
Mind the Gap: Large-Scale Frequent Sequence Mining

Iris Miliaraki Klaus Berberich Rainer Gemulla Spyros Zoupanos
{miliaraki, kberberi, rgemulla, zoupanos}@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbrücken, Germany

ABSTRACT
Frequent sequence mining is one of the fundamental building
blocks in data mining. While the problem has been exten-
sively studied, few of the available techniques are sufficiently
scalable to handle datasets with billions of sequences; such
large-scale datasets arise, for instance, in text mining and
session analysis. In this paper, we propose MG-FSM, a scal-
able algorithm for frequent sequence mining on MapReduce.
MG-FSM can handle so-called “gap constraints”, which can
be used to limit the output to a controlled set of frequent se-
quences. At its heart, MG-FSM partitions the input database
in a way that allows us to mine each partition independently
using any existing frequent sequence mining algorithm. We
introduce the notion of w-equivalency, which is a generaliza-
tion of the notion of a “projected database” used by many
frequent pattern mining algorithms. We also present a num-
ber of optimization techniques that minimize partition size,
and therefore computational and communication costs, while
still maintaining correctness. Our experimental study in the
context of text mining suggests that MG-FSM is significantly
more efficient and scalable than alternative approaches.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—
Data Mining

Keywords
data mining, frequent sequence mining, MapReduce

1. INTRODUCTION
Frequent sequence mining (FSM) is a fundamental com-

ponent in a number of important data mining tasks. In
text mining, for example, frequent sequences can be used
to construct statistical language models for machine trans-
lation [17], information retrieval [32], information extrac-
tion [26], or spam detection [14]. Word associations have
also been applied to relation extraction [20]. In Web usage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

mining and session analysis [24], frequent sequences describe
common behavior across users (e.g., frequent sequences of
page visits). In these and similar applications, instances of
FSM can get very large and may involve billions of sequences.
For example, Microsoft provides access to an n-gram collec-
tion based on hundreds of billions of web pages and Google
published a corpus of more than 1 billion n-grams. Similarly,
in web companies with millions of users, the amount of usage
data can be substantial. At such massive scales, distributed
and scalable FSM algorithms are essential.

Given a collection of input sequences of items, the goal of
FSM is to find all subsequences that “appear” in sufficiently
many input sequences. In text mining, for example, each
input sequence corresponds to a document (or a sentence)
and each item to a word in the document. The definition of
“appears” is application-dependent; e.g., the goal of n-gram
mining is to find frequent consecutive word sequences of
length n, whereas the goal of word association mining is to
find combinations of words that frequently appear in close
proximity (but not necessarily consecutively). As another
example, in session analysis, input sequences correspond
to user sessions and items to user actions (often with an
additional time stamp). Depending on the application, we
may be interested in sequences of either consecutive actions
or non-consecutive actions that are sufficiently close (e.g., few
actions in between or temporally close). This requirement of
closeness is addressed by gap-constrained frequent sequence
mining [23], in which FSM is parameterized with a maximum-
gap parameter γ. Informally, for a given input sequence, we
consider only subsequences that can be generated without
skipping more than γ consecutive items. We obtain n-gram
mining for γ = 0, word association mining for (say) γ = 5,
and unconstrained FSM [31] for γ = ∞. Temporal gaps—
such as “at most one minute” for session analysis—can also
be handled.

In this paper, we propose a scalable, distributed (i.e.,
shared nothing) FSM algorithm called MG-FSM. Although
scalable algorithms exist for n-gram mining [13, 3], MG-FSM
is the first distributed algorithm that supports general gap
constraints. MG-FSM targets MapReduce [8]—which consti-
tutes a natural environment for text mining and analysis of
user access logs—but is also amenable to other distributed
programming environments. At a high-level, MG-FSM care-
fully partitions and rewrites the set of input sequences in such
a way that each partition can be mined independently and in
parallel. Once partitions have been constructed, an arbitrary
gap-constrained FSM algorithm can be used to mine each
partition; no post-processing of results across partitions is
needed.

MG-FSM extends the notion of item-based partitioning,
which underlies a number of frequent pattern mining algo-
rithms, including FP-growth [12] as well as the distributed
algorithms of [5, 7] for frequent itemset mining, to gap-con-
strained frequent sequence mining. In more detail, we first
develop a basic partitioning scheme that ensures correctness
but allows for flexible partition construction. This flexibility
is captured in our notion of w-equivalency, which general-
izes the concept of a “projected database” used by many
FSM algorithms. We also propose a number of novel opti-
mization techniques that aim to reduce computational and
communication costs, including minimization (prunes entire
sequences), reduction (shortens long sequences), separation
(splits long sequences), aggregation (of repeated sequences),
and light-weight compression. Our experiments, in which we
mine databases with more than 1 billion sequences, suggest
that MG-FSM is multiple orders of magnitude faster than
baseline algorithms for general gap-constrained FSM and is
competitive to state-of-the-art algorithms for n-gram mining.

2. PRELIMINARIES

2.1 Problem Statement
A sequence database D = {S1, . . . , SD } is a multiset of

input sequences.1 A sequence is an ordered list of items
from some dictionary Σ = {w1, . . . , w|Σ| }. We write S =
s1s2 · · · s|S| to denote a sequence of length |S|, where si ∈ Σ

for 1 ≤ i ≤ |S|. Denote by Σ+ the set of all non-empty
sequences constructed with items from Σ. In what follows,
we will often use the symbol T to refer to an input sequence in
the database and symbol S to refer to an arbitrary sequence.

Denote by γ ≥ 0 a maximum-gap parameter. We say
that S is a γ-subsequence of T , denoted S ⊆γ T , when
S is a subsequence of T and there is a gap of at most γ
between consecutive items selected from T ; standard n-grams
correspond to 0-subsequences. Formally, S ⊆γ T if and only
if there exist indexes i1 < . . . < in such that (i) Sk = Tik
for 1 ≤ k ≤ n, and (ii) ik+1 − ik − 1 ≤ γ for 1 ≤ k < n. For
example, if T = abcd, S1 = acd and S2 = bc, then S1 ⊆1 T
(but S1 6⊆0 T) and S2 ⊆0 T .

The γ-support Supγ(S,D) of S in database D is given by
the multiset

Supγ(S,D) = {T ∈ D : S ⊆γ T } .

Denote by fγ(S,D) = |Supγ(S,D)| the frequency of sequence
S. Our measure of frequency corresponds to the notion of
document frequency in text mining, i.e., we count the number
of input sequences (documents) in which S occurs (as opposed
to the total number of occurrences of S). For σ > 0, we say
that sequence S is (σ, γ)-frequent if fγ(S,D) ≥ σ. The gap-
constrained frequent sequence mining problem considered in
this paper is as follows:

Given a support threshold σ ≥ 1, a maximum-
gap parameter γ ≥ 0, and a length threshold
λ ≥ 2, find the set Fσ,γ,λ(D) of all (σ, γ)-frequent
sequences in D of length at most λ. For each such
sequence, also compute its frequency fγ(S,D).

1We indicate both sets and multisets using { }; the appropri-
ate type is always clear from the context. The operators],
C, and \+ correspond to multiset union, multiset intersection,
and multiset difference.

For database D = { abcaaabc, abcbbabc, abcccabc }, we ob-
tain F3,0,2(D) = { a, b, c, ab, bc }, F3,1,2(D) = { a, b, c, ab, ac,
bc }, and F3,2,2(D) = { a, b, c, ab, ac, bc, ca }.

2.2 MapReduce
MapReduce, developed by Dean and Ghemawat [8] at

Google, is a popular framework for distributed data pro-
cessing on clusters of commodity hardware. It operates on
key-value pairs and allows programmers to express their
problem in terms of a map and a reduce function. Key-value
pairs emitted by the map function are partitioned by key,
sorted, and input into the reduce function. An additional
combine function can be used to pre-aggregate the output of
the map function and increase efficiency. The MapReduce
runtime takes care of execution and transparently handles
failures in the cluster. While originally proprietary, open-
source implementations of MapReduce, most notably Apache
Hadoop, are available and have gained wide-spread adoption.

2.3 Naïve Approach
A näıve approach to gap-constrained FSM in MapReduce

modifies WordCount, which determines how often every
word occurs in a document collection and is often used to
explain how MapReduce works, as follows. In the map
function, which is invoked on each input sequence, we emit
all distinct γ-subsequences of length at most λ that occur in
the input sequence. In the reduce function, we count how
often every subsequence S has occurred, thus determining
fγ(S,D), and emit it if frequent. The method is generally
inefficient and not scalable since it creates and communicates
large intermediate data: For example, if |S| = n and λ ≥ n,
the näıve approach emits per input sequence O(n2) key-value
pairs for γ = 0 and O(2n) key-value pairs for γ ≥ n.

3. THE MG-FSM ALGORITHM
The idea behind item-based partitioning is to create one

partition Pw for every σ-frequent item w ∈ Σ; we refer
to w as the pivot item of partition Pw. In the context of
frequent itemset mining, item-based partitioning is exploited
in the well-known FP-growth algorithm [12] as well as the
distributed frequent itemset miners of [5, 16]. In our setting
of frequent sequence mining, partition Pw is itself a sequence
database—also called projected database—and captures rele-
vant information about (some) frequent sequences containing
pivot w. We first describe the MG-FSM algorithm in general.
MG-FSM is based on the notion of w-equivalency, which
we introduce in Sec. 3.3. In particular, w-equivalency is
a necessary and sufficient condition for the correctness of
MG-FSM, which we establish in Sec. 3.4.

3.1 Algorithm Overview
MG-FSM is divided into a preprocessing phase, a par-

titioning phase, and a mining phase; all phases are fully
parallelized. In the preprocessing phase, we gather basic
statistics about the data. In the partitioning phase, we con-
struct w-equivalent partitions for all frequent items w in Σ.
Each of these partitions is mined independently and in par-
allel in the mining phase using an FSM algorithm of choice.
The final output is obtained by filtering the output of the
FSM algorithm locally at each partition. MG-FSM is given
as Alg. 1; the notation is described below and in Sec. 3.3.

Preprocessing. In the preprocessing phase, we compute
the frequency of each item w ∈ Σ and construct the set

Algorithm 1 The MG-FSM algorithm

Require: Sequence database D , σ, γ, λ, f-list Fσ,0,1(D)
1: Map(T):
2: for all distinct w ∈ T s.t. w ∈ Fσ,0,1(D) do
3: Construct a sequence database Pw(T) that is

(w, γ, λ)-equivalent to {T }
4: For each S ∈Pw(T), output (w, S)
5: end for
6:
7: Reduce(w,Pw):
8: Fσ,γ,λ(Pw)← FSMσ,γ,λ(Pw)
9: for all S ∈ Fσ,γ,λ(Pw) do

10: if p(S) = w and S 6= w then
11: Output (S, fγ(S,Pw))
12: end if
13: end for

Fσ,0,1(D) of frequent items, commonly called f-list. This can
be done efficiently in a single MapReduce job (by running a
version of WordCount that ignores repeated occurrences
of items within an input sequence). At this point, we can
already output the set of frequent sequences of length 1; we
subsequently focus on sequences of length 2 and above.

In MG-FSM, we use the f-list to establish a total order <
on Σ: Set w < w′ if f0(w,D) > f0(w′,D); ties are broken
arbitrarily. Thus “small” items are highly frequent, whereas
“large” items occur rarely. Write S ≤ w if w′ ≤ w for all
w′ ∈ S and denote by Σ+

≤w =
{
S ∈ Σ+ : w ∈ S, S ≤ w

}
the

set of all sequences that contain w but no items larger than
w. Finally, denote by p(S) = minw∈S(S ≤ w) the pivot
item of sequence S, i.e., the largest item in S. Note that
p(S) = w ⇐⇒ w ∈ S ∧ S ≤ w ⇐⇒ S ∈ Σ+

≤w. For example,

when S = abc, then S ≤ c and p(S) = c; here, as well as in
all subsequent examples, we assume order a < b < c <

Partitioning phase (map). The partitioning and min-
ing phases of MG-FSM are performed in a single MapReduce
job. We construct partitions Pw in the map phase: For
each distinct item w in each input sequence T ∈ D , we com-
pute a small sequence database Pw(T) and output each of
its sequences with reduce key w. We require Pw(T) to be
“(w, γ, λ)-equivalent” to T , see Sec. 3.3. For now, assume that
Pw(T) = {T }; a key contribution of this paper lies in the
refined construction of Pw(T).

Mining phase (reduce). The input to the mining phase,
which is run in the reduce step, is given by

Pw =
⊎

T∈D,w∈T

Pw(T),

which is automatically constructed by the MapReduce frame-
work. We run an arbitrary FSM algorithm with parameters
σ, γ, and λ on Pw—denoted FSMσ,γ,λ(Pw) in Alg. 1—to
obtain the frequent sequences Fσ,γ,λ(Pw) as well as their fre-
quencies. Since every frequent sequence may be generated at
multiple partitions, we filter the output of the FSM algorithm
in order to produce each frequent sequence exactly once. In
particular, we output sequence S at partition Pp(S), i.e., at
the partition corresponding to its largest item. Observe that
with our choice of Pw(T) = {T }, fγ(S,Pw) = fγ(S,D) for
all sequences S such that w ∈ S, so that MG-FSM produces
the correct result.

MG-FSM is reminiscent of the distributed frequent item-
set mining algorithms of [5, 16]; the key difference lies in

partition construction (line 3 of Alg. 1), i.e., in our notion of
w-equivalency.

3.2 Example
Consider the database

Dex = { acb, dacbd, dacbddbca, bd, bcaddbd, addcd } (1)

and pivot c. Under our running assumption, we set Pc(T) =
{T } if c ∈ T and Pc(T) = ∅ otherwise. We thus obtain

Pc = { acb, dacbd, dacbddbca, bcaddbd, addcd } . (2)

With such a partitioning, Pc is large so that there is sub-
stantial communication cost. Moreover, the FSM algorithm
run on Pc in the mining phase produces a large number
of sequences that do not pass the subsequent filter. For
example, F1,1,3(Pc) contains sequences da, dab, add and so
on, all of which are filtered out (and, in fact, also produced
at partition Pd). Such redundant computation is wasteful
in terms of computational costs. In what follows, we intro-
duce the concept of w-equivalency, which will allow us to
significantly reduce both communication and computational
costs.

3.3 w-Equivalency
As mentioned above, w-equivalency is a necessary and suffi-

cient condition for the correctness of MG-FSM; the flexibility
implied by w-equivalency forms the basis of our partition
construction algorithms of Sec. 4.

Say that a sequence S is a pivot sequence w.r.t. w ∈ Σ if
p(S) = w and 2 ≤ |S| ≤ λ. Denote by

Gw,γ,λ(T) = [F1,γ,λ({T }) ∩ Σ+
≤w] \ {w }

the set of pivot sequences that occur in T , i.e., are γ-sub-
sequences of T . If S ∈ Gw,γ,λ(T), we say that T (w, γ, λ)-
generates (or simply w-generates) S. For example,

Gc,1,2(acbfdeacfc) = { ac, cb, cc } .

Recall that our choice of < is based on the f-list, which ulti-
mately aims to reduce variance in partition sizes: Partitions
corresponding to highly frequent items are affected by many
input sequences, but each input sequence generates few pivot
sequences (e.g., a does not generate any pivot sequence in the
previous example). In contrast, partitions corresponding to
less frequent pivot items are affected by few input sequences,
but each input sequence generates many pivot sequences
(e.g., f).

We also extend the above definition to sequence databases
as follows:

Gw,γ,λ(D) =
⊎
T∈D

Gw,γ,λ(T). (3)

Note that Gw,γ,λ(T) is a set, whereas Gw,γ,λ(D) is a multiset.
This difference is a consequence of our use of document
frequency, i.e., we generate each subsequence at most once
per input sequence but potentially many times per sequence
database. We are now ready to define w-equivalency.

Definition 1. Two sequence databases D and Pw are
(w, γ, λ)-equivalent (or simply w-equivalent) if and only if

Gw,γ,λ(D) = Gw,γ,λ(Pw).

Both databases thus generate the same (multiset of) pivot
sequences.

Continuing the example of Sec. 3.2, observe that Pc as
given in Eq. (2) is (c, 1, 3)-equivalent to D (see the discussion
at the end of this section). However, so is partition

P ′c = {acb, acb, acb, bca, bca}, (4)

which is significantly smaller and contains many repeated
sequences. In Sec. 4, we present a number of rewriting
techniques that ultimately produce P ′c as given above.

The following lemma establishes that a w-equivalent data-
base retains the frequency (w.r.t. γ) of pivot sequences; this
property is exploited by our MG-FSM algorithm.

Lemma 1. If D and Pw are (w, γ, λ)-equivalent, then

fγ(S,Pw) = fγ(S,D)

for all S ∈ Σ+
w such that 2 ≤ |S| ≤ λ.

Proof. Denote by f(T,A) the frequency of T in multiset
A . Note that f counts input sequences, whereas fγ counts
γ-subsequences. Pick an arbitrary pivot sequence S, i.e.,
p(S) = w and 2 ≤ |S| ≤ λ. Since Pw is (w, γ, λ)-equivalent
to D , we have

Gw,γ,λ(Pw) = Gw,γ,λ(D)

=⇒ f(S,Gw,γ,λ(Pw)) = f(S,Gw,γ,λ(D))

⇐⇒ |{T ∈Pw : S ∈ Gw,γ,λ(T) }|
= |{T ∈ D : S ∈ Gw,γ,λ(T) }|

⇐⇒ |{T ∈Pw : S ⊆γ T }| = |{T ∈ D : S ⊆γ T }|
⇐⇒ fγ(S,Pw) = fγ(S,D),

where applied the definition of Gw,γ,λ(D) and the fact that
S ⊆γ T if and only if S ∈ Gw,γ,λ(T) for our choice of S.

Observe that the frequency fγ(S,Pw) of any non-pivot
sequence S does not affect w-equivalency and can thus be
arbitrary and, in particular, larger than fγ(S,D). As we will
see, this gives us more flexibility for constructing partitions
while still maintaining correctness. Also note that a partition
can be w-equivalent to D for more than one item w. The
perhaps simplest, non-trivial partitioning that is w-equivalent
to D is given by Pw = {T ∈ D : w ∈ T }, which corresponds
to the partitioning used in the beginning of this section. It
is easy to see that there is an infinite number of sequence
databases Pw such that Pw is (w, γ, λ)-equivalent to D .
All these databases agree on the multiset Gw,γ,λ(Pw) of
generated pivot sequences.

3.4 Correctness of MG-FSM
The following theorem establishes the correctness of MG-

FSM.

Theorem 1. MG-FSM outputs each frequent sequence
S ∈ Fσ,γ,λ(D) exactly once and with frequency fγ(S,D).
No other sequences are output.

Proof. We first show that if MG-FSM outputs a sequence
S, it does so exactly once. If |S| = 1, S is output in the
preprocessing phase but not in the mining phase (due to
line 10 of Alg. 1). If |S| > 1, S is output at partition Pp(S)

in the mining phase (passes line 10) but at no other partitions
(does not pass line 10).

Now fix some S ∈ Fσ,γ,λ(D). We show that MG-FSM
outputs S with correct frequency. If |S| = 1, then S occurs
in the f-list and is output with correct frequency in the

preprocessing phase. Assume |S| > 1 and set w = p(S). We
claim that S is output with correct frequency at partition
Pw during the reduce phase of Alg. 1. First, observe that
Pw is w-equivalent to D since

Gw,γ,λ(Pw) =
⊎
T∈D

Gw,γ,λ(Pw(T)) =
⊎

T∈D,w∈T

Gw,γ,λ(T)

=
⊎
T∈D

Gw,γ,λ(T) = Gw,γ,λ(D).

Here the first equality follows from Eq. (3) and line 4 of
Alg. 1, the second equality from the definition of w-equiva-
lency and line 3, and the third equality from the fact that
Gw,γ,λ(T) = ∅ if w /∈ T . From Lemma 1, we immediately ob-
tain fγ(S,Pw) = fγ(S,D). Since therefore S ∈ Fσ,γ,λ(Pw),
S is found by the FSM algorithm run in line 8 of Alg. 1 and
the assertion follows.

Now fix some S /∈ Fσ,γ,λ(D). We show that MG-FSM does
not output S. If |S| = 1, then S = w and fγ(w) < σ so that S
is neither output in the preprocessing phase (not σ-frequent)
nor in the mining phase (filtered out in line 10). If |S| > λ,
we also do not output S since it is too long to be produced
by FSMσ,γ,λ in line 8 of Alg. 1. Finally, if 2 ≤ |S| ≤ λ,
then S could potentially be output at partition Pw, where
w = p(S). However, by the arguments above, we have
fγ(S,Pw) = fγ(S,D) < σ, so that S /∈ FSMσ,γ,λ(Pw).

4. PARTITION CONSTRUCTION
Recall that MG-FSM rewrites each input sequence T into

a small sequence database Pw(T) for each w ∈ T . We have
shown that MG-FSM produces correct results if Pw(T) is
w-equivalent to T , i.e., Gw,γ,λ(T) = Gw,γ,λ(Pw(T)). In this
section, we propose rewriting methods that aim to minimize
the overall size of Pw(T). In fact, the smaller Pw(T), the
less data needs to be communicated between the map and
reduce phases of MG-FSM, and the less work needs to be
performed by the FSM algorithm in the mining phase.

To see the need for rewriting, assume that we simply set
Pw(T) = {T } as before. Such an approach is impractical
for a number of reasons. First, input sequence T is replicated
to d partitions, where d corresponds to the number of dis-
tinct items in T ; this is wasteful in terms of communication
cost. Second, every frequent sequence S ∈ Fσ,γ,λ(D) will be
computed multiple times: If S contains d distinct items, it is
first computed by the FSM algorithm at each of the d corre-
sponding partitions but then output at partition Pp(S) only;
this is wasteful in terms of computational costs. Finally, the
choice of Pw(T) = {T } leads to highly imbalanced partition
sizes: Partitions corresponding to frequent items are large
(since these items occur in many input sequences), whereas
partitions corresponding to less frequent items will be smaller
(since these items occur in less input sequences).

To get some insight into potential rewrites, consider input
sequence T = cbdbc. Each of the following sequence databases
is (c, 0, 2)-equivalent to T : P1 = { cbdbc }, P2 = { cbbc },
P3 = { cbc }, and P4 = { cb, bc }. Note that in P4, the
frequencies of both b and c increased by one; our notion of
w-equivalency allows for such cases. It is not obvious which
of these databases is best overall. On the one hand, P3

appears to be preferable to P1 and P2 since it contains less
items. On the other hand, the maximum sequence length
P4 is smaller than the one of P3 (2 vs. 3).

In what follows, we propose a number of properties that are
useful in partition construction: minimality, irreducibility,
and inseparability. Since it is computationally expensive
to satisfy all of these properties, we give efficient rewriting
algorithms that satisfy weaker, practical versions.

4.1 Minimality
In this and subsequent sections, we assume that we are

given an input sequence T and aim to produce a w-equiva-
lent sequence database Pw(T). Unless otherwise stated, our
running assumption is that Pw(T) is w-equivalent to T .

Minimality, as defined below, ensures that Pw(T) contains
no irrelevant sequences, i.e., sequences that do not generate
a pivot sequence.

Definition 2 (Minimality).
A sequence database Pw(T) is (w, γ, λ)-minimal if

Gw,γ,λ(S) 6= ∅ for all S ∈Pw(T).

Clearly, any sequence S ∈Pw(T) for which Gw,γ,λ(S) = ∅
does not contribute to w-equivalency; we can thus safely
prune such irrelevant sequences. Minimality also allows us to
prune entire input sequences, even if they contain the pivot.
Consider for example input sequence T = addcd with pivot
c. For γ = 1 (and any λ ≥ 2), T does not generate any pivot
sequences so that we can set Pc(T) = ∅. Note that, for
this reason, the choice of Pw(T) = {T } does not guarantee
minimality. For any γ > 1, T does generate pivot sequence
ac so that Pc(T) becomes non-empty.

In general, we prune sequences that either do not contain
the pivot or in which each occurrence of a pivot is surrounded
by sufficiently many irrelevant items, i.e., items larger than
the pivot. In particular, Gw,λ,γ(T) 6= ∅ if and only if there is
at least one occurrence of some item w′ ≤ w within distance
γ + 1 of an occurrence of pivot w. Length parameter λ does
not influence minimality. If a sequence is irrelevant for some
choice of γ, it is also irrelevant for all γ′ < γ; the opposite
does not hold in general. Thus minimality pruning is most
effective when γ is small.

4.2 Irreducibility
Irreducibility is one of the main concepts employed by

MG-FSM. We say that a sequence is irreducible if there is
no shorter way to write it.

Definition 3 (Irreducibility).
A sequence S is (w, γ, λ)-irreducible if there exists no se-
quence S′ with length |S′| < |S| such that

Gw,γ,λ(S) = Gw,γ,λ(S′).

If such a sequence S′ exists, we say that S reduces to S′.
Moreover, we say that Pw(T) is irreducible if all sequences
S ∈ Pw(T) are irreducible. Consider for example the se-
quences S = acdeb and S′ = acb and pivot c. Here S′ is
obtained from S by removing all irrelevant items, i.e., all
items larger than the pivot. Then S′ is a (c, 2, 2)-reduction
of S; it is not, however, a (c, 1, 2)-reduction of S. This is
because cb ∈ Gc,1,2(S′) but cb /∈ Gc,1,2(S). Thus, perhaps
contrary to expectation, we cannot simply remove all irrel-
evant items to obtain a reduced sequence: Whether or not
an irrelevant item can be dropped depends on the particular
choice of γ and λ. Note that the shortest (c, 1, 2)-reduction
of S is given by ac.

We can reduce sequences in more sophisticated ways than
by simply removing irrelevant items. For example, S = cbac
can be (c, 0, 2)-reduced to acb, but it cannot be (c, 0, 2)-
reduced to any sequence S′ ⊂∞ S. Thus reduction can be
non-monotonic, i.e., may require reordering of items. As
an additional example, consider the sequence S = acadac,
which (c, 0, 2)-generates sequence ac twice. Since repeated
generations do not affect w-equivalency, we can reduce S to
aca. Both detection of non-monotonic reductions and (ex-
haustive) detection of repeatedly generated pivot sequences
appear computationally challenging. Since we perform se-
quence reduction for every input sequence, we need it to
be extremely efficient. We thus make use of a weaker form
of irreducibility, which does not consider such sophisticated
rewrites.

To avoid confusion with repeated items, we explain our
reduction techniques using indexes instead of items. Let
T = s1 · · · sl and consider pivot w. We say that index i is
w-relevant if si is w-relevant, i.e., si ≤ w; otherwise index i is
w-irrelevant. In sequence abddc, for example, indexes 3 and
4 are c-irrelevant. Since irrelevant indexes do not contribute
to a pivot sequence, it suffices to keep track of the fact that
an index i is irrelevant, i.e., we do not need to retain value si.
We thus replace all items at irrelevant indexes by a special
blank symbol, denoted “ ”; in what follows, we assume that
w < for all w ∈ Σ. Using blanks, sequence abddc is written
as ab c (for pivot c). As discussed in Sec. 5, our use of a
blank symbol is helpful in an implementation of MG-FSM
since it enables effective compression of irrelevant items (e.g.,
abddc can be written as ab 2c).

In what follows, we describe a number of reductions that
reduce T by removing items or blanks (while still maintain-
ing correctness). Our first reduction, termed unreachability
reduction, removes unreachable items, i.e., items that are “far
away” from any pivot. Fix an input sequence T = s1 · · · sl
and pick any index 1 ≤ i ≤ |T |. To determine whether
index i is unreachable, we consider the “distance” of i to its
surrounding pivots. Suppose that there is a pivot at an index
i′ < i, i.e., si′ = w, and denote by iprev the largest such index.
Informally, the left distance lw,γ,λ(i | T) of index i is given
by the smallest number of items that we need to “step onto”
when moving from iprev to i via (1) relevant items and (2) by
skipping at most γ items in each step. If no such path exists
or if its length is larger than λ, we set lw,γ,λ(i | T) = ∞.
Similarly, we define the right distance rw,γ,λ(i | T) of index
i as the distance to the closest pivot to the right of index
i. A formal definition of left and right distances is given in
App. A. For example, we obtain the following left and right
distances for pivot c, γ = 1, and λ = 4:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
si c a b a b a c a
lc,1,4 1 2 (2) 3 4 4 1 (2) (2)
rc,1,4 1 4 4 3 (3) 2 (2) 1

Here blank entries indicate infinite distance and entries in
parentheses indicate irrelevant items (which cannot be “step-
ped onto”). For example, the closest pivot to the left of index
5 occurs at index 1. We can reach index 5 from index 1 via
the items at the four indexes 1 · 2 · 4 · 5 (but not via 1 · 3 · 5
because index 3 is irrelevant); thus the left distance of index
5 is four.

Definition 4 (Reachability). Let T = s1 · · · sl. In-
dex i is (w, γ, λ)-reachable if

min { lw,γ,λ(i | T), rw,γ,λ(i | T) } ≤ λ.

Continuing the example above, indexes 1–12 are (c, 1, 4)-
reachable, indexes 1–4 and 6–12 are (c, 1, 3)-reachable, and
indexes 1–3 and 8–12 are (c, 1, 2)-reachable.

Lemma 2 (Unreachability reduction).
Let T = s1 · · · sl and denote by I the set of all (w, γ, λ)-
unreachable indexes in T . Then

Gw,γ,λ(T) = Gw,γ,λ(T−I),

where T−I is obtained by removing the items at indexes I
from T .

A proof of this lemma is given in App. A. The lemma asserts
that, in fact, we can simply remove all unreachable indexes
at once. In our example, we obtain ca a c for λ = 2
(removing indexes 4–7, 13, and 14) and ca bb a c for
λ = 3 (removing indexes 5, 13, and 14).

The computational cost of our unreachability reduction
mainly depends on the time required to compute left and
right distances. This can be done efficiently as follows: We
compute the left distances in a forward scan of T , and right
distances in a subsequent backward scan. During each scan,
we keep track of the position i and distance d of the most
recently processed relevant item; we also keep track of the
index i′ of the most recently processed relevant item at
distance k − 1. This information is sufficient to compute the
distance of the currently processed item. With this approach,
computation of distances takes time linear in |T |.

Reconsider the sequence T = ca a c from above. Clear-
ly, the two blanks at the end do not carry useful information
so that we would like to reduce T to ca a c. The following
lemma asserts that we can do so, i.e., we can drop prefixes
and suffixes of irrelevant items.

Lemma 3 (Prefix/suffix reduction).

Gw,γ,λ(l1T l2) = Gw,γ,λ(T).

Prefix/suffix reduction is particularly effective in conjunction
with unreachability reduction. In fact, irrelevant items that
are not part of a prefix or suffix in T can become so after
removing unreachable items. In our ongoing example, this is
the case for the irrelevant items at indexes 11 and 12, which
became part of the suffix only after the removal of indexes
13 and 14. In fact, if T contains exactly one pivot, and T ′ is
obtained from T by an unreachability reduction followed by
a prefix/suffix reduction, one can show that |T ′| ≤ 2(γ + 1)λ,
a quantity that is independent of |T |.

The following lemma asserts that we can shrink long se-
quences of blanks.

Lemma 4 (Blank reduction). For k > γ + 1,

Gw,γ,λ(T1
kT2) = Gw,γ,λ(T1

γ+1T2).

Thus every sequence of k > γ + 1 blanks can be replaced
by exactly γ + 1 blanks. Note that blank reduction can be
effective only when T contains multiple occurrences of the
pivot (since otherwise T does not contain more than γ blanks
after our unreachability and prefix/suffix reductions).

The above reductions are not complete, i.e., they do not
necessarily produce irreducible sequences. For example, se-
quence ca a c is (c, 1, 2)-reducible to ca ac (and, in fact,
to aca); this reduction is not covered by our techniques. In
our experiments, however, we found that the simple reduc-
tion techniques described above already lead to a significant
reduction of partition sizes.

4.3 Aggregation
Reconsider the example database Dex given in Eq. (1). If

we apply all the reduction techniques above, we obtain

P ′′c = { acb, acb, acb bca, bca }

for pivot c, σ = 1, γ = 1, and λ = 3. Observe that sequence
acb is repeated in P ′′c , even though Dex does not contain
any repeated sequences. To reduce communication cost, we
can aggregate such repeated sequences and represent them
using (sequence, frequency)-pairs. Thus, we obtain

P ′′′c = { (acb, 2), (acb bca, 1), (bca, 1) } .

Compression of repeated sequences can be performed effi-
ciently by exploiting the combine functionality of MapReduce.
When the FSM algorithm run in the mining phase is able
to exploit frequency information, computational costs and
memory consumption may also reduce; see Sec. 5 for details.

4.4 Inseparability
Recall the set P ′′c above. We show below that sequence

acb bca ∈ P ′′c can be “split” into two sequences acb and
bca without sacrificing (c, 1, 3)-equivalency to Dex. Such se-
quence splitting, which we refer to as separation, is meant
to increase the effectiveness of aggregation. In fact, if we
perform the split above and aggregate, we obtain partition
{ (acb, 3), (bca, 2) }, which is compact and constitutes an ag-
gregated version of the partition of Eq. (4) that we promised
to obtain in Sec. 3.3.

Definition 5 (Separability). An input sequence T is
weakly (w, γ, λ)-separable if there exist sequences T1 and T2

such that Gw,γ,λ(T) = Gw,γ,λ({T1, T2 }), Gw,γ,λ(T1) 6= ∅,
and Gw,γ,λ(T2) 6= ∅; otherwise it is weakly (w, γ, λ)-insepa-
rable. T is strongly (w, γ, λ)-separable (or simply (w, γ, λ)-
separable) if additionally |T1|+ |T2| ≤ |T |.

Note that separation is possible only because we allow for
an increase of frequencies on non-pivot sequences in Pw(T).
If a sequence is w-separable, we can safely write it in terms
of multiple shorter sequences, which we refer to as splits.
As indicated above, both strong and weak separation im-
prove the effectiveness of aggregation, and strong separation
additionally reduces the overall partition size.

Revisiting S = acb bca, we observe that S is (c, 1, 3)-
separable into splits { acb, bca }. In general, one can test for
weak separability as follows: Construct the set Gw,γ,λ(S)
and create a graph (V,E), where V = Gw,γ,λ(S) and edge
(S1, S2) ∈ E if there exists an item w′ ∈ Σ and a sequence
S′ of form ww′ or w′w such that S′ ⊆0 S1 and S′ ⊆0 S2.
If the resulting graph is connected, S is not (even weakly)
(w, γ, λ)-separable. Intuitively, this is because any input
sequence that generates Si, i ∈ { 1, 2 }, will also generate S′.
Since S′ is a pivot sequence, however, we must not generate
it in more than one split, which implies that S1 and S2

must be generated by the same split. In our example, we
have Gc,1,3(S) = { ac, acb, cb, bc, bca, ca }; the corresponding

graph has two connected components so that S is (c, 1, 3)-
separable. As a final remark, one can show that any sequence
S can be separated into k splits, where k is the number of
connected components in the graph corresponding to the
pivot sequences generated by S.

As with reduction, there are quite sophisticated cases of
separable sequences. As a pathological example, it is possible
that an irreducible sequence is weakly separable only into
irreducible sequences of larger length. Consider, for example,
sequence T = abc, pivot c, γ = 1, and λ = 3. T is irreducible
and can be separated into splits { ac, a bc }, in which each
sequence is again irreducible. Separations such as this one
appear counterproductive. Moreover, the weak separation
detection method outlined above is too expensive in practice
since it generates Gw,γ,λ(S). In what follows, we present a
simple separation technique, called blank separation, that
is efficient and handles cases such as sequence acb bca
discussed above.

Assume S is of form S1
k1S2

k1 · · · kn−1Sn, where ki > γ
for 1 ≤ k < n, i.e., consists of subsequences separated by
sufficiently many blanks. Our blank separation technique
first breaks up S into the set B(S) = {S1, . . . , Sn }; irrele-
vant subsequences (i.e., subsequences that do not generate
a pivot sequence) are not included into B(S). For example,
B(acb bca) = { acb, bca } for γ = 1. Since the Si are sepa-
rated by at least γ + 1 gaps in S, every pivot sequence in S
is generated by one or more of the Si (i.e., it does not span
multiple Si’s). Thus D(Gw,γ,λ(B(S))) = Gw,γ,λ(S), where
D(A) denotes the set of distinct sequences in multiset A. We
now consider the Si as potential splits and proceed as above:
We first construct a graph G = (V,E), where V = D(B(S))
and (Si, Sj) ∈ E, i 6= j, if Si and Sj generate a joint pivot
sequence.2 Denote by B1, . . . , Bk the connected components
of G. We output a single sequence S′i for component Bi
by stitching the subsequences in Bi with sufficiently many
blanks:

S′i = Bi,1
γ+1Bi,2

γ+1 · · · γ+1Bi,|Bi|,

where Bi,j refers to the j-th sequence in Bi. In our ongo-
ing example, we have B1 = { acb }, B2 = { bca } and thus
S′1 = acb and S′2 = bca. As another example, consider the
sequence bcb bca ac bca c for γ = 0 and λ = 3. Then
B1 = { bcb, bca } and B2 = { ac }, and thus S′1 = { bcb bca }
and S′2 = { ac }. Thus blank separation is able to detect
(to some extent) repeated subsequences as well as irrelevant
subsequences.

In combination with our reduction techniques, blank sepa-
ration is only effective if S contains more than one occurrence
of a pivot. This is because our reduction techniques ensure
that otherwise S does not contain more than γ consecutive
blanks. On datasets in which items are rarely repeated, blank
separation is therefore not effective. For example, we found
that in our experiments on text data (where each sequence
corresponded to a single sentence), the overall effect of blank
separation was marginal.

4.5 Summary
To summarize, we obtain Pw(T) from input sequence T

as follows. We first check whether T is relevant for pivot
w using the minimality test described in Sec. 4.1. If not,
we set Pw(T) = ∅. Otherwise, we run a backward scan

2This can be tested efficiently by considering only the left
and right (γ+ 1)-neighborhood of each occurrence of a pivot.

of T to obtain the right distances of all indexes. We then
perform a forward scan of T in which we simultaneously
(1) compute the left distances, (2) perform unreachability
reduction, (3) replace irrelevant items by blanks, (4) perform
prefix/suffix and blank reduction, and (5) break up the
sequence into subsequences separated by γ + 1 gaps. These
subsequences are then fed into our blank separation method,
which ultimately outputs Pw(T).

5. IMPLEMENTATION
In this section, we give some guidance into how to imple-

ment MG-FSM efficiently. The source code of our implemen-
tation is available at [19].

Compression. Careful compression of all intermediate se-
quences significantly boosted performance in our experiments.
In particular, we assign an integer item identifier to each
item and represent sequences compactly as arrays of item
identifiers. We compress each such array using variable-byte
encoding [29]. To make most effective use of this technique,
we order item identifiers by descending item frequency (as
obtained from the f-list). Moreover, we replace irrelevant
items by blanks (identifier −1) and use a form of run-length
encoding [29] to represent consecutive sequences of blanks
(e.g., by −2).
Grouping partitions. Instead of creating a single partition
for each distinct pivot, we greedily combine multiple pivots
into a single partition such that each partition contains ≈ m
sequences or more (e.g., m = 10 000). Grouping is performed
by scanning the f-list in descending order of frequency and
combining items until their aggregate frequency exceeds m.
Aggregation. To implement aggregation (Sec. 4), we make
use of both the combine function and the secondary sort
facility of Hadoop. Recall Alg. 1, in which we output pairs
of form (w,S), where w is a pivot and S is a sequence. In
our actual implementation, we output (sequence, frequency)-
pairs, i.e., pairs of form (w · S, 1) instead. We customize
the partitioning function of MapReduce to ensure that w
is used as partitioning key as before. This representation
allows us to use the combine function to aggregate multiple
occurrences of the same sequence locally. We perform the
final aggregation in the reduce function before invoking our
FSM method (exploiting secondary sort to avoid buffering).
Frequent Sequence Mining. MG-FSM can use any ex-
isting FSM method to mine one of its partitions. In our
implementation, we use a method inspired by GSP [23] and
SPADE [31]. Like the former, our method is based on a
level-wise approach and generates frequent k-sequences from
the frequent (k−1)-sequences; like the latter, our method op-
erates on what is essentially an inverted index for sequences.
Initially, while reading the sequences of a partition to be
processed, our method builds an inverted index that maps
2-sequences to their offsets in the input sequences. We can
then emit all frequent 2-sequences and remove infrequent
ones from the index. Afterwards, our method iteratively
combines frequent (k−1)-sequences by intersecting the corre-
sponding inverted index lists to construct an inverted index
for k-sequences. Frequent k-sequences can be emitted im-
mediately once they have been determined. The inverted
index for (k − 1)-sequences can be deleted at the end of
each iteration. Our implementation is aware of the aggre-
gation optimization described in Sec. 4, i.e., it can operate
directly on input sequences along with their aggregate fre-
quency. Although Java-based, our implementation avoids

ClueWeb New York Times
Average length 19 19

Maximum length 20 993 21 174
Total sequences 1 135 036 279 53 137 507

Total items 21 565 723 440 1 051 435 745
Distinct items 7 361 754 1 577 233

Total bytes 66 181 963 922 3 087 605 146

Table 1: Dataset characteristics

object orientation to the extent possible. Inverted index lists,
for instance, are encoded compactly as byte arrays using the
compression techniques described above.

6. EXPERIMENTAL EVALUATION
We conducted an extensive experimental study in the con-

text of text mining on large real-word datasets. In particular,
we investigated the effectiveness of the various partition
construction techniques of Sec. 4, studied the impact of pa-
rameters σ, γ, and λ, compared MG-FSM to both the näıve
algorithm and a state-of-the-art n-gram miner, and evaluated
weak and strong scalability of MG-FSM. We found that most
of our optimizations for partition construction were effective;
a notable exception was blank separation, which did not
provide substantial efficiency gains on our textual datasets
(see the discussion at the end of Sec. 4.4). MG-FSM outper-
formed the näıve approach by multiple orders of magnitude
and was competitive to state of the art n-gram miners. Our
scalability experiments suggest that MG-FSM scales well as
we add more compute nodes and/or increase the dataset size.

6.1 Experimental Setup
We implemented MG-FSM [19] as well as the Näıve method

of Sec. 2.3 in Java. We also obtained a Java implementation
of Suffix-σ [3], a state-of-the-art n-gram miner, from its
authors. Unless stated otherwise, we performed all of our
rewriting steps for MG-FSM.

Hadoop cluster. We ran our experiments on a local
cluster consisting of ten Dell PowerEdge R720 computers
connected using a 10 GBit Ethernet connection. Each ma-
chine has 64GB of main memory, eight 2TB SAS 7200 RPM
hard disks, and two Intel Xeon E5-2640 6-core CPUs. All
machines ran Debian Linux (kernel version 3.2.21.1.amd64-
smp), Oracle Java 1.6.0 31, and use the Cloudera cdh3u0
distribution of Hadoop 0.20.2. One machine acted as the
Hadoop master node, while the other nine machines acted
as worker nodes. The maximum number of concurrent map
or reduce tasks was set to 10 per worker node. All tasks
launched with 4 GB heap space.

Datasets. We used two real-world datasets for our ex-
periments, see Table 1. The first dataset was the New York
Times corpus (NYT) [27], which consists of over 1.8 million
newspaper articles published between 1987 and 2007. The
second dataset was a subset of ClueWeb [6] (CW), which
consists of 50 million English pages; this well-defined sub-
set is commonly referred to as ClueWeb09-T09B and also
used as a TREC Web track dataset. We performed sentence
detection using Apache OpenNLP and applied boilerplate
detection and removal as described in [15]. Both datasets
were represented compactly as sequences of item identifiers
as described in Sec. 5.

Methodology. We used the following measures in our
evaluation. First, we measured the total time elapsed be-

tween launching a method and receiving the result (all meth-
ods use a single MapReduce job). To provide more insight
into potential bottlenecks, we also broke down total time
into time spent for the map phase, shuffle phase, and reduce
phase. Since these phases are overlapping in MapReduce, we
report the elapsed time until finishing each phase; e.g., the
time until the last map job finishes. Second, we measured
the total number of bytes received by reducers. Note that
when a combiner is used, this number is usually smaller
than the total number of bytes emitted by the mappers. All
measurements were averaged over three independent runs.

6.2 Partition Construction
We first evaluated the effectiveness of the compression and

rewriting techniques of MG-FSM for partition construction.
We used the following settings: basic (irrelevant items were
replaced by blanks), compressed (consecutive blanks were
compressed and leading/trailing blanks are removed), reduced
(unreachable items were removed), aggregated (identical se-
quences were aggregated), and separated (blank separation
was performed). We applied these optimizations in a stacked
manner; e.g., when using the aggregation optimization, we
also removed unreachable items and compressed consecutive
blanks.

We used both NYT and CW to explore the different rewrit-
ing techniques. The results are shown in Figs. 1(a), 1(b),
and 1(c), which also give the parameter settings. As can be
seen, the removal of unreachable items resulted in a signifi-
cant runtime improvement on both datasets, reducing the
total time by a factor of up to 6 (for CW). For the smaller
NYT dataset, map tasks are relatively inexpensive through-
out and our techniques mainly reduce the runtime of the
much more costly reduce operations. For CW, both map and
reduce runtimes are significantly reduced, the former mainly
due to the large reduction in transferred bytes (Fig. 1(c)).
Aggregation is effective for CW, reducing the total number
of bytes received by the reducers by more than 70 GB (28%).
We also ran Näıve for NYT dataset (not shown); the al-
gorithm finished after 225 minutes. In contrast, MG-FSM
completes after 4 minutes and is thus more than 50 times
faster.

6.3 Mining n-Grams
In our next experiments, we investigated the performance

of MG-FSM n-gram mining (γ = 0) and compared it against
both the Näıve method from Sec. 2 and a state-of-the-art
approach called Suffix-σ [3]. Since Näıve could not handle
the CW dataset in reasonable time, we focused on the NYT
dataset. We ran sequence mining in three different config-
urations of increasing output size; the results are shown
in Figs. 1(d) and 1(e) (log-scale). For the “easier” settings
(σ = 100, λ = 5 and σ = 10, λ = 5), MG-FSM achieved an
order of magnitude faster performance than Näıve. For the
“harder”setting (σ = 10, λ = 50), MG-FSM was two orders of
magnitudes faster than Näıve. MG-FSM also outperformed
Suffix-σ in all settings (up to a factor of 1.6x faster). The
total bytes transferred between the map and reduce phases
is depicted in Fig. 1(e); it is smallest for MG-FSM.

6.4 Impact of Parameter Settings
We studied the performance of MG-FSM as we varied the

minimum support σ, the maximum gap γ, and the maximum

T
im

e
[s

]

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Basic Compressed Reduced Aggregated Separated

map
shuffle
reduce

(a) NYT (σ = 100, γ = 1, λ = 5)

T
im

e
[s

]

0
20

00
40

00
60

00
80

00
10

00
0

Basic Compressed Reduced Aggregated Separated

map
shuffle
reduce

(b) CW (σ = 1 000, γ = 0, λ = 5)

R
ed

uc
e

in
pu

t
si

ze
 [G

B
]

0
20

0
40

0
60

0
80

0
10

00

Basic Compressed Reduced Aggregated Separated

(c) CW (σ = 1 000, γ = 0, λ = 5)

(100,0,5) (10,0,5) (10,0,50)

T
im

e
[s

]

1
10

10
0

10
00

10
00

0

Naive
Suffix−σ

MG−FSM

(d) NYT (σ, γ, λ)

(100,0,5) (10,0,5) (10,0,50)

R
ed

uc
e

in
pu

t
si

ze
 [G

B
]

1
10

10
0

10
00

Naive
Suffix−σ

MG−FSM

(e) NYT (σ, γ, λ)

Figure 1: Impact of partition construction (a–c) and performance for n-gram mining (d–e)

length λ. We use the NYT dataset throughout and set the
default values to σ = 100, γ = 1, and λ = 5.

We first studied how the minimum support σ affects perfor-
mance by increasing its value from 10 to 10 000. The results
are shown in Fig. 2(a). The map phase, which performs the
rewriting of the input sequences, took roughly the same time
for all different values of σ. This time mainly consists of the
cost of scanning the input sequences, which is independent
of σ. The reduce time, however, dropped significantly as we
increased the minimum support, mainly because the mining
cost and output size reduced (the slowest reduce task took
31s for σ = 10 000). Due to the relatively large fraction of
time spent in the map phase for large values of σ, we do not
expect any significant runtime improvements if we increased
σ further.

Second, we increased the maximum gap γ from 0 to 4. As
we can see in Fig. 2(b), γ strongly affected reduce time, while
the impact on map time was again not significant. This was
partly due to the larger number of bytes received by the
reducers (see Fig. 2(c)) and also because mining becomes
harder when the output size increases: The total number
of frequent sequences increased from 1 985 702 for γ = 0 to
51 166 966 for γ = 4.

Finally, we studied how the maximum length λ affects MG-
FSM varying its value from 5 to 20. As Fig. 2(d) shows, λ had
little effect on the map operations. Reduce time increased
with increasing values of λ. This effect was less pronounced
for larger values of λ (say, λ ≥ 10) because there are fewer
sequences of at least that length in the data (the average
input sequence length is 19; see Table 1).

6.5 Scalability
In our final set of experiments, we explored the scalability

of MG-FSM. To evaluate strong scalability, we ran MG-

FSM on a fixed dataset using 2, 4, and 8 worker nodes
(σ = 1 000, γ = 1, λ = 5). In order to finish the experiment
in reasonable time on 2 nodes, we used a 50% sample of
CW (consisting of more than half a billion input sequences).
Our results are shown in Fig. 2(e). MG-FSM exhibited
linear scalability as we increased the number of available
machines, managing to equally decrease the times for the
map and reduce tasks. The ability of MG-FSM to scale up
can be credited to the large number of partitions that can
be processed and mined independently.

We also performed a weak scalability experiment for MG-
FSM, in which we simultaneously increased the number of
available machines (2, 4, 8) and the size of the sequence
database (25%, 50%, 100% of CW). In the ideal case, the
total time remains constant as we scale out. As Fig. 2(f)
shows, this is almost true, but we observe a small increase
in runtime on 8 worker nodes (around 20%). This is because
doubling the size of the input sequence database can increase
the number of output sequences by a factor larger than 2.
In this specific case, 50% of ClueWeb generated 6M frequent
sequences, whereas the full corpus generated 13.5M frequent
sequences (an 2.25x increase).

7. RELATED WORK
We now relate the ideas put forward in this paper to exist-

ing prior work. Prior approaches can be coarsely categorized
with respect to the type of pattern being mined (frequent
itemsets, frequent sequences, or application-specific special
cases such as n-grams) and according to their parallelization
(sequential, shared-memory parallel, shared-nothing parallel,
or MapReduce).

Sequential approaches to frequent itemset mining fall into
two families. Candidate generation and pruning methods

10 100 1000 10000

Minimum support (σ)

T
im

e
[s

]

0
10

0
20

0
30

0
40

0
50

0
60

0 map
shuffle
reduce

(a) NYT (γ = 1, λ = 5)

0 1 2 3 4

Maximum gap (γ)

T
im

e
[s

]

0
50

0
10

00
15

00
20

00 map
shuffle
reduce

(b) NYT (σ = 100, λ = 5)

0 1 2 3 4

Maximum gap (γ)

R
ed

uc
e

in
pu

t
si

ze
 [G

B
]

0
5

10
15

20
25

30

(c) NYT (σ = 100, λ = 5)

5 10 15 20

Maximum length (λ)

T
im

e
[s

]

0
10

0
20

0
30

0
40

0
50

0 map
shuffle
reduce

(d) NYT (σ = 100, γ = 1)

2 4 8

Number of machines

T
im

e
[s

]

0
20

00
60

00
10

00
0 map

shuffle
reduce

(e) 50% of CW (σ = 1 000, γ = 1, λ = 5)

2 (25%) 4 (50%) 8 (100%)

Number of machines (dataset size)

T
im

e
[s

]

0
10

00
30

00
50

00

map
shuffle
reduce

(f) CW (σ = 1 000, γ = 1, λ = 5)

Figure 2: Impact of parameter settings (a–d) and scalability results (e–f)

such as Apriori [2] repeatedly scan the input data to count
and prune candidate itemsets of increasing cardinality. Pat-
tern-growth approaches, in contrast, scan the input data
only once and construct a compact representation of it. FP-
growth [12], as one such method, canonicalizes transactions
by ordering items therein according to their support and
represents the input data as a compact augmented prefix
tree. Frequent itemsets can then be determined efficiently
by traversing this so-called FP-tree. Our approach uses a
similar item-based partitioning of the output space as FP-
growth. Moreover, to cope with input data that exceeds
the available main memory, FP-growth works with small
projected databases, which contain all items required for
one of the output partitions. Adaptations of these ideas
have also been used for frequent sequence mining. GSP [23]
generates candidate k-sequences by joining frequent (k − 1)-
sequences and prunes them by means of scanning the input
data. FreeSpan [11] can be seen as an early adaptation of
FP-growth to mine frequent sequences. PrefixSpan [22], its
successor, uses a pattern-growth approach based on database
projections, but employs a suffix-based partitioning of the
output space. SPADE [31] assumes an alternative vertical
representation of the input data, which can be understood
as an inverted index that maintains for each item the list of
transactions containing the item, and traverses the (concep-
tual) lattice of all sequences in breadth-first or depth-first
order. Frequent episode mining [18], as a related yet slightly
different problem, determines sequences that occur frequently
within a single transaction. We refer to Han et al. [10] for a
more detailed discussion of sequential approaches to frequent
pattern mining.

Parallel approaches to frequent itemset and sequence min-
ing have been proposed for different machine models. For
frequent itemset mining in parallel shared-memory architec-
tures, Parthasarathy et al. [21] describe an approach that
aims for access locality when generating candidates in paral-
lel. Zaki [30] investigates how SPADE can be parallelized by
distributing data and/or work among machines. Buehrer et
al. [5], targeting parallel distributed-memory architectures,
exploit the item-based partitioning of FP-Growth to have
different machines operate on partial aggressively pruned
copies of the global FP-tree. Guralnik et al. [9] examine
how the projection-based pattern-growth approach from [1],
which is similar to PrefixSpan, can be parallelized by dis-
tributing data and/or work among machines. For the special
case of closed sequences, Cong et al. [7] describe a parallel
distributed-memory variant of BIDE [28]. They partition the
sequence database based on frequent 1-sequences; a partition
contains all suffix projections of sequences that contain the
corresponding frequent 1-sequence. Only little work has tar-
geted MapReduce as a model of computation. Li et al. [16]
describe PFP, another adaptation of FP-Growth using item-
based partitioning that is focused on finding the k most
frequent itemsets.

Given the important role of n-grams in natural language
processing and information retrieval, it is not surprising that
several solutions exist for this specific special case of frequent
sequence mining. SRILM [25] is one of the best-known toolk-
its to compute and work with n-gram statistics for document
collections of modest size. Brants et al. [4] describe how
large-scale statistical language models are trained at Google.
To compute counts of n-grams having length five or less,
they use a simple extension of WordCount in MapReduce

(along the lines of the näıve approach of Sec. 2.3). Huston
et al. [13] develop distributed methods to build an inverted
index for n-grams that occur more than once in the docu-
ment collection. Most recently, Berberich and Bedathur [3]
described Suffix-σ, which we compared to in our experiments.
The algorithm operates on suffixes, akin to [7], and runs in a
single MapReduce job.

None of the existing work provides a satisfactory solution
to general frequent sequence mining in MapReduce. While
earlier parallel approaches [5, 9] also use an item-based parti-
tioning of the output space, they rely on database projections
to distribute data, which are less flexible than our partition
construction techniques. Previous approaches typically have
been evaluated on small-scale and/or synthetic datasets,
whereas our experiments are based on more than 1 billion
real-world input sequences.

8. CONCLUSIONS
We proposed MG-FSM, a scalable algorithm for gap-con-

strained frequent sequence mining in MapReduce. MG-FSM
partitions the input database into a set of partitions that
can be mined efficiently, independently, and in parallel. Our
partitioning is based on a novel notion of w-equivalency,
which generalizes the concept of a “projected database” used
in many frequent pattern mining algorithms. Scalability is
obtained due to a number of novel optimization techniques,
including unreachability reduction, prefix/suffix reduction,
blank reduction, blank separation, aggregation, and light-
weight compression. Our experiments suggest that MG-FSM
is orders of magnitudes more efficient and scalable than
baseline algorithms for gap-constrained frequent sequence
mining, and competitive to state-of-the-art algorithms for
distributed n-gram mining (an important instance of gap-
constrained FSM). For example, in our experiments, MG-
FSM mined more than 1 billion input sequences for n-grams
in less than half an hour on nine worker machines.

9. REFERENCES
[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad.

A tree projection algorithm for generation of frequent
item sets. J. Parallel Distrib. Comput., 61(3):350–371,
2001.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, pages 207–216, 1993.

[3] K. Berberich and S. Bedathur. Computing n-gram
statistics in MapReduce. In EDBT, pages 101–112,
2013.

[4] T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean, and
G. Inc. Large language models in machine translation.
In EMNLP, pages 858–867, 2007.

[5] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc,
and J. Saltz. Toward terabyte pattern mining: An
architecture-conscious solution. In PPoPP, pages 2–12,
2007.

[6] ClueWeb09 dataset. lemurproject.org/clueweb09/.

[7] S. Cong, J. Han, and D. Padua. Parallel mining of
closed sequential patterns. In KDD, pages 562–567,
2005.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150,
2004.

[9] V. Guralnik and G. Karypis. Parallel
tree-projection-based sequence mining algorithms.
Parallel Computing, 30(4):443–472, 2004.

[10] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent
pattern mining: Current status and future directions.
Data Mining and Knowledge Discovery, 15:55–86, 2007.

[11] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. FreeSpan: Frequent pattern-projected
sequential pattern mining. In KDD, pages 355–359,
2000.

[12] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A
frequent-pattern tree approach. Data Min. Knowl.
Discov., 8(1):53–87, 2004.

[13] S. Huston, A. Moffat, and W. B. Croft. Efficient
indexing of repeated n-grams. In WSDM, pages
127–136, 2011.

[14] R. Kant, S. H. Sengamedu, and K. S. Kumar.
Comment spam detection by sequence mining. In
WSDM, pages 183–192, 2012.

[15] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
WSDM, pages 441–450, 2010.

[16] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang.
PFP: Parallel FP-growth for query recommendation. In
RecSys, pages 107–114, 2008.

[17] A. Lopez. Statistical machine translation. ACM
Comput. Surv., 40(3), 2008.

[18] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Data Min.
Knowl. Discov., 1(3):259–289, 1997.

[19] MG-FSM source code. http://www.mpi-inf.mpg.de/
departments/d5/software/mg-fsm/.

[20] N. Nakashole, M. Theobald, and G. Weikum. Scalable
knowledge harvesting with high precision and high
recall. In WSDM, pages 227–236, 2011.

[21] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li.
Parallel data mining for association rules on
shared-memory systems. Knowledge and Information
Systems, 3:1–29, 2001. 10.1007/PL00011656.

[22] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M.-C. Hsu. Mining sequential
patterns by pattern-growth: The PrefixSpan approach.
IEEE Transactions on Knowledge and Data
Engineering, 16:1424–1440, 2004.

[23] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
EDBT, pages 3–17, 1996.

[24] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan.
Web usage mining: Discovery and applications of usage
patterns from web data. SIGKDD Explor. Newsl.,
1(2):12–23, Jan. 2000.

[25] A. Stolcke. SRILM - an extensible language modeling
toolkit. In Interspeech, 2002.

[26] N. Tandon, G. de Melo, and G. Weikum. Deriving a
Web-scale common sense fact database. In AAAI, 2011.

[27] The New York Times annotated corpus.
corpus.nytimes.com.

[28] J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. In ICDE, pages 79–90, 2004.

lemurproject.org/clueweb09/
http://www.mpi-inf.mpg.de/departments/d5/software/mg-fsm/
http://www.mpi-inf.mpg.de/departments/d5/software/mg-fsm/
corpus.nytimes.com

[29] I. H. Witten, A. Moffat, and T. C. Bell. Managing
gigabytes: Compressing and indexing documents and
images. Morgan Kaufmann, 2nd edition, 1999.

[30] M. J. Zaki. Parallel sequence mining on shared-memory
machines. In Journal of Parallel and Distributed
Computing, pages 401–426, 2001.

[31] M. J. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Mach. Learn., 42(1-2):31–60, 2001.

[32] C. Zhai. Statistical language models for information
retrieval a critical review. Found. Trends Inf. Retr.,
2:137–213, March 2008.

APPENDIX
A. PROOF OF LEMMA 2

We start by relating sequences of indexes of an input
sequence T to the pivot sequences generated by T .

Definition 6 (Reachable index sequence). Let T =
s1 · · · sl. We say that a sequence I = i1i2 · · · in of increas-
ing indexes is a (w, γ, λ)-reachable index sequence for T if
ik+1 − ik ≤ γ + 1 for 1 ≤ k < n, sik ≤ w for 1 < k < n,
sik = w for at least one 1 ≤ k ≤ n, and 2 ≤ n ≤ λ. Denote
by T (I) = si1 · · · sin the sequence generated by I, by Iw,γ,λ(T)
the set of all (w, γ, λ)-reachable index sequences for T , and
by Iw,γ,λ(S | T) ⊆ Iw,γ,λ(T) the set of (w, γ, λ)-reachable
index sequences for T that generate S.

This definition matches the definition of γ-subsequences of
length at most λ but allows the first and last item to be
irrelevant. In fact, S ∈ Gw,γ,λ(T) if and only if both S ≤ w
and Iw,γ,λ(S | T) is non-empty. Consider for example the
input sequence T = aadc. We have Gc,2,3(T) = { ac, aac },
Ic,2,3(T) = { 1 · 4, 2 · 4, 3 · 4, 1 · 2 · 4 }, Ic,2,3(ac | T) = { 1 · 4,
2 · 4 } and Ic,2,3(aac | T) = { 1 · 2 · 4 }.

We make use of a generalized distance definition in our
proof of the correctness of the unreachability reduction.

Definition 7 (Distance). Let T = s1 · · · sl. Let 1 ≤
i, j ≤ n and set l = min { i, j } and r = max { i, j }. The
(w, γ, λ)-distance dw,γ,λ(i, j | T) between i and j is given by

min { |I| : I = i1 · · · in ∈ Iw,γ,λ(T), i1 = l, in = r } ∪ {∞} .

Note that dw,γ,λ(i, j | T) ∈ { 1, 2, . . . , λ,∞}. Intuitively, the
distance is equivalent to the smallest number of items that
we need to “step onto” when moving from i to j via relevant
items, by skipping at most γ items in each step, and by
stepping onto at least one pivot item; it is infinite if there
is no such path of length at most λ. We can now define left
and right distances formally.

Definition 8 (Left distance). Let T = s1 · · · sl. Fix
some 1 ≤ i ≤ l and denote by iprev < i the largest index such
that siprev = w, if such an index exists. The (w, γ, λ)-left
distance of index i is defined as lw,γ,λ(i | T) = dw,γ,λ(iprev, i |
T) if iprev exists; otherwise lw,γ,λ(i | T) =∞.

We define the (w, γ, λ)-right distance rw,γ,λ(i | T) similarly
w.r.t. the closest pivot to the right of index i. The follow-
ing lemma captures most of the proof of the correctness of
unreachability reduction.

Lemma 5. Let T = s1 · · · sl and let 1 ≤ k ≤ l be a
(w, γ, λ)-unreachable index. Then

Gw,γ,λ(T) = Gw,γ,λ(T ′),

where T ′ is obtained by removing index k from T . Moreover,
for 1 ≤ i ≤ j ≤ n, i 6= k, j 6= k, we have

dw,γ,λ(i, j | T) = dw,γ,λ(i′, j′ | T ′), (5)

where i′ = i if i < k and i′ = i− 1 if i > k (similarly j′).

The first part of the lemma states that we can safely remove
a single unreachable item from T . The second part states
that all distances between remaining indexes are unaffected.
Thus if an index i in T is unreachable in T , the corresponding
index i′ in T ′ will also be unreachable. We can thus remove
all unreachable items in one go, which proves Lemma 2.

Proof. For brevity, we drop subscript (w, γ, λ) from our
notation.

First observe that if k is unreachable, we have for all
indexes i− < k and i+ > k, d(i−, k | T) = ∞ and d(k, i+ |
T) = ∞, which implies d(i−, i+ | T) = ∞. Our definition
of distance thus implies that there is no reachable index
sequence of T that “crosses” k, i.e., simultaneously contains
indexes less than k and indexes larger than k. Now pick
any sequence S ∈ G(T) and any of its index sequences
I ∈ I(S | T). If I consists only of indexes smaller than k,
then T ′(I) = T (I) = S. Otherwise, I consists only of indexes
larger than k. Then T ′(I ′) = T (I) = S, where I ′ is obtained
from I by decrementing every index by one. Thus S ∈ G(T)
implies S ∈ G(T ′).

We now show that no additional sequences are generated
from T ′. Suppose to the contrary that there exists a sequence
S of length at most λ that is generated from T ′ but not
from T . Then I(S | T) = ∅ but I(S | T ′) 6= ∅. Pick
any I ′ ∈ I(S | T ′), denote by i′− and i′+ the smallest and
largest index in I ′, respectively. We must have i′− < k and
i′+ ≥ k; otherwise the arguments above imply that T would
have also generated S. Since I ′ ∈ I(S | T ′), we obtain
d(i′−, i

′
+ | T ′) ≤ λ. Assume for now that Eq. (5) asserted

above indeed holds. Then d(i′−, i
′
+ | T ′) = d(i−, i+ | T),

where i− = i′− and i+ = i′+ + 1 denote the corresponding
indexes in T . Since we showed above that d(i−, i+ | T) =∞,
we conclude that d(i′−, i

′
+ | T ′) = ∞ > λ, a contradiction.

Thus S ∈ G(T ′) implies S ∈ G(T).
It remains to show that Eq. (5) holds. Observe that the

distance between two indexes i and j depends only on the
set { v : i ≤ v ≤ j } of in-between indexes and, in particular,
depends on sv only through the properties of sv, i.e., whether
or not sk is relevant and whether or not it is a pivot. Pick
any i− 6= k and i+ > i−, i+ 6= k, and denote by i′− and i′+
the corresponding indexes in T ′. We need to show that

d(i−, i+ | T) = d(i′−, i
′
+ | T ′). (6)

If i+ < k or i− > k, T (i− · · · i+) = T ′(i′− · · · i′+) and Eq. (6)
follows immediately. Otherwise, we have i− < k and i+ > k
and d(i−, i+ | T) = ∞. First, d(i′−, k | T ′) = ∞ since (1)
T (i− · · · [k−1]) = T ′(i′− · · · [k−1]), (2) any difference between
d(i−, k | T) and d(i′−, k | T ′) thus depends on the k-th item
in each input sequence, (3) the k-th item is neither a pivot
in T nor in T ′ (otherwise index k would be reachable in T)
so that d(i′−, k | T ′) = d(i−, k | T), and (4) d(i−, k | T) =∞.
Using similar arguments, we can show that d(k, i′+ | T ′) =∞
and therefore d(i′−, i

′
+ | T ′) =∞ as desired.

	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 MapReduce
	2.3 Naïve Approach

	3 The MG-FSM Algorithm
	3.1 Algorithm Overview
	3.2 Example
	3.3 bold0mu mumu wwunitswwww-Equivalency
	3.4 Correctness of MG-FSM

	4 Partition Construction
	4.1 Minimality
	4.2 Irreducibility
	4.3 Aggregation
	4.4 Inseparability
	4.5 Summary

	5 Implementation
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Partition Construction
	6.3 Mining n-Grams
	6.4 Impact of Parameter Settings
	6.5 Scalability

	7 Related Work
	8 Conclusions
	9 References
	A

