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ABSTRACT
Knowledge bases capture millions of entities such as people,
companies or movies. However, their knowledge of named
events like sports finals, political scandals, or natural dis-
asters is fairly limited, as these are continuously emerg-
ing entities. This paper presents a method for extract-
ing named events from news articles, reconciling them into
canonicalized representation, and organizing them into fine-
grained semantic classes to populate a knowledge base. Our
method captures similarity measures among news articles
in a multi-view attributed graph, considering textual con-
tents, entity occurrences, and temporal ordering. For dis-
tilling canonicalized events from this raw data, we present a
novel graph coarsening algorithm based on the information-
theoretic principle of minimum description length. The qual-
ity of our method is experimentally demonstrated by ex-
tracting, organizing, and evaluating 25 000 events from a
corpus of 300 000 heterogeneous news articles.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles

Keywords
Knowledge Bases; Temporal Knowledge; Event Mining; In-
formation Extraction; Minimum Description Length

1. INTRODUCTION
Motivation: Large knowledge bases such as dbpedia.org,

yago-knowledge.org, or freebase.com (the core of the Google
Knowledge Graph), are valuable assets for entity awareness
in search, summarization, analytics, and recommendations.
These assets contain millions of individual entities (people,
places, products, etc.), including named events such as elec-
tions, revolutions, notable disasters, important concerts, etc.

However, the coverage of such events is fairly limited in
today’s knowledge bases, the reason being that entities and
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facts are mostly extracted from Wikipedia and similarly cu-
rated sources. None of the above projects taps into news or
social media for increasing their population of named events.
Thus, major events are captured only late, after being prop-
erly edited in Wikipedia, and events in the long tail, such as
concerts of indie rock bands, and brand-new events, such as
hurricanes or political scandals, are completely out of scope.
We aim to capture more events of this kind as early possible.

Problem Statement: This paper addresses the prob-
lem of populating a knowledge base with fine-grained emerg-
ing events, along with detailed semantic typing (e.g., using
classes like rock concerts or hurricanes), relationships among
events (sub-events, temporal order, etc.), as well as people
and organizations participating in events. The raw input for
this task is articles from newspapers, magazines, and online
feeds. A seemingly obvious approach would be to run a clus-
tering algorithm on a set of news articles, using a text-based
contents similarity measure. Each resulting cluster would
then be interpreted as a separate event. However, our goal
is to go beyond this and to obtain semantically clear output
that is ready for populating a high-quality knowledge base.
This entails the following desiderata:

• Canonicalized event entities: Rather than merely clus-
tering text snippets or noun phrases from news articles,
we aim to output event entities in canonicalized form:
exactly all news referring to the same event are placed
in the same equivalence class, and a representative name
is chosen for the event.

• Semantic labeling: Each event is labeled with one or more
semantic types (aka. lexical classes) from a knowledge
base such as freebase.org or a high-quality thesaurus
like WordNet. In this paper, we use the type system
from yago-knowledge.org which integrates Wikipedia cat-
egories and WordNet classes. The type system forms
a DAG ranging from broad classes such as disaster,
tournament, or performance to fine-grained classes such
as volcanic_eruptions, football_finals, or benefit_rock_
concerts. In addition, events should be annotated with
their participating entities like people, organizations, lo-
cations, etc. These in turn should also reside in the
knowledge base, rather than being mere noun phrases.

• Chronological ordering: Events must be placed on po-
sitions or intervals on the time axis. This is a require-
ment for chronological ordering of related events (e.g.,
one causing the other), even if the news articles that
constitute an event exhibit widely varying timestamps.



Figure 1: Output for the theme of “UEFA Champions League 2012/2013”.

• Event hierarchies: Events should be organized in a hi-
erarchical manner, with refinements into sub-events and
inclusion in super-events. For example, Edward Snow-
den’s request for asylum in several European countries is
a sub-event of the Prism Scandal, and Steve Jobs’ fight
against cancer has sub-events like various therapies, his
death, the memorial at Stanford, etc.

From a computational perspective, we address the follow-
ing problem. Given a heterogeneous collection of news arti-
cles (from many different sources), group these into equiva-
lence classes denoting the same events, label the equivalence
classes with semantic types and participating entities, chain
them in chronological order on the timeline, and organize
them in a sub-/super-event hierarchy.

An example output that our method achieves, by process-
ing several hundred articles about the UEFA Champions
League season 2012/2013, is shown in Figure 1. The fig-
ure shows three different events and the news articles from
which they were inferred, together with their representative
names (inside ovals), their semantic types (top line), their
participating entities (bottom line), and their chronological
ordering. Note that the underlying articles in each cluster
are not necessarily from the same date; so different clusters
can heavily overlap in their overall timespans and inferring
the temporal order between events is not obvious at all.

State of the Art: There are prior methods for mining
events and storylines from a batch or stream of news articles
(e.g., [3, 5, 18]). These methods compute output at the level
of (ambiguous) noun phrases such as news headlines rather
than true entities. For example, a typical output could
be events such as “Bayern wins Champions League”, “Bay-
ern beats Borussia”, “Bayern’s triumph in London”, “Bayern
overcomes last year’s final trauma”, etc. These are semanti-
cally overlapping and do not denote distinct events. Simple
clusters of news articles are not sufficient for a high-quality
knowledge base.

In contrast to this prior work, our method reconciles all
surface cues for the same event into a single entity in a
canonicalized representation. Moreover, our method assigns
fine-grained class labels such as soccer finals or European
sports championships to an event. So there is a fundamen-
tal difference between traditional event mining and our goal

of populating a knowledge base, satisfying the desiderata
stated above.

Contribution: This paper presents novel methods for
populating event classes (concerts, ceremonies, elections, con-
flicts, accidents, disasters, tournaments, etc.) of high-quality
knowledge bases by extracting, cleaning, and canonicalizing
fine-grained named events from news corpora. Our method-
ology involves the following contributions:
• mapping news articles into event classes by automatically

labeling them with fine-grained types (Section 3);
• a multi-view graph model that captures relationships and

relatedness measures between news articles, and a novel
graph-coarsening algorithm for grouping and temporally
ordering news articles based on the information-theoretic
principle of minimum description length (Sections 4, 5);
• building a high-quality knowledge base with 25 000 named

events automatically derived from 300 000 news articles
referenced as external links in Wikipedia (Section 6).

2. SYSTEM OVERVIEW
Our system taps online news from a heterogeneous set of

sources (newspapers, magazines, other news feeds). “Distill-
ing” canonicalized and semantically organized events from
these news articles proceeds in three steps. First, news are
labeled with semantic types; these are later carried over to
the distilled events. Second, news are grouped in a hierchical
manner; each group will eventually be an event. Third, re-
lated events are chained in chronological order. The second
and the third step are carried out by the same algorithm,
based on coarsening a multi-view attributed graph (MVAG).
Finally, the resulting events and their semantic annotations
are placed in the knowledge base, populating a taxonomy of
fine-grained semantic types.
Feature sets: We exploit four kinds of feature groups that
are provided by each news article n or can be derived from
it by information extraction methods:

• the textual content C(n) of the article,

• the publication date t(n),

• the set of entitiesA(n) : people, organizations, countries,
companies, etc., appearing in the content, and



• the semantic types T (n) of events covered by an article,
for example, bombing, earthquake, festival, concert, etc.

The entity names appearing in a news article are extracted
using the Stanford NER tagger [7]. Since these are used
as features for subsequent processing, we do not attempt
to disambiguate entities onto canonical representations in a
knowledge base, but simply accept a tolerable level of am-
biguity and noise. Semantic types for news articles are ob-
tained in two steps: first, by constructing statistical lan-
guage models (LM’s) [24] for articles and types; second,
by mapping an article to its similar types using Kullback-
Leibler divergence. This is further explained in Section 3.
Distance measures: Features are used to compute differ-
ent kinds of distance measures between news articles.
The content distance is the cosine distance of the articles’
tf · idf vectors over a bag-of-words model:

dist text = cosine(V(ni),V(nj))

where V(ni) and V(nj) are the tf ·idf vectors of news articles
ni and nj , respectively; tf denotes the term frequency of
words, and idf denotes the inverse document frequency of
words (i.e., the inverse frequency of a word in the corpus).
The temporal distance is the normalized time distance be-
tween the publication dates of news articles:

dist temp(ni, nj) =
|t(ni)− t(nj)|

H
where H is the time horizon of the entire news corpus. We
define H as the difference between the earliest and the latest
timestamps appearing in the corpus.
The attribute distance between articles is the weighted Jac-
card coefficient capturing the overlap in the entity sets or in
the type sets respectively:

distattr (ni, nj) =

P
x∈X (ni)∩X (nj)

weight(x)P
x∈X (ni)∪X (nj)

weight(x)

where X can be entity set A, or type set T . Entity names
are weighted by their tf · idf values, the types are weighted
by their idf values.

These are all standard measures from the information-
retrieval and text-mining literature. Our specific choices are
based on prevalent usage in the state-of-the-art, but could
be easily replaced.
Multi-view attributed graph (MVAG): The feature
sets and the distance measures are used together to con-
struct a multi-view attributed graph (MVAG) of news arti-
cles; G = (V,A,E, F ).
Vertices and attributes: A vertex vi ∈ V of the MVAG cor-
responds to a news article ni. Each vertex inherits a set of
attributes A from ni: its textual content C, its timestamp t,
its associated entities A, and its types T .
Edges and weights: The MVAG has two kinds of edges: undi-
rected ones, edge set E, and directed ones, edge set F . All
edges are weighted. Two vertices are connected by an undi-
rected edge ei↔j if they share at least one entity and at least
one type:

A(ni) ∩ A(nj) 6= ∅ ∧ T (ni) ∩ T (nj) 6= ∅
The weight of the edge is the content distance between two
vertices; w(ei↔j) = dist text(ni, nj).

Two vertices are connected by a directed edge fi→j if their
timestamps indicate that they are ordered on the timeline.
The weight of a directed edge is the temporal distance be-
tween the time stamps of vertices: w(fi→j) = dist temp(ni, nj).

3. ASSIGNING SEMANTIC TYPE LABELS
We have devised a two-step method for mapping news ar-

ticles onto semantic event types in a knowledge base. First,
news articles are mapped to Wikipedia categories (ca. 32 000
event categories) using statistical language models (LM’s)
[24]. Second, Wikipedia categories are mapped to Wordnet
event classes by the heuristic of Suchanek et al. [1]. Word-
Net provides ca. 6 800 classes under the type label “event”
in its taxonomy, with 5-6 levels of subclasses. Examples are:
final→ match→ contest→ social_event→ event, and
riot→ violence→ aggression→ action→ act→ event.
All WordNet classes are also integrated in YAGO [1, 11], the
specific knowledge base we aim to populate.

3.1 Mapping News onto Wikipedia Categories
The first step is based on language models for news ar-

ticles and categories. The LM of a news article captures
i) the news content in terms of title and body words, and
ii) all entities in the news article, including normalized date
literals that appear in the article. LM’s are a principled
approach in IR [24], widely used for query-result ranking,
cross-lingual retrieval, question answering, etc. An LM is
a probability distribution over words or other text features.
LM’s are usually defined for documents and for queries, with
probabilistic or information-theoretic distance measures be-
tween LM’s. For our setting, we customize and extend the
notion of LM’s as follows.
Document models: The document model of a news article
n is constructed over keywords and entities appearing in the
article, so it is a probability distribution over {w : w ∈
n} ∪ {e : e ∈ n}, where w denotes keywords, and e denotes
entities.

For example, the news article Borussia Dortmund 1-2
Bayern Munich (http://www.bbc.co.uk/sport/0/football/
22540468), starting with “Arjen Robben’s late winner exor-
cised the demons that have haunted him and Bayern Mu-
nich in the Champions League as they won a pulsating all-
Bundesliga encounter . . . ”, has a document LM with:

• keywords: {winner, exorcised, demons, match, goal, . . . }
• entities: {Arjen Robben, Bayern Munich,

Champions League, Bundesliga, Wembley Stadium . . . }
The LM’s probability distribution for news article n is

P [s] = µPW [s] + (1− µ)PE [s]

where s is a word or entity, PW [s] and PE [s] are estimated
probability distributions for words and entities in n, respec-
tively, and µ is a hyper-parameter that controls the rela-
tive influence of each of the two aspects. The LM of a
Wikipedia category is defined analogously and constructed
from all Wikipedia articles that belong to the category.
Estimating LM parameters: The LM parameters for
both news articles and categories are estimated from fre-
quencies in the underlying texts, with Jelinek-Mercer smooth-
ing (using the global frequencies in the entire collection of
all news articles and all categories, respectively):

PW [s] = λP [s | news n] + (1− λ)P [s | news corpus]

where λ is the smoothing coefficient. PE [s] is estimated
analogously.
Comparing news and categories: To compare how close
a Wikipedia category is to a news article, we use the Kullback-
Leibler (KL) divergence (aka. relative entropy) between the



Figure 2: Coarsening a multi-view attributed graph.

corresponding LM’s:

KL(news n || category c) =
X

s

P [s | n] · log
P [s | n]

P [s | c]
For each news article, we compute the top-k categories based
on this distance measure, and accept those categories whose
KL divergence is below a specified threshold.

3.2 Mapping Categories onto WordNet Classes
The second step of our two-step approach maps the ac-

cepted Wikipedia categories to their lowest (i.e., most spe-
cific) event type in the WordNet taxonomy DAG, by adopt-
ing and adjusting the heuristic of [1]. This method uses a
natural-language noun-group parser on the category name
to identify its head word, and maps the head word to the
best matching WordNet type. If the head word is am-
biguous, the word-sense frequency information of WordNet
is used to make the choice. For example, for the cate-
gory name “General elections in Italy”, the word “elections”
is found as the head word, and it is mapped to the first
one of four possible senses in WordNet: election (a vote
to select the winner of a position or political office) (see
http://wordnet.princeton.edu/).

4. GROUPING NEWS INTO EVENTS

4.1 Design Alternatives and Choice
Once we have all the features of news articles in a collec-

tion, including the semantic type labels, our goal is to distill
canonicalized named events from this collection and orga-
nize the events into semantic classes of the knowledge base.
This task entails a grouping and a chaining problem: com-
bining thematically highly related news into a single event,
and ordering the resulting groups along the timeline.

A straightforward approach to this problem would be to
proceed in two phases: first compute clusters of news arti-
cles based on similarity over all features, then infer ordering
relations between clusters (e.g., by majority voting over the
items in each pair of clusters). However, computing the
ordering chains only after the clusters are determined may
pose a poor if not unsolvable situation for the chaining step.

To overcome these issues, we designed a novel approach to
this problem, by means of a graph coarsening. The rationale
is that we transform the fine-grained MVAG for news articles
into a coarser graph whose nodes correspond to the final
event entities. Thus, our approach integrates the clustering
and ordering tasks.

In order to identify the optimal coarsened graph for a
given MVAG, we take a principled approach and employ
Minimum Description Length (MDL) principle [9].

4.2 MVAG Coarsening
Given a multi-view attributed graph G with node set

V , weighted undirected edges E, weighted directed edges
F , entity sets A, and types T , a coarser graph G∗ with

V ∗ ∈ 2V (i.e., forming equivalence classes of nodes) and
E∗, F ∗,A∗, T ∗ is computed such that i) G∗ preserves the
main properties and structure of G, and ii) G∗ is simpler
(smaller, coarser) than G.
The grouping of the original V nodes that leads to V ∗ in-
duces the undirected edges E∗, directed edges F ∗, edge
weights, and attribute sets of the coarsened graph. This
is explained in the following.

Consider the grouping function Γ for mapping V to V ∗.
Γ induces edge sets E∗ and F ∗:

eΓ(x)↔Γ(y) ∈ E∗ ⇔ ∃ex↔y ∈ E

fΓ(x)→Γ(y) ∈ F ∗ ⇔ ∃fx→y ∈ F
Γ also determines the edge weights in G∗ by averaging the
weights of edges between all node pairs (x, y) that are mapped
onto coarsened nodes (Γ(x),Γ(y)):

w(ex∗↔y∗) = avg{w(ex↔y)|Γ(x) = x∗,Γ(y) = y∗}

w(fx∗→y∗) = avg{w(fx→y)|Γ(x) = x∗,Γ(y) = y∗}
Γ induces entity sets A∗ in G∗. It is worth noting that

the entity set of a node in G can be noisy due to imperfect
quality of the named entity recognition tool. In addition,
there can be entities mentioned in a news article that are
not relevant to the reported event. For example, the enti-
ties “BBC Radio, BBC Sport website”, extracted from the
news article “Champions League: Dortmund confident Mats
Hummels will be fit”, are not relevant to the event mentioned
in the article. Hence, the grouping function Γ induces the
entity set of x∗ as the shared entities of the fine nodes that
are mapped to x∗. Therefore, the main participants (enti-
ties) of an event are captured, whereas irrelevant entities are
avoided. Formally, A(x∗) =

T
A(xi), where Γ(xi) = x∗. Γ

induces types T ∗ in G∗ in the same way as entity sets, using
the intersection of type sets.

Figure 2 illustrates the MVAG coarsening.

4.3 Optimization Model
We formalize our problem using the Minimum Description

Length (MDL) principle [9], which can be paraphrased as
Induction by Compression. In a nutshell, it identifies the
best model M∗ in a family M of models M as the model
minimizing L(M) +L(D |M), where L(M) is the length, in
bits, of the description of M , and L(D |M) the length of the
data given M . This scheme ensures that M∗ neither overfits
nor is redundant—otherwise another M would minimize the
sum. We formally define our problem as follows.

Problem: In our setting, the family M of models is the
family of MVAG’s. For a given graph G our goal is to com-
pute the MDL optimal coarsened graph G∗

L(G,G∗) = L(G∗) + L(G | G∗)
is minimal. Hence, our algorithms aim to find a minimum
of this objective function.

To use MDL we have to define how we encode a model,
i.e., a coarsened graph G∗, and how we encode the input
graph G given G∗. For the latter the high-level idea is to
encode the error ofG∗ with respect toG, i.e., we encode their
exclusive OR, G∗⊕G, such that the receiver can reconstruct
the original graph without loss upon receiving G∗ and G∗⊕
G. We formalize these encodings as follows.

4.3.1 Encoding the coarse graph
To encode a coarse graph G∗, we encode all its properties:

its vertices V , their attributes A, the undirected edges E,



and the directed edges F ,

L(G∗) = L(V ∗) + L(A∗) + L(E∗) + L(F ∗)

The vertices. Encoding the vertices entails encoding their
number (upper bounded by |V |), and encoding per vertex
v ∈ V ∗ to how many and which nodes in V it maps. Hence,

L(V ∗) = log (|V |) + log
` |V |−1
|V ∗|−1

´
+
P

v∈V ∗ log
`|V |
|v|

´
The attributes. We encode the vertex attributes by

L(A∗) =
P

v∈V ∗

 
log (|A∗|) + log

` |A|
|atr(v)|

´
+

P
a∈atr(v)

log(rs)

!
where per coarse vertex v ∈ V ∗ we encode how many at-
tributes it has, which these are, and their weights. We en-
code weights at the resolution of the data, rs = 10#sign. digits ,
based on the number of significant digits of the data.
The undirected edges. For encoding the undirected edges
we first encode their number—using the upper bound ub =
|V ∗|(|V ∗| − 1)—then identify which edges exist, and then
encode their weights again using resolution rs. We have

L(E∗) = log (ub(E∗)) + log
`
ub(E∗)
|E∗|

´
+ |E∗| log(rs)

The directed edges. Encoding the (one-)directional edges
is almost identical; in addition we only need to transmit their
direction, for which we require one bit per edge. Thus,

L(F ∗) = log (ub(F ∗)) + log
`
ub(F∗)
|F∗|

´
+ |F ∗| log(rs) + |F ∗|

4.3.2 Encoding the data
To reconstruct the original graph, we need to transmit all

information needed to interpret the coarse graph, as well as
correct any errors it makes with regard to the input data.
That is, we need to correct all missing and superfluous edges,
attributes, and their weights. At a high level we have

L(G | G∗) = L(|V |) + L(A | A∗) + L(E | E∗) + L(F | F ∗)
As L(|V |) is constant for all models we can safely ignore it.
Attributes: Starting with the node attributes, we transmit
the error per node by encoding i) the number of missing and
superfluous attributes, ii) which attributes these are, and iii)
the correct weights. Thus, L(A|A∗) =P

v∈V

 
log(|A \A∗|) + log

` |A\A∗|
|atr(v)\A∗|

´
+

P
a∈atr(v)

log(rs)

!
where atr(v) is the set of attributes of v. We encode the at-
tribute weight errors using log(rs) bits each—if one is willing
to make assumptions on the error distribution other choices
are warranted.
Undirected edges: To reconstruct adjacency matrix E,
we transmit the edges in the (upper diagonal part) of the
error matrix Ec = E∗⊕E where ⊕ the exclusive OR. Thus,

L(E | E∗) = log (ub(E)) + log
`
ub(E)
|Ec|

´
+ |E| log(rs)

We encode the weight errors using log(rs) bits per edge in
E.
Directed edges: Last, let us write Fc = F ∗⊕F for the er-
ror matrix for the (uni-)directed edges. As above, we define
L(F | F ∗) analogue to L(E | E∗), but in addition need to
specify the direction of edges in F which are unmodelled by
F ∗ using one bit per edge. Hence, we have

L(F |F ∗) = log (|F \ F ∗|)+log (ub(F ))+log
`
ub(F )
|Fc|

´
+|F | log(rs)

Algorithm 1 Greedy(MVAG G)

1: Q← ∅
2: for all matched pairs (u, v) ∈ V with gain(u, v) > 0 do
3: Q.insert((u, v), gain(u, v))

4: while Q 6= ∅ do . Iterative coarsening phase
5: mergeSet ← Q.popHead()
6: for all overlapping pairs (n,m) ∈ Q with mergeSet do
7: mergeSet = mergeSet ∪{n,m}, remove (n,m) from Q

8: Merge(G,mergeSet), Update(G)
9: recompute(Q)

return G

In sum, we now have a principled and parameter-free
objective function for scoring the quality of coarse graphs
for a multiview attributed graph.

5. GRAPH COARSENING ALGORITHMS
For an input graph G, the set of all possible models M

is huge. Moreover, it does not exhibit any particular struc-
ture (e.g., sub-modularity) that we can exploit for efficient
pruning of the search space. Hence, we resort to heuristics.
The algorithms proceed in iterations; each iteration aims to
reduce the input MVAG by the following operations:

• Match: For a given node, the match operation finds a
suitable node(s) to merge into a coarser node. The MDL
based objective function matches the nodes that result
in the largest gain.

• Merge: This operation merges two or more nodes into
a coarser node.

• Update: Following a Merge step we update the MVAG
to reflect the new edges, edge weights, attributes, and
attribute weights that result from node merging.

Within this general framework, we developed two specific
algorithms: a greedy method and a randomized method,
which we explain next in turn.

5.1 The Greedy Method
A standard greedy method would have a Match opera-

tion that, for a given node, always chooses the node(s) for
which a Merge results in the largest gain of the objective
function. While our method follows this general principle,
it has a specific twist by performing a light-weight form of
look-ahead on the options for subsequent iterations. Specif-
ically, we determine in each iteration if the currently best
merge can be combined with other merges whose node pairs
overlap with the node pair of the best merge. Without this
look-ahead, the algorithm produces many tiny event groups.

The algorithm keeps track of the candidate node pairs
considered for merging, using a priority queue Q of node
pairs sorted in descending order of gain (line 2-3 in Algo-
rithm 1). The gain is calculated as the objective function’s
improvement caused by a potential node pair merge. The
algorithm first selects the pair at the head of the queue,
which decreases the objective function the most. Next, in
contrast to standard greedy techniques, our algorithm scans
the queue for other pairs that have one overlapping node
with the nodes of the head pair (line 6-7). If such a pair is
found, it is added to “mergeSet”. The algorithm then pro-
ceeds further and repeats considering further merges, until
it exhausts a bounded part of the queue.



Algorithm 2 Randomized(MVAG G, α, ε, T )

1: best ← ∅
2: while T > ε do
3: pick a random node u, and its match v
4: if gain(u, v) > 0 then
5: Merge(G, {u, v}), Update(G), best ← G

6: else if Random.probe < e
gain(u,v)

T then
7: Merge(G, {u, v}), Update(G)

8: T ← T ∗ α
return best

As an example, suppose the algorithm found <n1, n2>
as “bestPair”, and the next positions in the priority queue
are {<n2, n5>, <n4, n6>, <n3, n1>}. We scan Q and iden-
tify n5 and n3 for merging as their best matches are al-
ready included in “mergeSet”. The algorithm thus expands
the “mergeSet” into the set <n1, n2, n3, n5> (line 7) and
merges all these nodes in one step (line 8). The subse-
quent Update operation incrementally computes the neces-
sary changes of the MVAG and updates all data structures
for the graph. The gain values for nodes in Q are recom-
puted for the next level of coarsening. When there is no
further coarsening operation that would improve the objec-
tive function, the resulting MVAG is returned.

5.2 The Randomized Method
Our randomized method is based on the principle of sim-

ulated annealing [13]. This is an established framework for
stochastic optimization, traversing the search space (of pos-
sible Merge operations) in a randomized manner. In con-
trast to greedy methods, the method can accept, with a
certain probability, choices that lead to worsening the objec-
tive function. The probability of such choices is gradually
reduced, so the algorithm is guaranteed to converge.

Our algorithm, in each iteration, performs a randomized
coarsening step. It does so by picking a random node u and
then identifying its best Match v for a Merge operation
(line 3 in Algorithm 2). This is slightly different from stan-
dard methods where both nodes of a node pair would be
chosen uniformly at random. Our experiments have shown
that our choice leads to faster convergence. If the consid-
ered coarsening step decreases the objective function, it is
accepted and the energy of the system is updated (line 5).

Otherwise, it is accepted with a probability of e
gain(u,v)

T .
After each accepted coarsening step, the Update opera-

tor adjusts the graph. The algorithm maintains a so-called
“temperature value” T (a standard notion in simulated an-
nealing) which is gradually reduced after each iteration, by
geometric progression with factor α. Note that T is initially
chosen very high and α is chosen very close to 1, therefore,
the temperature cools down very slowly after each iteration.
The algorithm terminates when the temperature drops be-
low a specified threshold ε. Across all iterations, the best
solution is remembered, and this is the final output when
the algorithm terminates.

6. EXPERIMENT SET 1:
KNOWLEDGE BASE COVERAGE

Our overriding goal in this work is to populate a high
quality knowledge base with high coverage of named events
extracted from news. Thus, we performed a large-scale

# of events 24 348
# of sub-events 3 926
# of follow-up events 9 067
avg # of entities per event 18
# of distinct classes 453

Table 1: Statistics for extracted events.

computation in order to populate a knowledge base with
named events. We used the Greedy method to process
295 000 news articles that are crawled from the external
links of Wikipedia pages. These news articles are from a
highly heterogeneous set of newspapers and other online
news providers (e.g., http://aljazeera.net/,
http://www.independent.co.uk, http://www.irishtimes.com,
etc.). The Wikipedia pages themselves were not used.
Ranking event candidates: The set of extracted named
events exhibit mixed quality and are not quite what a near-
human-quality knowledge base would require. However, it
is easy to rank the event candidates based on the following
scoring model, and use thresholding for high precision.

We use the cumulative gain for a coarse node representing
an event in the output graph as a measure of quality. This
is defined as the total improvement of the objective func-
tion after the merge operations that involved intermediate
nodes that finally belong to the coarse node at hand. Thus,
the score for event E is S(E) =

P
qi∈E

gain(G, qi), where G is

the graph, qi is an intermediate node created by a merge
operation that contributes to final output node E .

The acceptance threshold for an event score is set to the
90th percentile of the score distribution for all extracted
events. This is a conservative choice, motivated by the re-
ported quality of 90 to 95% for knowledge bases like YAGO
[11]. Note that our task here is substantially harder than
that of the YAGO extractors, as the latter operate on Wiki-
pedia infoboxes. Thresholding may break chaining informa-
tion between some events. Thus, chaining is re-computed
by transitively connecting missing links. Each event is la-
beled by a “representative news headline”. The representa-
tive news article is chosen based on the centrality score in
the original MVAG.
Statistics: Our method computed 24 348 high-quality events
from the underlying 295 000 news articles. A good portion
of these events contain sub-events and follow-up events (i.e.,
events that appear on a chain). Table 1 shows other statis-
tics about the extracted events. The most densely populated
classes of events are: protest (8732), controversy (7514), con-
flict (4718), musical (1846), sport event (766), war (727), etc.
An event can be assigned to multiple classes.
Assessing the KB coverage: We show that the events
distilled by our methods yield much higher coverage than
traditional knowledge bases which solely tap into semistruc-
tured elements of Wikipedia (infoboxes, category names, ti-
tles, lists). We compared two knowledge bases on their in-

YAGO Event KB
[2012-1-1,2013-9-4] [2012-1-1,2013-9-4]

total # 624 6423
% year events 16% 48%
% month events 10% 36%

Table 2: Coverage of events in YAGO vs. Event KB.



Q: French military intervention in the Northern Mali conflict.

Event KB: France army in key Mali withdrawal

News Entities Classes Time

• India pledges $1 million to UN mission to Mali
• Gunfire breaks out as Tuareg rebels enter city
• France army in key Mali withdrawal . . .

French
Army, Mali,
Tuareg, UN

conflict [2013-01-11,

2013-05-25]

Q: Meteor explodes over the Russian city of Chelyabinsk.

Event KB: Russian Asteroid Strike

News Entities Classes Time

• Russian Asteroid Strike
• Exploding Meteorite Injures A Thousand People in Russia
• UN reviewing asteroid impact threat . . .

Russia,
Chelyabinsk

death, disas-
ter

[2013-02-15,

2013-02-17]

Table 3: Two sample Event KB events for given queries. YAGO has no results for these queries.

cluded events: YAGO [11], built from the 2013-09-04 dump
of Wiki-pedia, vs. Event KB, the knowledge base compiled
by our method as described above.

For comparing the two knowledge bases in their coverage
of events, we used the events section of Wikipedia’s year ar-
ticles as a form of ground truth. Specifically we used the
pages en.wikipedia.org/wiki/2012 and en.wikipedia.org

/wiki/2013, but excluded events after 2013-09-04, the date
of the Wikipedia dump for YAGO. In total, these articles
contain 51 itemized snippets, each of which briefly describes
a salient event. We also considered the monthly pages, e.g.,
en.wikipedia.org/wiki/January_2013, for the total relevant
time period, together providing 9811 events in the same tex-
tual format.

Note that these text items are not canonicalized events:
they mention an event but often do not point to an ex-
plicit Wikipedia article on the event, and in many cases
such an explicit article does not exist at all. For example,
the Wikipedia text for January 11, 2013 says: “The French
military begins a five-month intervention into the North-
ern Mali conflict, targeting the militant Islamist Ansar Dine
group.” However, the only href links to other Wikipedia ar-
ticles (i.e., entity markup) here are about the French army,
the Ansar Dine group, and the Northern Mali conflict in
general. The event of the French intervention itself does not
have a Wikipedia article.

For each of these textually described events in the year
pages, we manually inspected YAGO and Event KB as to
whether they cover the event as an explicit entity or not. For
the 9811 event descriptions in the month pages, we inspected
a random sample of 50.
Results: The coverage figures are shown in Table 2. For
both ground-truth sets (year and month pages of Wikipedia),
Event KB shows more than 3 times higher coverage. This
demonstrates the ability of our approach to populate a high-
quality knowledge base with emerging and long-tail events.

The total number of events that Event KB acquired for
the relevant time period is 10 times higher than what YAGO
could extract from semistructured elements in Wikipedia.
Table 3 shows two sample Event KB events, along with their
semantic annotations, entities, and time spans.

7. EXPERIMENT SET 2:
LABELING, GROUPING, CHAINING

7.1 Setup
In this section, we present experiments to evaluate the

output quality of the various components of our method-
ology, in comparison with different baselines. We do this
systematically by looking at our three main components sep-
arately: labeling, grouping, and chaining.

Test Data. We prepared two test datasets: news ar-
ticles from i) Wikinews and ii) news sources referenced in
Wikipedia articles. Note that Wikinews (en.wikinews.org)
is totally independent of Wikipedia. Moreover, we removed
all semi-structured elements from Wikinews articles to cre-
ate a plain text corpus. The Wikipedia-referenced news are
a highly heterogeneous set, from a variety of newspapers
and other online news providers. We, therefore, refer to this
dataset as WildNews.

For the Wikinews dataset, we picked articles by starting
from topic categories that denote named events. Such cat-
egories are identified by matching years in their titles, e.g.,
FIFA World Cup 2006, War in South Ossetia (2008), G8
Summit 2005, etc. In total, we extracted around 70 named
event categories from Wikinews, with a total of 800 articles.
Some named events are simple such as 2010 Papal UK tour
or Stanley Cup Playoffs 2007, whereas others are complex
and contain sub-events, e.g., 2010 Haiti earthquake or US
War on Terror.

For the WildNews dataset, we start with the collection
of Wikipedia articles listed in the Wikipedia Current Events
portal (http://en.wikipedia.org /wiki/Portal:Current_events).
All news items cited by these Wikipedia articles with ex-
ternal links are crawled and together constitute the news
corpus. This corpus has 800 news for 26 named events.

Ground Truth. The way we derived the news arti-
cles from named event categories already provides us with
ground truth regarding the grouping and chaining of articles.
However, the data does not come with semantic labels for
populating a knowledge base. To this end, we have randomly
chosen a subset of 3 news articles per named event, a total of
210 articles for the Wikinews data and a total of 78 articles
for the WildNews data. These samples were manually la-
beled with one or more semantic classes from WordNet tax-
onomy (which is integrated in the YAGO knowledge base).



For example, the news article Bomb blasts kill several in Iran
is labeled with WN_bombing, WN_death, WN_conflict.

Methods under Comparison.
1. Labeling. Our methodology that uses statistical

language models to find semantic labels of news articles is
compared with the tf · idf based cosine similarity.

2. Grouping. We compare our Greedy and Random-
ized methods (see Section 5) against several baselines: k-
means clustering, hierarchical clustering, METIS [12] and
the Storyline detection [21] method. All features (text, time,
entities, types) are fed into the following flat distance mea-
sure that is used for the baselines:
d(ni, nj) = α · dtext(ni, nj) + β · dtime(ni, nj) +
γ · dent(ni, nj) + θ · dtype(ni, nj)

The reported results in the experiments are obtained by
uniform weighting. We varied these parameters to study
their sensitivity. This led to small improvements (up to 5%
in precision) in some cases and small losses in other cases.
Hence, we only report results for the uniform setting.

a. k-means clustering is run over both datasets with
different k values. For each k value, the algorithm is run
10 times with different random centroid initializations. k-
means achieved the best results, when k is set to the real
number of the named events in the datasets. Thus, we set
k = 70 for the Wikinews, k = 26 for the WildNews dataset.

b. Hierarchical agglomerative clustering (HAC),
unlike flat clustering algorithms, can find clusters with differ-
ent levels of granularity. We tried different linkage criteria:
single-link (SLINK), complete link (CLINK), unweighted
pair group method average (UPGMA), and weighted pair
group method average (WPGMA). WPGMA achieved the
best results for our settings.

c. METIS [12] is a graph partitioning tool that first
coarsens a graph and then applies partitioning algorithms
to it. METIS takes k number of partitions as input. We
incrementally changed k to see how clustering performance
change. METIS can have the best result, similar to k-means,
when k is close to the number of real clusters. Thus, we set
k = 70 for the Wikinews, k = 26 for the WildNews dataset.

d. Storyline detection [21] is a method to find story
chains in a set of news articles returned by a query. Repre-
senting news articles as nodes of a graph, the method applies
two steps to compute chains: It first finds the minimum set
of dominating nodes of the graph. Second, it defines the
dominating node with the earliest time stamp as a root.
Other dominating nodes are combined by a directed Steiner
tree algorithm. The edge weights in the multiview graph
are induced via the flat distance measure mentioned above.
Note that Storyline detection is designed to return one story
chain at a time. We modified the method to apply it repeat-
edly for each dominating node. Thus, it can find multiple
chains in the test data without any querying.

3. Chaining. We compare the methods that can find
dependencies between news articles. Among the models we
introduced so far, Greedy, Randomized, and Storyline de-
tection can find temporal dependencies. Thus, these are the
only models used for chaining comparisons.

7.2 Quality Measures

7.2.1 Labeling
As the labels computed by tf · idf cosine similarity and

our LM-based method are ranked, we use the notion of pre-

cision@k to compare the k top-ranked labels against the
ground-truth set of labels: precision@k = (

P
j=1→k

rj)/k where

j is the position, and rj = 1, if the result at the jth position
is correct and rj = 0 otherwise.

We define recall@k analogously: recall@k = (
kP

j=1→k

rj)/n

where j is the position, and n is the number of ground-
truth labels. Although n is usually close to k, it can be
smaller than k for certain news articles that have only few
true labels. In this case, one may suspect that the models
can easily reach 100% recall. However, in practice, none of
the methods compared in this paper was able to reach 100%
recall for the top-5 labels.

7.2.2 Grouping
To compare different methods for grouping news articles

into events, we look at pairs of news articles. We have
ground-truth statements stating which articles belong to the
same group (i.e., named event) and which ones are in differ-
ent groups. Thus, we can compare the output of different
kinds of grouping algorithms against the ground truth. We
define precision and recall as follows.

Precision: the estimated probability of pairs (ni, nj) of
news articles being in the same ground-truth event given
that they are assigned to the same group.

Recall: the estimated probability of pairs (ni, nj) of news
articles being assigned to the same group given that they
come from the same ground-truth event.

Let GM and GT denote the groups for method M or
ground truth T , respectively. Then we compute (micro-
averaged) precision and recall as:

precision =
P

GM
|{(ni,nj)∈GM | ∃GT :(ni,nj)∈GT }|P

GM
|{(ni,nj)∈GM}|

recall =
P

GT
|{(ni,nj)∈GT | ∃GM :(ni,nj)∈GM}|P

GT
|{(ni,nj)∈GT }|

7.2.3 Chaining
For evaluating the quality of ordering events on the time-

line, we again consider pairs (ni, nj) of news articles, the
ordering of their corresponding groups by method M and
the ordering of their true events in the ground-truth data
T . We refer to these orderings as CM (chaining by M) and
CT (chaining in T ). So (ni, nj) ∈ CT means that there are
ground-truth groups GT , G

′
T such that ni ∈ GT , nj ∈ G′T

and GT is connected to G′T by a directed “happened-before”
edge. We compute precision and recall analogous to group-
ing. Instead of using GM and GT groups for method M
or ground truth T , we use CM (chaining by M) and CT

(chaining in T ) in the formulas.
For all three tasks – labeling, grouping, chaining – our very

primary goal is high precision as we aim to populate a high-
quality knowledge base. Nonetheless, recall is also important
for high coverage of events. The combined quality is usually
measured by the harmonic mean of precision and recall, the
F1 score: F1 = (2 ∗ precision ∗ recall)/(precision + recall).

7.3 Results

7.3.1 Labeling
We compared our method to the baseline of using tf · idf

based cosine similarity. Both methods mapped the 78 Wild-



Wikinews WildNews

LM Cosine LM Cosine

k prec. recall F1 prec. recall F1 prec. recall F1 prec. recall F1

1 .71 .28 .40 .56 .21 .31 .59 .16 .26 .32 .09 .14
3 .58 .62 .60 .47 .50 .49 .54 .45 .49 .28 .22 .25
5 .58 .72 .64 .44 .62 .51 .47 .61 .53 .24 .30 .27

Table 4: Precision, recall, and F1 scores at k, for labeling.

News and 210 Wikinews news articles, for which we had
ground-truth labels, to Wordnet semantic classes through
Wikipedia event categories (Section 3). The top-5 semantic
classes of each of the two methods are compared against the
ground-truth classes. Table 4 shows precision and recall for
different ranking depth k.

We see that our method substantially outperforms the
cosine-similarity baseline.

7.3.2 Grouping
We ran flat clustering (k-means), multi-level clustering

(METIS), hierarchical clustering (HAC), Storyline, Greedy,
and Randomized on the Wikinews and the WildNews datasets.
The final clusters produced by the methods are automati-
cally evaluated by comparing them to the ground truth as
explained in Section 7.2.

Although we gave k-means and METIS the “oracle” ben-
efit of choosing k to be exactly the number of true events
in the ground truth, they achieve inferior precision for both
datasets. k-means obtained 62% precision, METIS 59%,
and HAC 58% for the Wikinews dataset. For the WildNews
dataset, k-means obtained 68% precision, METIS 71%, and
HAC 50%. As precision is the crucial property for knowledge
base population, k-means, METIS, and HAC are not suit-
able methods to populate knowledge bases for our setting.

The results for the remaining methods are shown in Ta-
ble 5. Storyline prioritizes precision at the expense of poor
recall. Although Storyline achieves a good precision for the
WildNews dataset, it loses on F1 score due to low recall.
Our methods, especially Greedy, yield similarly high preci-
sion at much higher recall. This results in roughly doubling
the F1 scores of Storyline.

Wikinews WildNews

prec. recall F1 prec. recall F1

Storyline .79 .10 .18 .91 .15 .26
Greedy .80 .31 .45 .91 .38 .54
Randomized .79 .29 .42 .77 .26 .39

Table 5: Precision, recall, and F1 scores for grouping.

Wikinews WildNews

prec. recall F1 prec. recall F1

Storyline .94 .32 .47 .96 .29 .45
Greedy .96 .77 .85 .97 .67 .79
Randomized .93 .71 .81 .94 .44 .60

Table 6: Precision, recall, and F1 scores for chaining.

7.3.3 Chaining
We compare the methods that can find ordering depen-

dencies between news articles. This rules out METIS, k-
means, and HAC, and leaves us with the Storyline detection
method as our competitor. As Table 6 shows, all methods
achieve similar precision for chaining experiments for both
datasets. However, Greedy and Randomized methods attain
much higher F1 scores than Storyline.

7.3.4 Discussion
We have three main observations on our experiments:

1. The baselines METIS, k-means and HAC group news
articles in an overly aggressive manner, resulting in clusters
that unduly mix different events. Thus, they yield poor
precision values. The Storyline method, on the other hand,
favors pure clusters and is conservative in its chaining. This
leads to low recall. In contrast, Greedy and Randomized
methods exploit the rich features encoded in MVAG model
well and jointly infer groups and chains, which results in high
precision values and the best F1 scores for both datasets.

Considering that Randomized requires simulated anneal-
ing parameters as input, and those parameters may vary
based on the news corpus, Greedy is the most practical
parameter-free method with very good overall grouping and
chaining performance.
2. All methods except Randomized perform well on group-
ing for the WildNews dataset, which seems surprising. The
reason is that WildNews articles are longer than Wikinews
articles and contain more entities. The average number of
entities per article is 19 for Wikinews and 26 for WildNews.
This observation suggests that the semantic features like en-
tities in articles boost the grouping performance.
3. All methods perform better on the Wikinews dataset
on chaining. The reason is that WildNews articles span a
much shorter time period than Wikinews articles, and many
articles have overlapping time stamps, which degrades the
chaining performance. This observation implies that chain-
ing is more difficult when news articles have nearby or over-
lapping timestamps.

The data of our experimental studies is available on
http://www.mpi-inf.mpg.de/yago-naga/evin/.

8. RELATED WORK
Ontological event extraction: Knowledge bases such as
YAGO [1, 11], DBpedia [4], or freebase.com contain entities
of type event, fine-grained classes to which they belong, and
facts about them. However, the coverage is fairly limited.
The rule-based method by [14] has recently shown how to
increase the number of named events and temporal facts
that can be extracted from Wikipedia infoboxes, lists, article
titles, and category names. However, all these approaches
can capture a new event only after it has a sufficently rich
Wikipedia article (with infobox, categories, etc.).



Story mining from news: There is a large amount of work
on topic detection and story mining on news, e.g., [5, 18, 21,
23, 15, 6]. However, the events found by these systems are
not ontological events, for which we require canonical repre-
sentations and semantic typing, clean enough for populating
a knowledge base.
Graphs for events: Identifying events in news streams has
been addressed by modeling news articles as graphs of enti-
ties [3] or as graphs of keywords [2]. Both methods identify
dense clusters in graphs. However, an event here is merely
a set of temporally co-occurring entities and/or keywords.
Thus, events are implicitly represented; they are not canon-
icalized and cannot be used to populate a knowledge base.
General graph algorithms: Attributed graphs have been
used by [25, 19], for purposes unrelated to our topic. Graph
coarsening has been pursued by [12, 17] for plain graphs in
the context of graph-cut algorithms. Our setting is different
by being based on multi-view attributed graphs (MVAG’s).
We developed novel methods for coarsening with a loss func-
tion specifically designed for our problem of grouping and
chaining the nodes of an MVAG.
Graph summarization: Graphs can be summarized in
terms of motif distributions such as frequent triangles or
frequent subgraphs, or by showing aggregated views of a
graph. The latter is related to our coarsening method. [20]
presents the Snap-k operator for summarizing an attributed
graph in terms of k groups. The key differences to our setting
are that this work considers only graphs with one kind of
edges (as opposed to our notion of MVAG’s) and that the
user determines the number of groups. [16] addresses the
task of lossy graph compression by means of summarization
using the MDL principle. In contrast to our setting, this
work is limited to only plain graphs.
Mapping documents to Wikipedia categories: There
are numerous studies on using Wikipedia categories for clus-
tering documents, e.g., [10, 22, 8]. These methods exploit
the semantic relatedness of documents to Wikipedia con-
cepts and the link structure of Wikipedia categories. We use
statistical language models to map news articles to YAGO
classes, via specific Wikipedia categories for events.

9. CONCLUSION
The methods presented here fill an important gap in the

scope and freshness of knowledge bases. We tap into (the
latest) news articles for information about events, and dis-
till the extracted cues into informative events along with
temporal ordering. Our experiments demonstrated that our
methods yield high quality, compared to a variety of baseline
alternatives, and can indeed populate specific event classes
in a knowledge base with substantial added value. Use-cases
of this contribution include strengthening the entity-aware
functionality of search engines, and also using the addition-
ally acquired knowledge of events for smarter recommenda-
tions, e.g., when users browse social media, and for better
summarization. Finally, the events distilled by our methods
are themselves entities serving as background knowledge for
better acquiring more events and other knowledge from news.
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