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Connecting Pixels to Privacy and Utility:  Automatic Redaction of Private Information in Images 

Motivation

¥ 8.4k images, 47.6k high-quality instances, 24 privacy attributes, 3 modalities 

¥ Helpful for other tasks too: 9k face, 13k person instances 

¥ Other goodies: Text detections, OCR, etc. using Google Cloud Vision API 

¥ Dataset and Code: resources.mpi-inf.mpg.de/d2/orekondy/redactions
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Privacy Utility

Inßuence of Redacted Pixels on Privacy and Utility
¥ User study on AMT over various dilations (s) of GT redactions: !

24 privacy attributes x 6 images x 7 scales x 5 yes/no responses 

¥ Privacy Question: ÒIs X visible in the image?Ó (e.g. X: Þngerprint) 

¥ Utility Question: ÒIs the image intelligible, so that it can be 
shared on social networking websites?Ó 

¥ Measuring privacy/utility of a redacted image: Majority agreement (y-axis)

¥ Privacy is a step-like function 

¥ Utility gradually decreases 

¥ Different operating points for 
different modalities/attributes 

¥ GT segmentation = great 
proxy

Segmentation of Private Regions
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Named Entity Recognition on 
image word sequence using 
Stanford NER CRF [2] classiÞer

Hand-crafted text rules (e.g., 
look-ups, pattern matching) to 
recognise privacy attributes
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Using WSL:I+T as a base, 
approximate attribute's location 
with salient region

ReÞne convex hull of text 
regions using DenseCRF [5] to 
"spill into" text-heavy 
document regions
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Predict mask of nearest-
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Popular pretained models to 
predict well-studied attributes: 
face, person, license plates
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Method mAP loca
tion

home
addr

name birth
dt

phone
no

land
mark

date
time

email
add

PROXY 45.0 31.7 37.8 48.7 52.5 52.6 33.6 52.4 50.8
NN 0.9 0.3 1.9 0.4 0.7 0.0 3.1 0.6 0.0
NER 3.0 6.0 1.7 4.4 0.5 0.0 0.5 10.9 0.0
RULES 4.2 3.1 0.5 2.8 0.6 1.4 1.2 6.4 17.5
FCIS 7.2 4.3 0.2 9.8 0.1 2.5 27.6 12.9 0.0
SEQ 26.8 18.4 19.4 19.1 25.1 45.813.9 33.4 38.9

VISUAL

Method mAP face licp
late

per
son

nud
ity

hand
writ

phy
disb

med
hist

fing
erpr

sig
ntr

NN 16.6 9.0 16.0 33.6 6.2 37.5 11.4 18.9 16.9 0.1
WSL:I 20.8 5.0 4.3 30.3 16.4 49.9 13.7 37.7 28.8 1.3
PTM 20.0 47.6 44.5 88.3 0.0 0.0 0.0 0.0 0.0 0.0
FCIS 68.3 83.8 77.9 87.0 69.7 80.7 59.0 45.8 68.1 42.6

MULTIMODAL

Method mAP cr
card

pass
port

driv
lic

stud
id

mail rece
ipt

tic
ket

NN 24.1 10.5 49.5 19.9 14.5 20.6 17.1 36.7
WSL:I+T 55.6 27.7 68.8 83.3 56.1 41.4 54.2 58.0
SAL 36.2 55.9 37.2 23.8 30.4 8.1 42.5 55.1
IR 53.6 41.7 51.2 67.8 48.1 36.9 57.2 72.5
FCIS 59.2 53.2 76.3 66.5 50.3 33.1 59.4 75.4

Table 1: Quantitative results of our methods for segmenting privacy regions.Bold
numbers denote highest anditalicizednumbers second highest scores in the columns.
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¥ Segmentation of privacy attributes across modalities 
is performed as an intermediate step 

¥ Unlike segmentation which requires pixel-perfect 
prediction, redaction allows for leeway 

¥ Metric: Area under Privacy-Utility curve (AUC) 

¥ User-study to evaluate redactions. We achieve 83% 
performance of human-based redactions! 

¥ Can predict more pixels "for free" e.g. Textual 
attributes (low 26.8 mAP for segmentation, but high 
81% privacy-utility AUC)

Privacy vs. Utility Trade-off

Segmentation Evaluation

¥ Metric: Mean Average Precision (ˆ la Pascal VOC) 

¥ Textual: (+) Patterns in text help (-) Bottlenecked by challenging text detections/OCR 

¥ Visual: (+) FCIS is highly effective across many visual attributes 

¥ Multimodal: (+) Text-understanding helps disambiguation (-) Large object bias 

¥ Redactions performed using ENSEMBLE (SEQ, FCIS, WSL:I+T) at calibrated 
thresholds

¥ Numerous personal photos containing a broad range of private information are 
shared on the Internet everyday 

¥ Previous works: Image classiÞcation or redact one/narrow range of privacy classes 

¥ Ours: How can we sanitise a wide spectrum of private content in images?
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Take-home messages
¥ Task: Visual redaction across broad 

range of private content 

¥ Large pixel-annotated dataset for task 

¥ Privacy vs. Utility trade-off in redactions 

¥ Methods to pixel-label private content 
across multiple modalities 

¥ We approach human-based 
performance for redactions

The Visual Redactions Dataset

http://resources.mpi-inf.mpg.de/d2/orekondy/redactions
http://resources.mpi-inf.mpg.de/d2/orekondy/redactions

