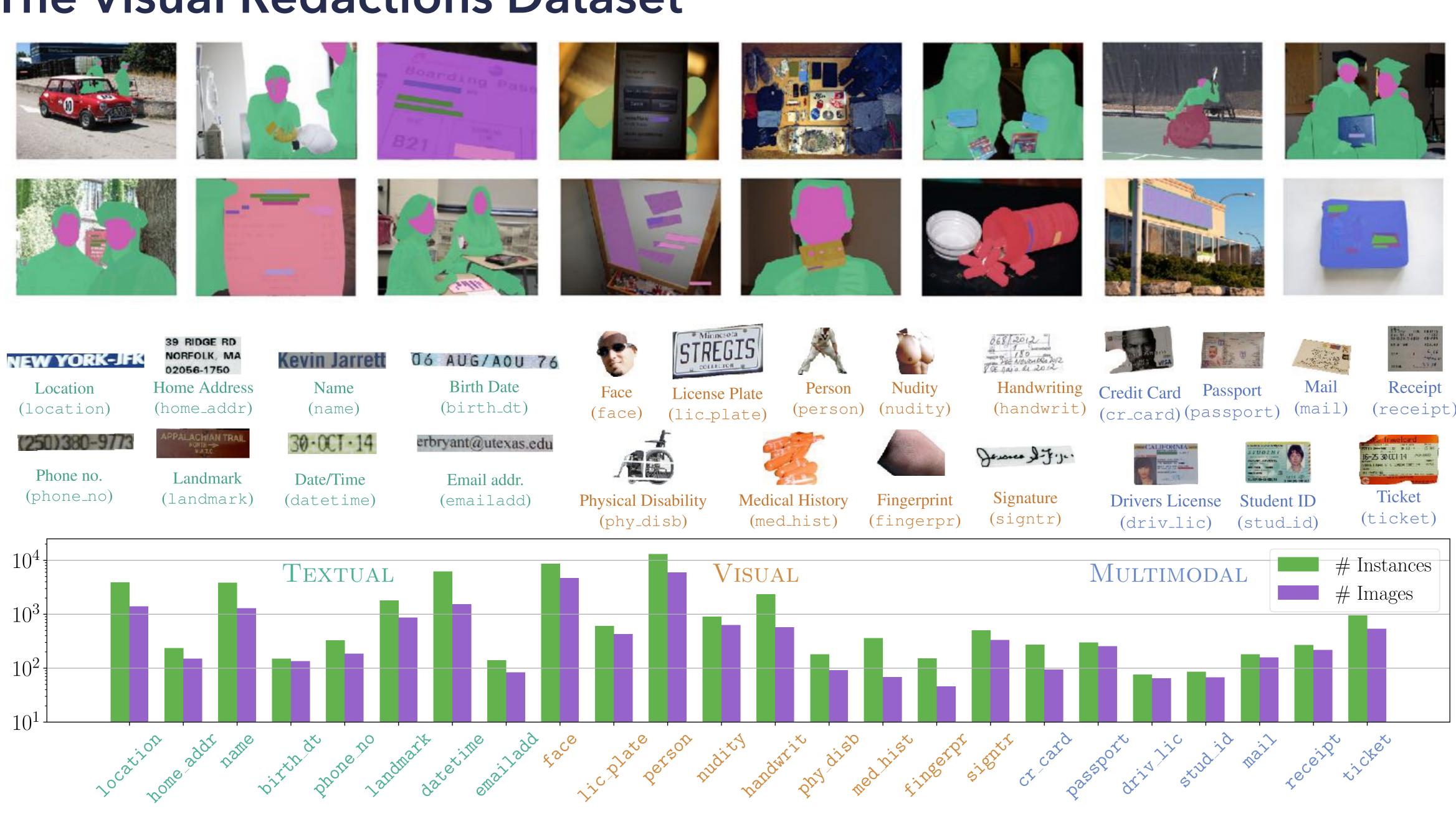


Motivation

- Numerous personal photos containing a broad range of private information are shared on the Internet everyday
- Previous works: Image classification or redact one/narrow range of privacy classes
- Ours: How can we sanitise a wide spectrum of private content in images?



The Visual Redactions Dataset



- 8.4k images, 47.6k high-quality instances, 24 privacy attributes, 3 modalities
- Helpful for other tasks too: 9k face, 13k person instances
- Other goodies: Text detections, OCR, etc. using Google Cloud Vision API
- Dataset and Code: <u>resources.mpi-inf.mpg.de/d2/orekondy/redactions</u>

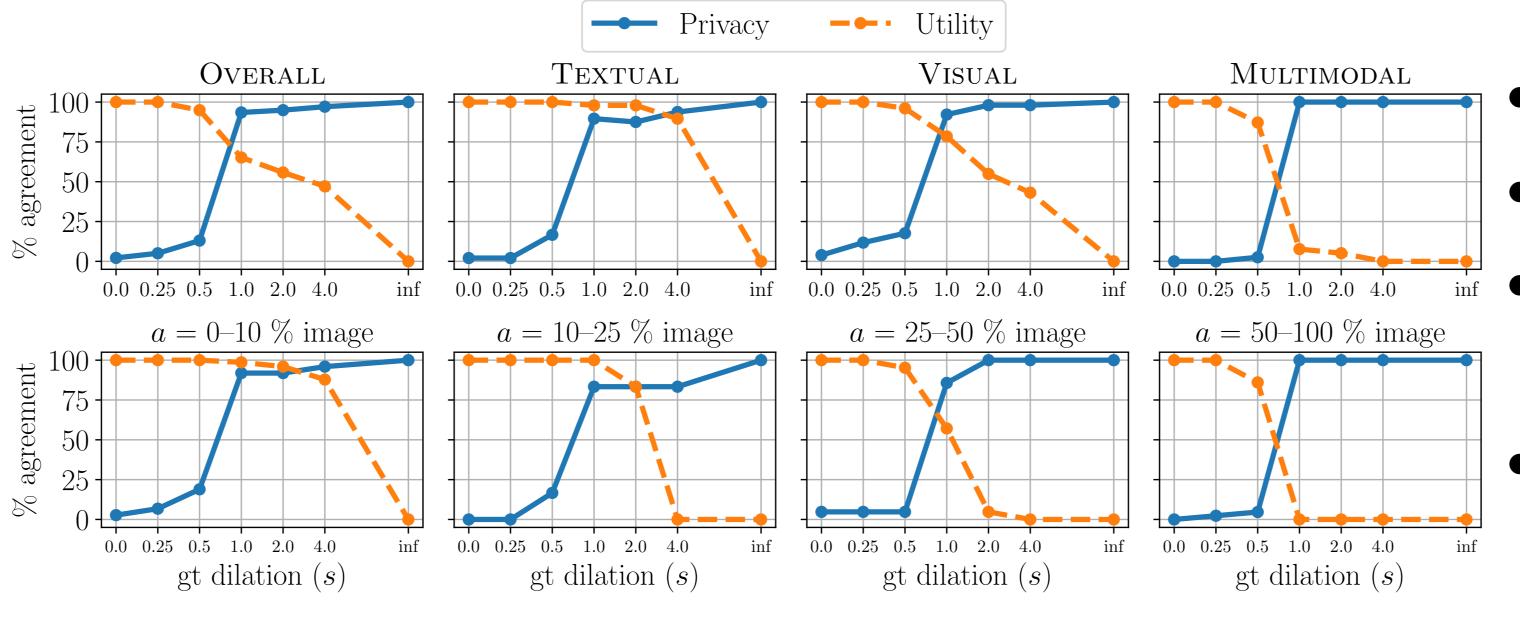
Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images

Tribhuvanesh Orekondy, Mario Fritz, Bernt Schiele

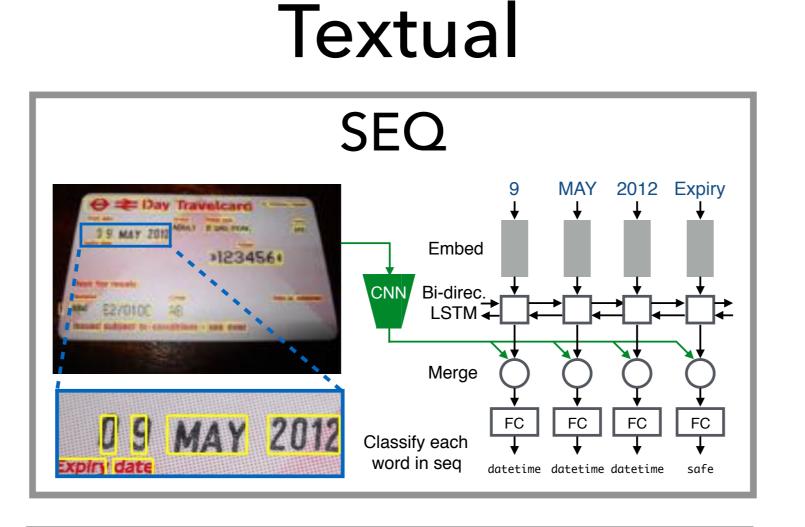
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Influence of Redacted Pixels on Privacy and Utility

- User study on AMT over various dilations (s) of GT redactions: 24 privacy attributes x 6 images x 7 scales x 5 yes/no responses
- Privacy Question: "Is X visible in the image?" (e.g. X: fingerprint)
- Utility Question: "Is the image intelligible, so that it can be shared on social networking websites?"
- Measuring privacy/utility of a redacted image: Majority agreement (y-axis)



Segmentation of Private Regions



NER

Named Entity Recognition on

image word sequence using

Stanford NER CRF [2] classifier

FCIS [3] side/outside score maps

WSL:I

Weakly supervised pixellabelling using ResNet-50 [4]. Predicts all pixels of image.

RULES

Hand-crafted text rules (e.g., look-ups, pattern matching) to recognise privacy attributes

PTM

Popular pretained models to predict well-studied attributes: face, person, license plates

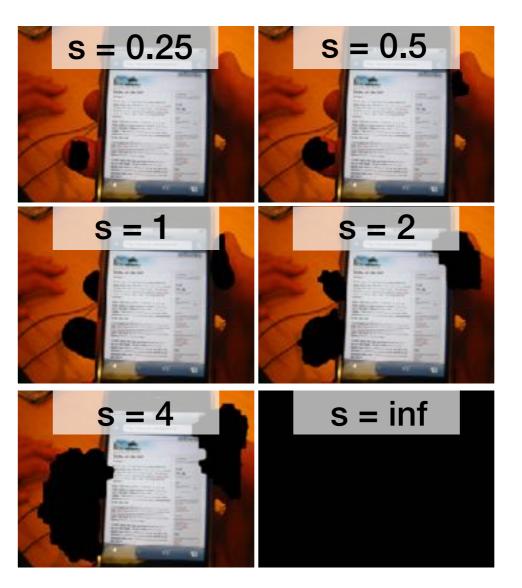
References

[1] Towards a visual privacy advisor: Understanding and predicting privacy risks in images, Orekondy et al., ICCV '17 [2] Incorporating non-local information into information extraction systems by gibbs sampling , Finkel et. al, ACL '05 [3] Fully Convolutional Instance-aware Semantic Segmentation, Li et. al, CVPR '17

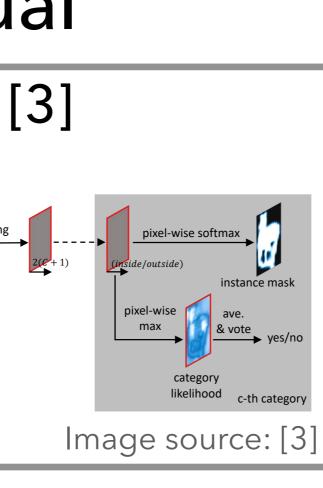
[4] Deep residual learning for image recognition, He et al., CVPR '16 [5] Efficient inference in fully connected crfs with gaussian edge potentials, Krähenbühl et al., NIPS '11

Acknowledgment This research was partially supported by the German Research Foundation (DFG CRC 1223)

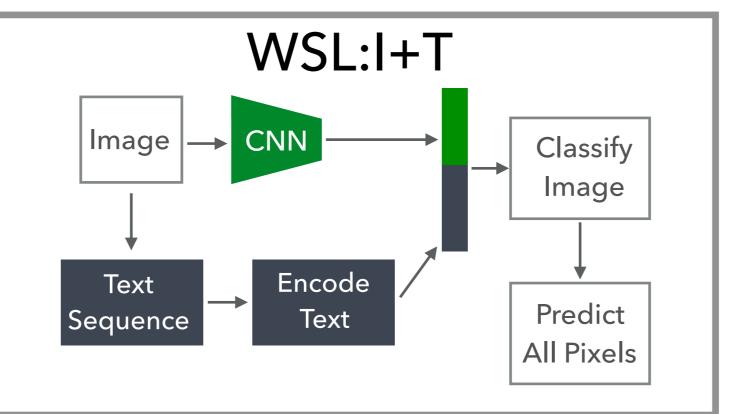
Visual



- Privacy is a step-like function
- Utility gradually decreases
- Different operating points for different modalities/attributes
- GT segmentation = great proxy



Multimodal

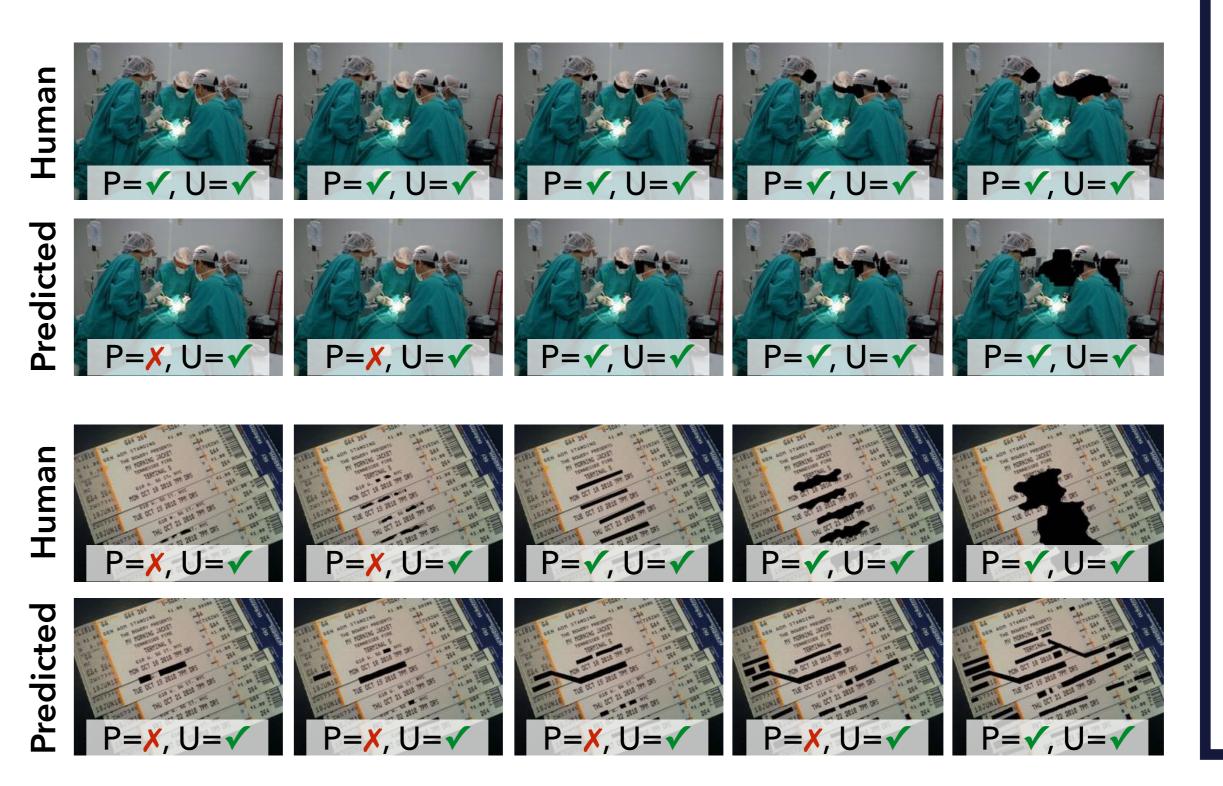


SAL Using WSL:I+T as a base, approximate attribute's location with salient region

Refine convex hull of text regions using DenseCRF [5] to "spill into" text-heavy document regions

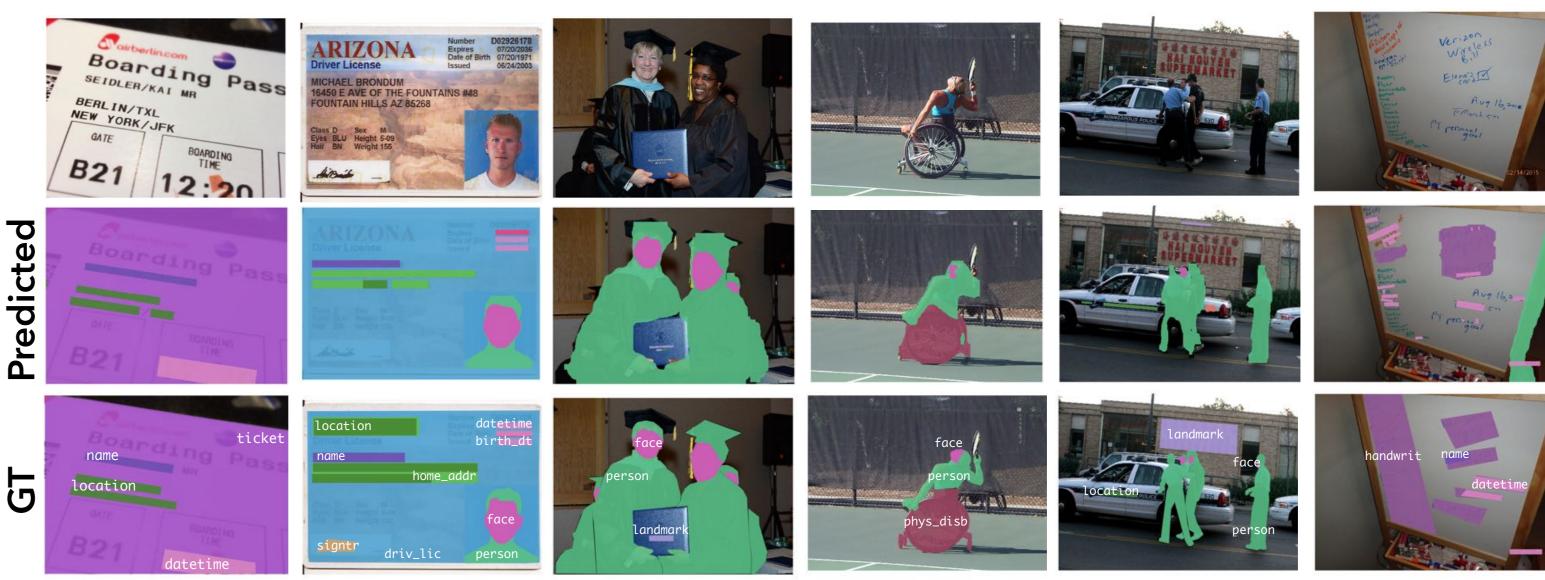
NN Predict mask of nearestneighbour from train+val set

Privacy vs. Utility Trade-off



- Segmentation of privacy attributes across modalities is performed as an intermediate step
- Unlike segmentation which requires pixel-perfect prediction, redaction allows for leeway
- Metric: Area under Privacy-Utility curve (AUC)
- User-study to evaluate redactions. We achieve 83% performance of human-based redactions!
- Can predict more pixels "for free" e.g. Textual attributes (low 26.8 mAP for segmentation, but high 81% privacy-utility AUC)

Segmentation Evaluation



- Metric: Mean Average Precision (à la Pascal VOC)

- Multimodal: (+) Text-understanding helps disambiguation (-) Large object bias • Redactions performed using ENSEMBLE (SEQ, FCIS, WSL:I+T) at calibrated thresholds

Take-home messages

- Task: Visual redaction across broad range of private content
- Large pixel-annotated dataset for task
- Privacy vs. Utility trade-off in redactions
- Methods to pixel-label private content across multiple modalities
- We approach human-based performance for redactions

• Textual: (+) Patterns in text help (-) Bottlenecked by challenging text detections/OCR • Visual: (+) FCIS is highly effective across many visual attributes

