
Performance and Availability Assessment
for the Configuration of

Distributed Workflow Management Systems♣

Michael Gillmann1, Jeanine Weissenfels1, Gerhard Weikum1, Achim Kraiss2

Abstract
Workflow management systems (WFMSs) that are geared for the orchestration of enterprise-wide or

even “virtual-enterprise”-style business processes across multiple organizations are complex distributed
systems. They consist of multiple workflow engines, application servers, and ORB-style communication
servers. Thus, deriving a suitable configuration of an entire distributed WFMS for a given application
workload is a difficult task.

This paper presents a mathematically based method for configuring a distributed WFMS such that the
application's demands regarding performance and availability can be met while aiming to minimize the
total system costs. The major degree of freedom that the configuration method considers is the replication
of the underlying software components, workflow engines and application servers of different types as well
as the communication server, on multiple computers for load partitioning and enhanced availability. The
mathematical core of the method consists of Markov-chain models, derived from the application's
workflow specifications, that allow assessing the overall system's performance, availability, and also its
performability in the degraded mode when some server replicas are offline, for given degrees of replication.
By iterating over the space of feasible system configurations and assessing the quality of candidate configu-
rations, the developed method determines a configuration with near-minimum costs.

1 Introduction

1.1 Problem Statement

The main goal of workflow management systems (WFMSs) is to support the efficient,
largely automated execution of business processes. Large enterprises demand the reliable exe-
cution of a wide variety of workflow types. For some of these workflow types, the availability
of the components of the underlying, often distributed WFMS is crucial; for other workflow
types, high throughput and short response times are mandatory. However, finding a configura-
tion of the WFMS (e.g., with replicated components) that meets all requirements is a difficult
problem. Moreover, it may be necessary to adapt the configuration over time due to changes of
the workflow load, e.g., upon adding new workflow types. Therefore, it is not sufficient to find
an appropriate initial configuration; it should rather be possible to reconfigure the WFMS
dynamically. The first step towards a (dynamic) configuration tool is the analysis of the WFMS
to predict the performance and the availability that would be achievable under a new configu-
ration.

The goal of our research is to build a configuration tool based on a system model that is
able to predict the best configuration for a given workflow load. The configuration tool should
optimize the ratio between performance and cost, or availability and cost, or even the combina-
tion of both, the so-called “performability”.

1.2 Contribution

In this paper, we consider distributed WFMSs that consist of components like workflow
engines, application servers, and communication servers such as ORBs. The WFMS can be

♣ This work was performed within the research project “Architecture, Configuration, and Administration of
Large Workflow Management Systems” funded by the German Science Foundation (DFG).

1University of the Saarland, Germany
{gillmann,weissenfels,weikum}@cs.uni-sb.de

http://www-dbs.cs.uni-sb.de/

2Dresdner Bank AG, Germany
achim.kraiss@dresdner-bank.com
http://www.dresdner-bank.com/

configured such that each of these components may be replicated on different computers for
availability and/or load partitioning. We present an analytic approach that considers both the
performance and the availability of the entire WFMS in its assessment of a given configuration.
The approach is based on stochastic methods [19, 20], specifically continuous-time Markov
chains (CTMC), and shows the suitability of these models for a new application field. The
developed analytic model allows us to rank the performance and availability of different con-
figurations that use replicated components. Moreover, we can predict the performance degra-
dation caused by transient failures and repair or downtime periods of servers (e.g., for upgrad-
ing software etc.). These considerations lead to the notion of “performability” [19], a combina-
tion of performance and availability metrics. From the analytic model we can also derive the
necessary number of WFMS component replications to meet specified goals for performance
and availability. So a crucial part of a configuration tool for distributed WFMS becomes ana-
lytically tractable, and no longer depends on expensive trial-and-error practice or the subjective
intuition of the system administration staff.

1.3 Related Work

Although the literature includes much work on scalable WFMS architectures [1, 4, 5, 6,
12, 15], there are only few research projects that have looked into the quantitative assessment
of WFMS configurations with regard to performance and availability. The work reported in [2,
3] presents several types of distributed WFMS architectures and discusses the influence of
different load distribution methods on the network and workflow-server load, mostly using
simulations. [18] presents heuristics for the allocation of workflow-type and workflow-instance
data onto servers. Mechanisms for enhanced WFMS availability by replicating state data on a
standby backup server have been studied in [9, 14]. None of this prior work has addressed the
issue of how to configure a WFMS for given performance and availability goals.

The use of CTMC models in the context of workflow management has been pursued by
[13]. This work uses the steady-state analysis of such models to analyze the efficiency of dif-
ferent outsourcing strategies in a virtual-enterprise setting. Our approach is more far-reaching
in that we use methods for the transient analysis of Markov chains to estimate the dynamic
behavior of workflow instances and the resulting performance. In addition, we address also the
availability and performability dimensions, which are beyond the scope of [13].

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we introduce our model of a
distributed WFMS. In Section 3, we describe how we can stochastically model the dynamic
behavior of a workflow instance; we use a simplified e-commerce application as an illustrating
example. In Sections 4 and 5, we develop the performance model and the availability model,
respectively. In Section 6, we combine both models into the performability model that allows
us to predict the influence of transient failures and downtime periods on the overall perform-
ance. Section 7 discusses how the presented models are integrated into the core of an automated
configuration tool.

2 Architectural Model

In this section, we introduce an architectural model for distributed WFMSs. We basically
follow the framework of [23]. Although the model is simple, it is powerful enough to capture
the architecture models of most WFMS products and research prototypes in a reasonable way.
Based on this model, we will introduce the central notions of the system configuration and the
system state of a distributed WFMS.

A workflow (instance) is a set of activities that are spawned according to the control-flow
specification of a given workflow type. An activity can either directly invoke an application,
which is typical of automated activities, or it can first require the assignment to an appropriate
human actor or organizational unit according to a specified worklist management policy.

......
Workflow engine Communication server Application server

InitApp(AppName,WFID) CreateInst(AppName,WFID)

Return(ObjRef(AppName))

ObjRef->start(Parameter)

synchronous operation invocation asynchronous operation invocation sending a message

Done()

Done()

...

.........

Set(Condition)

Done()

Client

...

...

Assign(Workitem)

Get(WorklistID)

Return(ObjRef(WorklistID))

Done()

ObjRef->insert(WorkitemID,Workitem)

start(App,Parameter)Done()
Get(WFID)

Done()

Return(ObjRef(WFID))
Set(Workitem->DONE)

Done()

Execution of
automated

activity

Execution of
interactive

activity including
worklist

management

Figure 1: Sequence diagram of the execution of two activities

A distributed WFMS executes workflow instances in a decentralized manner: each
workflow instance is partitioned into several subworkflows which may run on different
workflow engines, for example, with one workflow engine per subworkflow type according to
the organizational structure of the involved enterprises. Invoked applications of specific types
run on dedicated application servers, for example, under the control of a Web application
server and often with a database system as a backend. Finally, the communication within the
underlying, often widely distributed and heterogeneous system environment is assumed to be
handled by a special kind of communication server, for example, an object request broker
(ORB) or a similar piece of middleware. These three types of WFMS components – workflow
engines, application servers, and communication servers – will henceforth be viewed as ab-
stract servers of specific types within our architectural model. For simplicity, we assume that
each such server resides on a dedicated computer, and that all involved computers are con-
nected by an intranet or the Internet. The situation where multiple servers run on the same
computer can be addressed within our model, too, but would entail some technical extensions.

The interaction of the various components on behalf of a workflow instance is illustrated
in the UML-style sequence diagram of Figure 1. Note that each activity involves exactly one
workflow engine of a specific type, one application server of a given type, and the communica-
tion server. Each activity incurs a certain, activity-specific processing load on these servers.
The first part of Figure 1 shows the sequence of the requests for the asynchronous execution of
an automated activity. The second part of Figure 1 shows the sequence of the requests for an
interactive activity. As that activity is executed on a client machine, the application server is not
involved. The specific details of how many requests are sent at which timepoints between the
various servers is not relevant, however, as far as the performance assessment and configura-
tion planning is concerned. Rather we consider only the total load induced by an activity in-
stance on each of the involved server types. So, in our example of Figure 1, the execution of the
automated activity induces 3 requests at the workflow engine, 2 requests at the communication
server, and 3 requests at the application server.

For scalability and availability reasons, many industrial-strength WFMSs support the rep-
lication of server types within the system. For simplicity, we will refer to the replicas of a
server type as servers. For example, a workflow engine that is capable to handle instances of
specific subworkflow types can be installed on multiple computers, with the total load being
partitioned across all such servers, e.g., by assigning them subworkflow instances in a round-
robin or hashed manner. In addition, each server provides capabilities for backup and online
failover in the case that another server of the same type fails or is taken down for maintenance.

Comm. server
(e.g. ORB)

generates requests to

Activity o

Activity 1

WF engine m

WF engine 1
Application

server n

Application
server 1

Figure 2: Architectural model of a distributed WFMS

In that case, the total load would be distributed across one less server, leading to (temporarily)
degraded performance.

Figure 2 illustrates the presented architectural model: the WFMS consists of one type of
communication server, m different types of workflow engines, and n different types of applica-
tion server. The arcs denote service requests of workflow activities to the several server types.
For example, the execution of an activity of type 1 requires work on the communication server,
a workflow engine of type 1 and an application server of type n.

Each server of type x is assumed to have a failure rate xλ and a repair rate xµ . These

rates correspond to the reciprocals of the mean time to failure and the mean time to repair,
respectively. Here the notion of a failure includes downtimes for maintenance, and the repair
time is the duration of a restart (including all necessary recovery steps) after a real failure or
downtime in general.

Note that our architectural model could be easily extended to include more server types,
for example, to incorporate directory services or worklist management facilities as separate
servers if this were desired. The three server types made explicit in our model appear to be the
most relevant ones for performance and availability assessment. Also note that we do not in-
clude clients as explicit components in the model, for the simple reason that client machines are
usually not performance-critical. Rather the shared, and heavily utilized resources of servers
usually form the bottlenecks in multi-user applications. Finally, we disregard all effects of
human user behavior, e.g., their speed of reaction, intellectual decision making etc., for the
assessment of workflow turnaround times, as these aspects are beyond the control of the com-
puter system configuration.

We are now ready to define the central notion of the system configuration of a distributed
WFMS. With k different server types, the system configuration of the WFMS is the vector of
replication degrees ()kYY ,,1 K for each server type; so xY is the number of servers of server

type x that we have configured the system with. Because of server failures and repairs, the
number of available servers of a given type varies over time. For a given point of time, we call
the vector ()kXX ,,1K (with xx YX ≤ for all kx ≤≤1) of the numbers of currently available

servers of each server type the current system state of the WFMS.

3 Stochastic Modeling of Workflow Behavior

In this section, we present a model that stochastically describes the behavior of a single
workflow instance. In Subsection 3.1, we will first introduce a simplified electronic-commerce
scenario as an illustrating example. In Subsection 3.2, we develop the stochastic model that
allows us to estimate the (expected) number of activity executions for each activity type within
a workflow instance of a given type. For the sake of concreteness, we will use state and activity
charts as a workflow specification language, but other, comparable languages could be incorpo-
rated in our approach as well.

3.1 Example Scenario

As an example of a workflow type, we present a simplified e-commerce scenario. To un-
derline the completeness of our approach, we include the full spectrum of control flow struc-
tures, i.e., branching splits, parallelism, joins, and loops. The workflow is similar to the TPC-C
benchmark for transaction systems [21], with the key difference that we combine multiple
transaction types into a workflow and further enhance the functionality (see [7] for a full de-
scription of this workflow).

The workflow specification is given in the form of a state chart [10, 11]. This specification
formalism has been adopted for the behavioral dimension of the UML industry standard [22],
and it has been used for our own prototype system Mentor-lite [16, 24]. State charts specify the
control flow between activities. A state chart is essentially a finite state machine with a distin-
guished initial state and transitions driven by event-condition-action rules (ECA rules).
Throughout this paper, we assume that each workflow state chart has a single final state (i.e.,
one without outgoing edges). (If there were multiple final states, they could be easily connected
to an additional termination state.) A transition from state is to state js , annotated with an

ECA rule of the form E[C]/A, fires if event E occurs and condition C holds. The effect is that
state is is left, state js is entered, and action A is executed. Conditions and actions are ex-

pressed in terms of variables that are relevant for the control and data flow among activities. In
addition, an action A can explicitly start an activity, expressed by st!(activity), and can generate
an event E or modify a condition variable C (e.g., fs!(C) sets the condition C to false). Each of
the three components of an E[C]/A triple may be empty.

Important additional features of state charts are nested states and orthogonal components.
Nesting of states means that a state can itself contains an entire state chart. The semantics is
that upon entering the higher-level state, the initial state of the embedded lower-level state chart
is automatically entered, and upon leaving the higher-level state all embedded lower-level state
charts are left. The capability for nesting states is especially useful for the refinement of speci-
fications during the design process and for incorporating subworkflows. Orthogonal compo-
nents denote the parallel execution of two state charts that are embedded in the same higher-
level state (where the entire state chart can be viewed as a single top-level state). Both compo-
nents enter their initial states simultaneously, and the transitions in the two components proceed
in parallel, subject to the preconditions for a transition to fire.

Figure 3 shows the top-level state chart for our example workflow. Each state corresponds
to an activity or one (or multiple, parallel) subworkflow(s), except for initial and final states.
We assume that for every activity act the condition act_DONE is set to true when act is fin-
ished. So, we are able to synchronize the control flow so that a state of the state chart is left
when the corresponding activity terminates. For parallel subworkflows, the final states of the
corresponding orthogonal components serve to synchronize the termination (i.e., join in the
control flow).

The workflow behaves as follows. Initially, the NewOrder activity is started. After the
termination of NewOrder, the control flow is split. If the customer wants to pay by credit card,
the condition PayByCreditCard is set and the CreditCardCheck activity checks the validity of
the credit card. If there are any problems with the credit card, the workflow is terminated.
Otherwise the shipment, represented by the nested top-level state Shipment_S, is initiated
spawning two orthogonal/parallel subworkflows, specified in the state charts Notify_SC and
Delivery_SC , respectively. After the termination of both subworkflows, the control flow is
synchronized, and split again depending on the mode of payment. The workflow terminates in
the finishing state EP_EXIT_S.

3.2 Stochastic modeling

For predicting the expected load induced by the execution of a workflow instance, we
have to be able to predict the control flow behavior of workflow instances. As workflows in-
clude conditional branches and loops, the best we can do here is to describe the execution

Shipment_S

NewOrder_S
[PayByCreditCard and
NewOrder _DONE]
/st!(CreditCardCheck)

[PayByBill and
NewOrder _DONE] [CreditCardOK and

CreditCardCheck_DONE]

[CreditCardNotOK and
CreditCardCheck_DONE]

[...and PayByCreditCard]
/st!(CreditCardPayment)

CreditCardPayment_S

EP_EXIT_S

[CreditCardPayment_DONE]

Payment_S

[Payment_DONE]

[in(Notify_EXIT_S) and
in(Delivery_EXIT_S) and

PayByBill]
/st!(Payment)

/st!(NewOrder)

Notify_SC Delivery_SC

EP_SC

EP_INIT_S

Figure 3: State chart of the electronic purchase (EP) workflow example

CreditCardCheck_S

stochastically. Our goal thus is to estimate the number of activity invocations per workflow
instance, for each activity type; from this estimate we can then derive the load induced by a
workflow instance on the various server types. In the following, we will concentrate on
workflows without nesting, and will come back to the general case later in Section 4 when we
show how to incorporate subworkflows in the overall model.

A suitable stochastic model for describing the control flow within a simple workflow in-
stance without nested subworkflows is the model of continuous-time, first-order Markov chains
(CTMC) [19, 20]. A CTMC is a process that proceeds through a set of states in certain time
periods. Its basic property is that the probability of entering the next state within a certain time
depends only on the currently entered state, and not on the previous history of entered states.
The mathematical implication is that the residence time in a state - that is, the time the process
resides in the state before it makes its next transition - follows a (state-specific) exponential
distribution. Consequently, the behavior of a CTMC is uniquely described by a matrix

()ijpP = of transition probabilities between states and a vector ()iHH = of the mean resi-

dence times of the states.
Let { }1..0| −= nisi be the set of n execution states of a workflow type t. The con-

trol flow of an instance of t will be modeled by a CTMC where the states correspond to the
workflow execution states is . The state transition probability ijp corresponds to the probabil-

ity that a workflow instance of workflow type t enters state js when leaving state is . The

transition probabilities have to be provided by the workflow designer based on the semantics of
the conditions between the workflow activities and the anticipated frequencies of business
cases. If the entire workflow application is already operational and our goal is to reconfigure
the WFMS (or investigate if a reconfiguration is worthwhile), then the transition probabilities
can be derived from audit trails of previous workflow executions. The mean residence time iH

of a state i corresponds to the mean time that instances of workflow type t stay in the execution
state is , i.e., the turnaround time of the corresponding activity (or the mean runtime of the

corresponding nested subworkflow), and needs to be estimated or observed analogously. In
accordance with the workflow specification, we assume that the CTMC has a single initial state

0s . In the initial state-probability vector of the CTMC, the probability is set to 1 for the initial

state 0s and to 0 for all other states. Moreover, we add a transition from the final execution

state into an artificial absorbing state As . The transition probability of this transition is set to 1,

and the residence time of the absorbing state is set to infinity.

H 1=1min

s5 (CreditCardPayment_S)

s3 (Shipment_S)

s2 (CreditCardCheck_S)s1 (NewOrder_S)
0.2

0.8 0.95

0.05

0.19

s6 (EP_EXIT_S)
1.0

s4 (Payment_S)

1.0

0.81

H 2=5sec

H 3=6h

H4=10days

1.0

sA

H 5=50sec

H 6=4sec

H 0=1min

1.0
s0 (EP_INIT_S)

Figure 4: CTM C representing the EP workflow type

For workflow types with subworkflows, the subworkflows are represented by single states
within the CTMC of the parent workflow. In the case of parallelism, the corresponding state
represents all parallel subworkflows together. For the mean residence time of that state, we will
use the maximum of the mean turnaround times of the parallel subworkflows.

Figure 4 gives an example for the CTMC representing the e-commerce workflow type of
Figure 3. Besides the absorbing state As , the CTMC consists of seven further states, each

representing the seven states of the workflow’s top-level state chart. The values for the transi-
tion probabilities and the mean residence times are fictitious for mere illustration. With this
CTMC model, we are now able to predict the expected number of invocations for each activity
type, namely, the number of visits to the corresponding CTMC state before eventually reaching
the absorbing state, using standard analysis techniques for Markov chains. We will provide
more details in the following section, where we will also show how to derive the expected total
load of a workflow instance.

4 Performance Model

In this section, we discuss the server-performance model. We proceed in four stages:
1. We analyze the mean turnaround time tR of a workflow of a given type t, based on

the analysis of state visit frequencies and the state residence times of the CTMC
model. This analysis makes use of standard techniques for the transient behavior of
Markov chains. (Note that the Markov chains in our approach are non-ergodic; so
stationary state probabilities do not exist, and a steady-state analysis is not feasible.)

2. We determine load induced on each server type by a workflow instance of type t. We
will model this load as the expected number of service requests to a server type.
Technically, this is the most difficult step, and we will use a Markov reward model
for this derivation.

3. We then aggregate, for each server type, the load over all workflow instances of all
types (using the relative fractions of the various workflow types as implicit weights).
The total load per server of a given server type is then obtained by dividing the over-
all load by the number of such servers (i.e., the server-type-specific degree of repli-
cation) in the configuration. In this stage we also derive the maximum sustainable
throughput in terms of workflow instances per time unit.

4. Finally we derive, from the turnaround times of workflows and the total load per
server, the mean waiting times of service requests caused by queueing at a heavily
loaded server. This is a direct measure for the system’s responsiveness as perceived
by human users in interactions for the activities within a workflow. Overly high
waiting times are an indication of a poorly configured system, and we can then iden-
tify the server type(s) that forms the bottleneck.

4.1 Workflow Turnaround Time

We derive the mean turnaround time of a workflow instance of type t by the transient
analysis of the corresponding CTMC [20]. The mean turnaround time, tR , is the mean time

that the CTMC needs to enter the absorbing state for the first (and only) time, the so-called
first-passage time of the absorbing state As .

The first-passage time of a CTMC state is generally computed by solving a set of linear
equations [20] as follows. Assume that for all states is of the CTMC the probability that the

first epoch at which the CTMC makes a transition into the absorption state As starting in state

is is finite, is equal to one (which is the case for the specific CTMC models in our context of

workflow management). Then, the mean first-passage time iAm until the first transition of the

CTMC into As starting in state is can be computed from the system of linear equations

∑
≠≠

−=+−
ijAj

jAijiAi mqm
,

1ν , Ai ≠

where ii H1=ν is the rate of leaving state is , and ijiij pq ν= is the transition rate from state

is to state js [20]. This linear equation system can be easily solved using standard methods

such as the Gauss-Seidel algorithm.

4.2 Load (Service Requests) per Workflow Instance

The execution of a workflow instance spawns a set of activities, which in turn generate
service requests to different server types. For example, the invocation of an activity incurs a
certain initialization and termination load, and a processing load is induced during the entire
activity, on involved workflow engine and application server type, and also on the communica-

tion server type. Let the matrix ()txa
t LL = denote the number of service requests generated on

server type x by executing a single instance of the activity type a within an instance of
workflow type t.

Consider the EP workflow type of our running e-commerce example. The corresponding
CTMC has eight states in total, but the absorbing state As does not invoke an activity and thus

does not incur any load. With three server types, the state-specific load vectors have three

components each, and the entire load matrix EPL is a 73× matrix.
In practice, the entries of the load matrix have to be determined by collecting appropriate

runtime statistics.

4.2.1 Computing the load of a top-level workflow instance without subworkflows

To calculate the load that one workflow instance of a given type generates on the various
server types, we use methods for the transient analysis of CTMC models. We will first disre-
gard the possible existence of subworkflows, and will later augment our method to incorporate
subworkflows.

The first, preparatory step is to eliminate the potential difficulty that the state residence
times are non-uniform; there are standard techniques for transforming the CTMC into a uni-
form CTMC where the mean residence time is identical for all states and whose stochastic
behavior is equivalent to that of the original model [20]. This is more of a technicality and
serves to simplify the formulas. The actual analysis is based on a Markov reward model
(MRM) which can be interpreted as follows: each time a state is entered and we spend some
time there, we obtain a reward, and we are interested in the totally accumulated reward until we
enter the absorbing state. This metric is known as the expected reward earned until absorption
[20]. Here the reward that we obtain in each state is the number of service requests that are

generated upon each visit of a state. (The term “reward” is somewhat misleading in our prob-
lem context, but it is the standard term for such models.) The expected number of service re-
quests that an instance of the workflow type t generates on server type x can be computed by
the formula

()












+= ∑ ∑ ∑

≠

∞

= ≠≠Aa z abAb

t
xb

t
ab

t
at

t
xtx LqzpLr

0 ,
00,

1

ν
,

where { }t
a

t
a

Aa

t H1max ==
≠

νν is the maximum of the departure rates of the CTMC states with

t
aH denoting the state residence time of state as , t

ab
t
a

t
ab pq ν= is the transition rate from state

as to state bs , and)(0 zpt
a is the taboo probability that the process will be in state as after z

steps without having visited the absorbing state As starting in the initial state 0s . The taboo

probabilities can be recursively computed from the Chapman-Kolmogorov equations

() ()∑
≠

−=
Ac

t
ac

t
cb

t
ab zppzp 1 , Aba ≠,

starting with 1)0(00 =tp , and 0)0(0 =t
ap for 0≠a , and with











≠=−

≠≠
=

Aaab

Aaabp
p

t

t
a

t
abt

t
a

t
ab

,,1

,,

ν
ν

ν
ν

denoting the one-step transition probabilities of the CTMC after uniformization [20].
For an efficient approximation of txr , , the summation over the number of steps, z, has to

be terminated when z exceeds a predefined upper bound maxz . The value of maxz is set to the

number of state transitions that will not be exceeded by the workflow within its expected run-
time with very high probability, say 99 percent. This value of maxz can be easily determined

during the analysis of the CTMC.

4.2.2 Incorporation of subworkflows

Once we add subworkflows, the expected turnaround time and the expected number of
service requests generated by an instance of a workflow type t can be calculated in a hierarchi-
cal manner. For a CTMC state that represents a subworkflow or a set of parallel subworkflows,

t
sH corresponds to the mean turnaround time and the entries t

xsL of the load matrix tL corre-

spond to the expected number of service requests for the entire set of nested subworkflows.

Thus, the mean residence time t
sH is approximately the maximum of the mean turnaround

times of the parallel subworkflows { }b
Sb

t
s RH

∈
= max , and the number of service requests t

xsL

for server type x equals the sum of the expected number of service requests generated by the

parallel subworkflows ∑
∈

=
Sb

bx
t
xs rL , .

Note that the maximum of the mean turnaround times of the parallel subworkflows is ac-
tually a lower bound of the mean residence time of the corresponding higher-level state. So the
approximation is conservative with regard to the induced load per time unit.

4.3 Total Server Load and Maximum Sustainable Throughput

We associate with each workflow type t an arrival rate tξ which denotes the mean num-

ber of user-initiated workflows (of the given type) per time unit; the actual arrival process
would typically be described as a Poisson process for systems with a relatively large number of
independent clients (e.g., within an insurance company). By Little’s law, the mean number of

concurrently executing instances t
activeN of workflow type t is given by the product of the

arrival rate tξ of new instances and the mean turnaround time tR of a single instance of

workflow type t: tt
t
active RN ξ= .

The server-type-specific request arrival rate txl , of a single instance of workflow type t is

given by dividing the expected number of service requests to server type x, txr , , by the mean

runtime tR of an instance of t. Then the server-type-specific total load, i.e., its request arrival

rate over all concurrently active instances of workflow type t is the product of txl , with the

mean number, t
activeN , of active workflow instances.

Finally, the request arrival rate xl to server type x over all workflow types is obtained by

∑∑ ==
t

txt
t t

txt
activex r

R

r
Nl ,

, ξ .

With xY servers of server type x and uniform load distribution across these replicas, the

total load per server (of type x) is xxx Yll =
~

. Note that this is actually the service request

arrival rate. If we assume that each request keeps the server busy for a service time of length

xb on average, then the server’s actual throughput is the maximum value xx ll
~ˆ ≤ such that

1ˆ ≤xxbl ; for arrival rates such that 1
~

>xxbl the server could not sustain the load. So the

maximum sustainable throughput (in terms of processed workflow instances per time unit) is

given by the minimum of the xl̂ values over all server types x (i.e., the server type that satu-

rates first).

4.4 Waiting Time of Service Requests

For analyzing the mean waiting time of service requests, we model each server type x as a
set of xY M/G/1 queueing systems where xY is the number of server replicas of the server

type. So we assume that service requests are, on average, uniformly distributed across all serv-
ers of the same type. This can be achieved by assigning work to servers in a round-robin or
random (typically hashing-based) manner. In practice these assignments would typically be
performed when a workflow instance starts, so that all subworkflows, activities, or invoked
applications of the same type within that workflow instance are assigned to the same server
instance for locality. While this realistic load partitioning policy may create temporary load
bursts, the long-term (steady-state) load would be spread uniformly.

Each server is modeled only very coarsely by considering only its mean service time per
service request and the second moment of this metric. Both of these server-type-specific values
can be easily estimated by collecting and evaluating online statistics. We do not model the
details of a server’s hardware configuration such as CPU speed, memory size, or number of
disks. Rather we assume that each server is a well-configured building block, and that we scale
up the system by adding such building blocks. In particular, the CPU and disk I/O power of a
server are assumed to be in balance, so that neither of these resources becomes a bottleneck
while the other is way underutilized. Commercially available commodity servers for informa-

tion systems in general are configured this way, and workflow management would fall into this
category. Nevertheless, even if it turns out that one resource type always tends to be the bottle-
neck, our coarse-grained model is applicable under the assumption that the abstract notion of
service time refers to the bottleneck resource within a server.

Let xl be the arrival rate of service requests at server type x as derived in the previous

subsection, xb the mean service time of service requests at server type x, and)2(
xb the second

moment of the service time distribution of service requests at server type x. The mean arrival

rate of service requests at a single server of server type x is given by xxx Yll =
~

 where xY is

the number of servers of server type x. Then the mean waiting time xw of service requests at an

individual M/G/1 server of type x is given by the standard formula [17]:

)1(2

~)2(

x

xx
x

bl
w

ρ−
=

where xxx bl
~

=ρ is the utilization of the server. This mean waiting time is our main indicator of

the responsiveness of the WFMS whenever user interactions take place.
The generalized case for configurations where multiple server types, say x and z, are as-

signed to the same computer is handled as follows: the server-type-specific arrival rates xl
~

 and

zl
~

 are summed up, the server types’ common service time distribution is computed, and these

aggregate measures are fed into the M/G/1 model to derive the mean waiting time common to
all server types on the same computer.

Note that our approach is so far limited to a homogenous setting where all underlying
computers have the same performance capacity, but could be extended to the heterogeneous
case by adjusting the service times on a per computer basis.

5 Availability Model

In this section we present the availability model for a distributed WFMS according to our
architectural model of Section 2. We analyze the influence of transient component failures on
the availability of the entire system.

5.1 CTMC for System States

Following the standard approach, our availability model is again based on continuous-time
Markov chains (CTMC). The steady-state analysis of the CTMC delivers information about the
probability of the current system state of the WFMS. Each state of the CTMC represents a
possible system state of the WFMS. So a state of the CTMC is a k-tuple with k being the num-
ber of different server types within the WFMS, and each entry of the tuple represents the num-
ber xX of currently available servers of server type x at a given point of time. For example,

the system state (2,1,1) means that the WFMS consists of three different server types and there
are 2 servers of type 1, 1 server of type 2, and 1 server of type 3 currently running while the
others have failed and are being restarted or have been taken down for maintenance. When a
server of type x fails, the CTMC performs a transition to the system state with the correspond-
ing value for server type x decreased by one. For example, the system state ()kx XXX ,...,,...,1

is left when a server of type x fails, and the system state ()()kx XXX ,...,1,...,1 − is entered.

Analogously, when a server of type x completes its restart, the CTMC performs a transition into
the state where the value for server type x is increased by one. The failure rates xλ and the

repair rates xµ of the server types are the corresponding transition rates of the CTMC. This

basic model implicitly assumes that the time spent in a state is exponentially distributed, but
note that non-exponential failure or repair rates (e.g., anticipated periodic downtimes for soft-

ware maintenance) can be accommodated as well, by refining the corresponding state into a
(reasonably small) set of exponential states [20]. This kind of expansion can be done automati-
cally once the distributions of the non-exponential states are specified.

With such a CTMC at hand, which can be shown to be ergodic, we are able to compute the
steady-state probability for each state of the CTMC. Then the probability for the entire system
being unavailable is simply the sum of the state probabilities over all those states where at least
one server type is completely unavailable (i.e., has a zero entry in the X vector). We next pres-
ent the details of the steady-state analysis of the CTMC in the following subsection.

5.2 Steady-state Analysis of the Availability-Model CTMC

Let k be the number of different server types, ()kYYY ,,1K= the WFMS configuration,

and let (){ }kxYXXXX xxk ≤≤≤≤= 1,0|,,1K be the finite set of the system states of

the WFMS.

We encode X into a set X
~

of integer values that denote the states of the CTMC of the pre-
vious subsection as follows:

() ()∑ ∏
=

−

=
+

k

j

j

l
ljk YXXX

1

1

1
1 1,, �� .

For example, for a CTMC with three server types, two servers each we encode the states
(0,0,0), (1,0,0), (2,0,0), (0,1,0) etc. as integers 0, 1, 2, 3, and so on.

To derive the steady-state probabilities of the CTMC, we have to solve a system of linear
equations

0=Qπ
1=∑

i
iπ

where iπ denotes the steady-state probability of state Xi
~∈ , π is the vector ()iπ , and Q is the

infinitesimal generator matrix of the CTMC [19]. The generator matrix ()ijqQ = with Xji
~

, ∈

is obtained by setting ijq to the transition rate from the state ()kXX ,,1K corresponding to

Xi
~∈ into the state ()kXX ′′ ,,1K corresponding to Xj

~∈ . The diagonal elements of Q are set

to ∑
≠

−=
ij

ijii qq . Note that iiq− is the rate at which the system departs from state Xi
~∈ [19].

The resulting linear equation system can again be solved easily by using standard methods such
as the Gauss-Seidel algorithm.

As an illustrating example consider a scenario with three server types. Let server type 1 be
the communication server, server type 2 be one type of workflow engine, and server type 3 be
one type of application server. The failure rates are assumed as follows (where failures would
typically be software-induced “Heisenbugs” [8] or downtimes for maintenance): one failure per

month (so 1
1 min)43200(−=λ) for a communication server, one failure per week (so

1
2 min)10080(−=λ) for a workflow engine, and one failure per day (so 1

3 min)1440(−=λ)

for an application server.
We further assume that the mean time to repair of a failed server is 10 minutes regardless

of the server type, so the repair rates are 1
321 min)10(−=== µµµ . Note that these absolute

figures are arbitrary, but the ranking of server types with respect to failure rates may reflect the
maturity of the underlying software technologies. The entire WFMS is available when at least
one server of each server type is running, and the WFMS is down when all server replications
of at least one server type are down.

The CTMC analysis computes an expected downtime of 71 hours per year if there is only
one server of each server type, i.e., no server is replicated. By 3-way replication of each server
type, the system downtime can be brought down to 10 seconds per year. However, replicating
the most unreliable server type, i.e., the application server type in our example, three times and
having two replicas of each of the other two server types is already sufficient to bound the
unavailability by less then a minute.

6 Performability Model

With the performance model alone we are able to predict the performance of the WFMS
for a single, given system state. So changes of the system state over time caused by failures and
repairs are not captured. In this section, we present a performability model that allows us to
predict the performance of the WFMS with the effects of temporarily non-available servers
(i.e., the resulting performance degradation) taken into account.

Our performability model is a hierarchical model constituted by a Markov reward model
(MRM) for the availability CTMC of Section 5, where the state-specific rewards are derived
from the performance model of Section 4. The probability of being in a specific system state of
the WFMS is inferred from the availability model. As the reward for a given state of the avail-
ability CTMC, we use the mean waiting time of service requests of the WFMS in that system
state. So we need to evaluate the performance model for each considered system state, rather
than only for the overall configuration which now is merely the “upper bound” for the system
states of interest. Then the steady-state analysis of the MRM [19] yields the expected value for
the waiting time of service requests for a given WFMS configuration with temporary perform-
ance degradation induced by failures.

Let Y be a given system configuration and iπ be the steady-state probability for the sys-

tem state Xi
~∈ as calculated in Section 5. Let ()i

x
i ww = be the vector of the expected waiting

times of service requests of all server types x for a given system state Xi
~∈ as calculated in

Section 4. Then the performability vector of the expected values of the waiting times of service

requests ()Y
x

Y WW = for server types x under configuration Y and with failures taken into

account, is obtained by conditioning the system-state-specific waiting time vectors íw with the

system state probabilities iπ , thus yielding ∑
∈

=
Xi

i
iY wW

~
π

The value of YW derived this way is the ultimate metric for assessing the performance of
a WFMS, including the temporary degradation caused by failures and downtimes of server
replicas. The system’s responsiveness is acceptable if no entry of the waiting-time vector

YW is above a critical tolerance threshold.

7 Configuration Tool

In this section, we sketch a configuration tool that we are currently developing based on
the presented analytic models. We also discuss the integration of the tool into a given workflow
environment.

7.1 Functionality and Architecture of the Configuration Tool

The configuration tool consists of four components: the mapping of workflow specifica-
tions onto the tool’s internal models, the calibration of the internal models by means of statis-
tics from monitoring the system, the evaluation of the models for given input parameters, and
the computation of recommendations to system administrators and architects, with regard to
specified performability goals.

For the mapping the tool interacts with a workflow repository where the specifications of
the various workflow types are stored. In addition, statistics from online monitoring may be
used as a second source (e.g., to estimate transition probabilities etc.). The configuration tool
translates the workflow specifications into the corresponding CTMC models. For the evaluation
of the models, additional parameters may have to be calibrated; for example, the first two mo-
ments of the server-type-specific service times have to be fed into the models. This calibration
is again based on appropriate online monitoring. So both the mapping and calibration compo-
nents require online statistics about the running system. Consequently, when the tool is to be
used for configuring a completely new workflow environment, many parameters have to be
intellectually estimated by a human expert. Later, after the system has been operational for a
while, these parameters can be automatically adjusted, and the tool can then make appropriate
recommendations for reconfiguring the system.

The evaluation of the tool’s internal CTMC models is driven by specified performability
goals. System administrators or architects can specify goals of the following two kinds: 1) a
tolerance threshold for the mean waiting time of service requests that would still be acceptable
to the end-users, and 2) a tolerance threshold for the unavailability of the entire WFMS, or in
other words, a minimum availability level.

The first goal requires evaluating the performability model, whereas the second one
merely needs the availability model. The tool can invoke these evaluations either for a given
system configuration (or even a given system state if failures are not a major concern), or it can
search for the minimum-cost configuration that satisfies both goals, which will be discussed in
more detail in the next subsection. The cost of a configuration is assumed to be proportional to
the total number of servers that constitute the entire WFMS, but this could be further refined
with respect to different server types. Also, both kinds of goals can be refined into workflow-
type-specific goals, by requiring, for example, different maximum waiting times or availability
levels for specific server types.

The tool uses the results of the model evaluations to generate recommendations to the
system administrators or architects. Such recommendations may be asked for regarding specific
aspects only (e.g., focusing on performance and disregarding availability), and they can take
into account specific constraints such as limiting or fixing the degree of replication of particular
server types (e.g., for cost reasons).

So, to summarize, the functionality of the configuration tool comprises an entire spectrum
ranging from the mere analysis and assessment of an operational system all the way to provid-
ing assistance in designing a reasonable initial system configuration, and, as the ultimate step,
automatically recommending a reconfiguration of a running WFMS.

7.2 Greedy Heuristics Towards a Minimum-cost Configuration

The most far-reaching use of the configuration tool is to ask it for the minimum-cost con-
figuration that meets specified performability and availability goals. Computing this configura-
tion requires searching the space of possible configurations, and evaluating the tool’s internal
models for each candidate configuration. While this may eventually entail full-fledged algo-
rithms for mathematical optimization such as branch-and-bound or simulated annealing, our
first version of the tool uses a simple greedy heuristics.

The greedy algorithm iterates over candidate configurations by increasing the number of
replicas of the most critical server type until both the performability and the availability goals
are satisfied. Since either of the two criteria may be the critical one and because an additional
server replica improves both metrics at the same time, the two criteria are considered in an
interleaved manner. Thus, each iteration of the loop over candidate configurations evaluates the
performability and the availability, but adds servers to two different server types only after re-
evaluating whether the goals are still not met. This way the algorithm avoids “oversizing” the
system configuration.

8 Conclusion

In this paper, we have developed models to derive quantitative information about the per-
formance, availability, and performability of configurations for a distributed WFMS. These
models form the core towards an assessment and configuration tool. As an initial step towards
evaluating the viability of our approach, we have defined a WFMS benchmark [7], and we are
conducting measurements of various products and prototypes, including our own prototype
coined Mentor-lite, under different configurations. These measurements are a first touchstone
for the accuracy of our models. In addition, we have started implementing the configuration
tool sketched in Section 7. This tool will be largely independent of a specific WFMS, using
product-specific stubs for the tool’s monitoring, calibration, and recommendation components.
We expect to have the tool ready for demonstration by the middle of this year.

References
[1] G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan, Functionality and Limitations of Current Workflow

Management Systems, IEEE Expert Vol.12 No. 5, 1997
[2] T. Bauer, P. Dadam, A Distributed Execution Environment for Large-Scale Workflow Management

Systems with Subnets and Server Migration, IFCIS Conf. on Cooperative Information Systems
(CoopIS), Charleston, South Carolina, 1997

[3] T Bauer, P. Dadam, Distribution Models for Workflow Management Systems - Classification and
Simulation (in German), Technical Report, University of Ulm, Germany, 1999

[4] A. Cichocki, A. Helal, M Rusinkiewicz, D. Woelk, Workflow and Process Automation, Kluwer Aca-
demic Publishers, 1998

[5] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth (Eds.), Workflow Management Systems and
Interoperability, NATO Advanced Study Institute, Springer-Verlag, 1998

[6] D. Georgakopoulos, M. Hornick, A. Sheth, An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure, Distributed and Parallel Databases Vol. 3 No. 2,
1995

[7] M. Gillmann, P. Muth, G. Weikum, J. Weissenfels, Benchmarking of Workflow Management Systems
(in German), German Conf. on Database Systems in Office, Engineering, and Scientific Applications,
Freiburg, Germany, 1999

[8] J. Gray, A. Reuter, Transaction Processing – Concepts and Techniques, Morgan Kaufmann, 1993
[9] C. Hagen, G. Alonso, Backup and Process Migration Mechanisms in Process Support Systems, Techni-

cal Report, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1998
[10] D. Harel, State Charts: A Visual Formalism for Complex Systems, Science of Computer Programming

Vol. 8, 1987
[11] D. Harel, E. Gery, Executable Object Modeling with Statecharts, IEEE Computer Vol.30 No.7, 1997
[12] S. Jablonski, C. Bussler, Workflow Management, Modeling Concepts, Architecture, and Implementa-

tion, International Thomson Computer Press, 1996
[13] J. Klingemann, J. Waesch, K. Aberer, Deriving Service Models in Cross-Organizational Workflows,

Int’l Workshop on Reasearch Issues in Data Engineering (RIDE), Sydney, Australia, 1999
[14] M. Kamath, G. Alonso, R. Günthör, C. Mohan, Providing High Availability in Very Large Workflow

Management Systems, Int'l Conf. on Extending Database Technology (EDBT), Avignon, France, 1996
[15] C. Mohan, Workflow Management in the Internet Age, Tutorial, http://www-rodin.inria.fr/~mohan
[16] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz Dittrich, Enterprise-wide Workflow Man-

agement based on State and Activity Charts, in [5]
[17] R. Nelson, Probability, Stochastic Processes, and Queueing Theory, Springer-Verlag, 1995
[18] H. Schuster, J. Neeb, R. Schamburger, A Configuration Management Approach for Large Workflow

Management Systems, Int'l Joint Conf. on Work Activities Coordination and Collaboration (WACC),
San Francisco, California, 1999

[19] R. A. Sahner, K. S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Systems,
Kluwer Academic Publishers, 1996

[20] H.C. Tijms, Stochastic Models, John Wiley and Sons, 1994
[21] Transaction Processing Performance Council, http://www.tpc.org/
[22] Unified Modeling Language (UML) Version 1.1, http://www.rational.com/uml/
[23] Workflow Management Coalition, http://www.wfmc.org/
[24] D. Wodtke, G. Weikum, A Formal Foundation For Distributed Workflow Execution Based on State

Charts, Int’l Conf. on Database Theory (ICDT), Delphi, Greece, 1997

