposition there are two vertex disjoint paths from A to q in $G \backslash(C \backslash\{q\})$.
Therefore
 $(\mathrm{S}[1] \backslash A[1]) \cup \mathrm{C}[1] \cup\left\{\mathrm{q}[1]^{\prime}\right\}$ is independent in $\mathrm{M}[1]$.
- Similarly,
$(\mathrm{T}[2] \backslash \mathrm{B}[2]) \cup \mathrm{C}[2] \cup\left\{\mathrm{q}[2]^{\prime}\right\}$
is an independent set.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.

Therefore, $\mathrm{f}(\mathrm{s})$ and C_{q} have $s[0]$ as a common element.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.
- Or s is not reachable from A in $G \backslash C$.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.
- Or s is not reachable from A in $\mathrm{G} \backslash \mathrm{C}$.
Therefore, all paths from A[1] to q [1]' must pass through $C[1] . S o f(s) \cup C_{q}$ is not an independent set.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.
- Or s is not reachable from A in $\mathrm{G} \backslash \mathrm{C}$.
- Or s is not reachable from B in $G \backslash C$.

Proof: The set C_{q}.

- Now for any other vertex s, one of the following three cases happen,
- Either $s \in C$.
- Or s is not reachable from A in $\mathrm{G} \backslash \mathrm{C}$.
- Or s is not reachable from B in $G \backslash C$.
Therefore, all paths from B[2] to q [2]' must pass through
 $C[2]$. So $f(s) \cup C_{q}$ is not an independent set.

Proof: The set C_{q}.

- Therefore for every essential vertex $\mathrm{q}, \mathrm{f}(\mathrm{q})$ is present in $\widehat{\mathcal{F}}$ and q itself is present in $\mathrm{R}(\mathrm{G})$.
- Since the size of $\hat{\mathcal{F}}$ is bounded by $(|S|+|T|+r)^{3}$, we have that the size of $R(G)$ is bounded by the same quantity.

Theorem
Let G be a directed graph and $\mathrm{X} \subseteq \mathrm{V}$ a set of terminals. In polynomial time one can identify a set Z of $\mathcal{O}\left(|X|^{3}\right)$ vertices such that for any $S, T, R \subseteq X$, a minimum (S, T)-vertex cut in $G \backslash R$ is contained in Z.

Theorem
Let G be a directed graph and $\mathrm{X} \subseteq \mathrm{V}$ a set of terminals. In polynomial time one can identify a set Z of $\mathcal{O}\left(|X|^{3}\right)$ vertices such that for any $S, T, R \subseteq X$, a minimum (S, T)-vertex cut in $G \backslash R$ is contained in Z.
Odd Cycle Transversal: Get Q - the approximate solution of size $\mathcal{O}\left(\mathrm{k}^{1.5}\right)$ and compute Z. Delete all the vertices of $\mathrm{G} \backslash \mathrm{Z}$ and take parity torso for Z . Return this as an equivalent instance.

Theorem
Let G be a directed graph and $\mathrm{X} \subseteq \mathrm{V}$ a set of terminals. In polynomial time one can identify a set Z of $\mathcal{O}\left(|X|^{3}\right)$ vertices such that for any $S, T, R \subseteq X$, a minimum (S, T)-vertex cut in $G \backslash R$ is contained in Z.
Odd Cycle Transversal: Get Q - the approximate solution of size $\mathcal{O}\left(\mathrm{k}^{1.5}\right)$ and compute Z. Delete all the vertices of $G \backslash Z$ and take parity torso for Z. Return this as an equivalent instance.
Digraph Pair
Exercise :D

Fingl Slide

Thank You! Any Questions?

