

XML-enabled Workflow Management for
E-Services across Heterogeneous Platforms

German Shegalov, Michael Gillmann, Gerhard Weikum
University of the Saarland, Department of Computer Science

P.O.Box 151150, D-66041 Saarbruecken
e-mail: {shegalov,gillmann,weikum}@cs.uni-sb.de

WWW: http://www-dbs.cs.uni-sb.de
phone: +49 681 302 4811

Abstract
Advanced e-services require efficient, flexible, and easy-to-use workflow technology that integrates well

with mainstream Internet technologies like XML and Web servers. This paper discusses an XML-enabled
architecture for distributed workflow management that is implemented in the latest version of our Mentor-lite
prototype system. The key asset of this architecture is an XML mediator that handles the exchange of business
and flow control data between workflow and business-object servers on one side and client activities on the other
side via XML messages over http. Our implementation of the mediator has made use of Oracle’s XSQL servlet.
The major benefit of the advocated architecture is that it provides seamless integration of client applications into
e-service workflows with scalable efficiency and very little explicit coding, in contrast to an earlier, Java-based,
version of our Mentor-lite prototype that required much more code and exhibited potential performance
problems.

1 Introduction

1.1 Motivation

Advanced e-services, such as electronic auctions (e.g., Ebay), all-in-one travel planning (e.g., Expedia),
automation of real-estate purchase (e.g., Realtor), or computerized court trials with electronic lawyers (still
fictituous today), pose both old and new problems to the underlying software infrastructure. The new ones
include, for example, the setup of behavioral contracts between services for the composition of value-added,
higher-level services (see, e.g., [AFH+99, BCL+00, CIJ+00, Fra99, HLG+00, LBS+99]) or the use of such
services from mobile agents (see, e.g., [CZB+99, KSD99, Pap99, Vei99]). Among the old, but still mostly
unsolved, problems is the integration or mediation of the business objects, typically running on heterogeneous
platforms, as the basic building blocks out of which e-services are composed. The challenge in this lies in
making the integration task as simple as possible, so that new e-services can be configured, deployed, and
operated at very little cost (i.e., without an expensive data and system administration staff).

A business object (e.g., a purchase order or a mortgage) consists of a collection of data and some limited-
scope piece of program logic (ideally both encapsulated and hidden behind an ADT interface). The classical
approach for integration is to develop a unified access interface to the heterogeneous data itself through schema
reconciliation and explicit data transformations (see, e.g., [ACM90]). However, it can be taken for granted that
this kind of relatively tight integration requires intensive human efforts, and quite a few (overly) ambitious
projects towards enterprise-wide data models are known as expensive failures. A much cheaper and more viable
approach for integrating business objects is to wrap objects with explicit business-logic interfaces and "simply"
orchestrate the control and data flow between objects at the level of an object-flow or work-flow mediator.
Object-oriented middleware like CORBA, DCOM, or EJB has aimed at this kind of integration, but is more

focused on wrapping the components and routing primitive requests rather than the actual mediation. The
technology that really has all the ingredients to solve this integration issue is workflow management (see, e.g.,
[GSC+99, Ley95]). A workflow consists of a set of activities, automated or intellectual/interactive ones, with
explicitly specified and system-enforcable control and data flow. Each activity can in turn be viewed as invoking
a method on a business object.

State-of-the-art workflow management systems, in conjunction with the underlying middleware such as
CORBA, are indeed capable of integrating business objects for setting up a new e-service in amazingly short
time and thus with impressively little cost (e.g., virtually no code-writing or all code automatically generated
from easily constructed high-level specifications). However, the pace of the ongoing trends towards functionally
richer e-services on the Internet has been so fast that the vendors of workflow management systems have had
hardly any time to prepare their products for these new settings. So probably no workflow product is ready for
deployment on Internet-wide, arbitrarily heterogeneous platforms on a short-notice basis. The issues of how to
leverage the latest developments on XML-centered technologies and how to combine the best of several worlds
into an easy-to-use and mostly administration-free infrastructure are widely open.

1.2 Contribution

This paper proposes an architecture that leverages XML technology for Internet-wide workflow management
within advanced e-services. The key concept is to "marshall" all activity calls into special kinds of XML
documents and to handle the flow between the workflow engine and the activities by some kind of XML
mediator using http as the primitive transport protocol. Thus, workflow engines as well as activities and the
corresponding business objects can reside on their native platforms without any special measures, and the XML
mediator enables the cross-talk among all these components with all data exchanges in the form of XML
documents. None of the involved parties, clients, business-object servers, or workflow servers, needs to know
any details about the other parties. Clients need no software other than an Internet browser, yet handle
interactions with workflows and business objects much more efficiently than with a full-blown Java
implementation.

The paper presents this architecture and contrasts it with a more traditional setup that builds more heavily on
CORBA (or equivalently EJB) and Java. We believe that this XML mediator approach will be beneficial as a
general infrastructure and is not necessarily tied to our current context of workflow management. Its salient
properties are the following:
• It builds on a rather lean software infrastructure that is virtually ubiquitous anyway: an Internet browser with

simple XML/XSL support on the client side, an http server with efficient support for servlets at the mediator
level, and standard SQL via JDBC and the most basic object-oriented middleware services (either CORBA
or EJB) to interoperate with the various business-object and workflow servers.

• As a consequence, the entire infrastructure is very easy to set up and administer. In particular there are no
extra software installations on clients and no special requirements on the mediator’s http server; so much of
the usual headache with software distribution, compatibility of software releases, and general maintenance is
eliminated (or reduced to what is necessary for a ubiquitous standard infrastructure anyway).

• The mediator as a "middle man" bundles the traffic between the workflow and business-object servers on
one side and (automatic as well as interactive) applications on the other side. So the mediator can reuse
permanently established threads and connections with the backend servers, and generally enjoys all the
scalability benefits that have made three-tier architectures so prevalent on the Web. Furthermore, the
computing resources of the mediator can be exploited to alleviate the load on the client or business-object
server side, in adaptation to where the bottlenecks are. In particular, the mediator can push necessary
transformations on the XML data that is routed between business objects and clients either to the client,
making more use of XSL and browser-embedded scripts, or to the business-object servers, making more use
of advanced SQL or native XML handling capabilities, or it can choose to do the bulk of this work by itself.
The proposed architecture has been fully prototyped in the latest version of our Mentor-lite distributed

workflow management system [GWS+00, WGR+00]. The XML mediator itself is implemented using Oracle’s

XSQL servlet, run under the Apache Web application server, with a small number of very compact so-called
custom XSQL action handlers. All client functionality is embedded in an Internet browser (specifically IE5) and
implemented with a fairly small amount of XSL and DHTML code.

1.3 Outline

The rest of the paper is organized as follows. Section 2 mentions related work. Section 3 discusses system
architectures for Internet-based workflow, including the XML-enabled architecture advocated here. Section 4
discusses more specifically how the control and data flow among workflow activities is handled by the XML
mediator. Section 5 presents a simple e-commerce scenario that we have implemented on our prototype system.

2 Related Work
Architectural issues of workflow management systems have been intensively explored in research and

development (see, e.g., [DKO+98, GHS95, JB96, LR99]). Much emphasis has been put on scalability and
robustness to ensure industrial-strength service. Today’s most advanced products may indeed claim that they are
ready for mission-critical, enterprise-wide use in terms of performance and availability. However, much of this
virtue comes at the cost of a fairly large system footprint (e.g., memory requirements of the workflow system)
and careful administration.

Combining workflow technology with the Internet has been successfully addressed with regard to browser-
based user interfaces (e.g., for worklists) and transactional as well as "transport level" protocols (see, e.g.,
[Moh99, SDD+97]), but there has been very little work on a deeper integration of Web and workflow
technologies and their software infrastructures. In fact, the latent workflow functionality in most of today’s e-
commerce applications has mostly been implemented in an ad-hoc manner; typically the workflow state and
context is maintained by a collection of small servlets (e.g., Active Server Pages in IIS or PHP scripts under
Apache).

XML technology has been detected by the workflow community only recently. At this stage, the work in this
direction appears to be limited to casting workflow specifications and system interface descriptions into XML
format (see, e.g., a draft of the Workflow Management Coalition [WfMC00]). This work is on the right track,
but there is hardly any implementation work along these lines (one exception that we are aware of being the
recent work of [CHD+99]). XML as a container for remote method invocation, with http as an underlying
"transport" protocol, is intensively pursued in Microsoft’s SOAP protocol (Simple Object Access Protocol) and
the corresponding efforts towards a W3C standard [SOAP]. However, SOAP aims to be a lowest common
denominator among all classes of Internet applications, whereas our work focuses on richer, workflow-style,
advanced e-services.

3 System Architecture
In this section we discuss different system architectures for Internet-based workflow management. We

begin, in Subsection 3.1, with the reference architecture of the Workflow Management Coalition [WfMC], an
industry consortium that aims to standardize workflow-system interfaces for interoperability; this serves as a
baseline against which we can compare the architectures of real systems. In Subsection 3.2 we present the
architecture of our prototype system, coined Mentor-lite [MWG+99], as it looked a year ago. As this version of
our prototype made extensive use of Java and CORBA services, we refer to it as the Java-based architecture.
Only recently we have re-architected the Mentor-lite system, and the latest version is centered around XML.
This is the architecture that we believe is most suitable for advanced e-services; it will be introduced in
Subsection 3.3.

3.1 Reference Architecture

Workflow specification languages range from Petri-net-like or statechart-style high-level visual languages or
specific types of (modal) logic all the way to scripting or simply (unstructured) collections of (ECA) rules. A
workflow specification is often derived from a (business) process modeling and definition tool such as Aris
Toolset. Upon initiation by a user a workflow specification is instantiated and interpreted by a workflow engine.
One or more engines (e.g., on an SMP computer) form the workflow enactment service. During its execution a
workflow spawns activities. These activities correspond to either client applications or other invoked
applications; typically the first correspond to interactive activities such as intellectual decision making (possibly
using tools such as spreadsheets) and the second to automated activities such as host applications. Workflows
can spawn entire subworkflows that may be controlled by other, "external" workflow engines (running software
from different vendors on servers that belong to different organizations). Finally, for analyzing workflow usage
patterns and providing feedback to the business process re-engineering lifecycle, administration and monitoring
tools are needed.

All these components and their interactions are cast into a nice framework known as the reference model of
the Workflow Management Coalition [WfMC], depicted in Figure 1. Most importantly, the WfMC has also
issued standards for the five relevant APIs in this architecture. In [WfMC98] they discuss the impact of modern
Internet technologies on the various APIs of the reference architecture. Obviously and most importantly, API2
should consider the fact that Internet browsers are powerful tools and already provide capabilities to embed a
rich suite of client applications through plug-ins, ActiveX, Java applets, etc. As for API3 the WfMC brings up
for consideration the CORBA-oriented IIOP (Internet Inter-ORB Protocol) and the services of EJB (Enterprise
Java Beans) for invoking appropriately wrapped host applications. Finally, the WfMC also discusses the
potential benefit of casting all workflow APIs into Java for Internet-enabling. Although these considerations by
the WfMC are very useful in sorting out the various issues and establishing a common framework, they stay at
an abstract level and are of very limited help in making design decisions for a concrete implementation. Most
recently, the WfMC has also issued a document on Wf-XML [WfMC00] that describes how calls and parameters
of the various APIs can be cast into XML format. However, how these XML messages should actually be
embedded into the architecture of a real system is left widely open.

Figure 1 : Reference architecture of the WfMC

3.2 Java-based Architecture

Following the proliferation of Java, our first implementation of the Mentor-lite prototype [MWG+99] has
made intensive use of Java on the client side and CORBA as general middleware. Our workflow engine, an
interpreter for a specifically designed statechart dialect [WW97], is run as a CORBA application server, coined
DSIserver (for Distributed Statechart Interpreter), or as a collection of such servers on different computers with
support for decentralized execution of subworkflows [GWW+00, MWW+98a, MWW+98b]. More specifically,
we have used Iona’s Orbix product [IONA], one of the few industrial-strength and CORBA-compliant request
brokers. The DSIserver does itself make use of an Oracle8i database for reliably tracking the workflow state and
context, and also for managing organizational and history data that is relevant for worklist policies (i.e., role
resolution). This database also holds the current states of worklists and their work items.

CORBA technology is used for the API3 to invoke host applications (i.e., these applications must be
wrapped with an IDL interface), and also for the API4 to other workflow engines. The latter is exploited already
within Mentor-lite when workflows span multiple, organizationally separated sites each of which autonomously
runs a DSIserver for the subworkflows that it is responsible for. In this case the cross-engine communication
takes place via transactional, reliable message queues that we have ourselves implemented as a specific queue
server using Orbix OTS (Object Transaction Service) as a 2PC coordinator. This setup can also handle data
exchanges among heterogeneous workflow servers, running engines from different vendors. However, our
implementation used home-grown message formats (e.g., for signaling changes of the workflow state and
context to another engine). Casting these messages into XML would allow us to coordinate workflows across
heterogeneous platforms.

As for API2 between the workflow engine and the client applications and also API5 with regard to
administration tools, we had chosen to make intensive use of Java applets. Worklists and their work items are
presented to the user by applets embedded in the user’s Internet browser. These applets are dynamically loaded
from a trusted Web server. The initial applet is launched and contacts the DSIserver for work-to-do, which is
implemented as a http call and handled via the IIOP-based OrbixWeb service (which needs to be installed on the
client side). Once running, all applets directly access the Oracle8i database with the relevant worklist data using
JDBC for performance reasons, as opposed to always having an indirection through the DSIserver (i.e., the
workflow engine). When the user selects a specific work item from her worklist, the corresponding client
application is launched as another applet that may itself invoke standard tools (e.g., a spreadsheet program via
ActiveX). This overall architecture of our first Mentor-lite version is illustrated in Figure 2.

Based on this Java-centric version of Mentor-lite we built a mid-sized prototype application for student
enrollments, exams, etc. within our university department. The architecture proved to be viable, but we also
observed a number of performance-critical issues:
1. Loading the Java applets from a trusted server into the client turned out to be time-consuming even within an

Intranet (i.e., over high-speed LAN technology, but involving the usual software overhead). As these applets
access resources outside the browser’s sandbox by making JDBC calls, remote loading from a trusted server
could not be easily eliminated. In addition, we also learned that portability and "zero-admin" installation of
Java applets that include JDBC, CORBA, ActiveX, etc. calls is all but self-guaranteed because of platform-
specific resource restrictions of the browser sandbox.

2. The JDBC calls themselves were relatively expensive, too. The delays due to a good number of message
roundtrips were sometimes user-noticeable. In particular, the setup of a JDBC session is relatively
expensive in terms of message cost. Also, as JDBC is limited to dynamic SQL (i.e., cannot be pre-compiled),
the run-time overhead at the database server was also significant.

3. With every client establishing a JDBC session with the database server, scalability may be a potential
problem. Note, however, that this approach was still signficantly more efficient than the alternative of
involving the Orbix-based DSIserver on each and every interaction with the worklist.

4. For cross-organizational workflows over heterogeneous workflow engines, clients would have to maintain
even more sessions with a suite of underlying servers. With session setup being a fairly expensive part of the
protocols, even powerful clients may exhibit delays that could slow down user interactions.

CORBA

Wrapper

Application

Wrapper

Application

Wrapper

Application

RDBMS

Worklist Applet GUI

DB AccessOrbixWeb

5 2 fill out the purchase order form
5 2 notify the customer
...

select reject ...

JDBC
IIOP

IIOP

HTTP
Download
Java Classes

Web Server
&

Wonderwall

D
SI

se
rv

er

Figure 2 : Architecture of the Java-based Mentor-lite version

3.3 XML-based Architecture

Based on the lessons learned with the Java-based architecture, we redesigned the interfaces to client
applications (API2) and invoked applications (API3) and modified the affected components of the Mentor-lite
prototype system, leading to what we refer to as the XML-based version of Mentor-lite.

In essence, we modified the messages that are received and sent by clients and invoked applications so that
they are in XML format, using a set of Mentor-lite-specific XML tags. Messages now contain the activity name
and workflow id as an XML element, and further XML elements for input and output parameters. For readability
and easier processing we discriminated parameters into two classes:
• Business data are input or output parameters that influence the persistent business objects on which the

activity’s application operates. For example, when invoking an activity to receive a new order, the customer
id, id of the ordered product, and the ordered quantity are business data.

• Flow control data are input or output parameters that "merely" serve to drive the control (and data) flow
among activities in the workflow, but have no long-term impact on persistent business objects beyond the
scope of the current workflow. This category especially includes return codes of activities.
We re-implemented the client software so that it makes use of the browser’s capabilities for local XML

processing (using IE5 in our implementation). The client can filter and sort data through XSL stylesheets, which
is exploited on worklists, and DHTML (Dynamic HTML) is used for presenting XML data in a user-friendly
GUI. This modification led to a drastic reduction of the client code and eliminated performance problem 1 of the
earlier Java-based architecture (see Section 3.2). The client code for the student enrollment and exams
application mentioned in Section 3.2 was reduced to a few hundred lines of JavaScript/JScript and XSL
stylesheets.

To address the other performance problems mentioned in Section 3.2 we introduced an XML mediator as a
"middle man" between the clients and the workflow engines as well as the Oracle8i database server. This
mediator was designed as a servlet that can run in any http server. Its purpose is to feed XML data to the client

activities and invoked applications and collect their XML output, while being able to communicate with the
backend servers much more efficiently. In particular, the mediator servlet can maintain a moderate number of
permanently open JDBC sessions with the Oracle8i database server, which eliminates performance problems 2
and 3 to a large extent (see Section 3.2).

As for the mediator implementation we massively benefitted from the recent release of Oracle’s XSQL
servlet [XSQL] (which was still in Beta status at the time when we did our implementation). This service, which
is implemented in Java and can run in any standard http/servlet server (e.g., Apache, which is used in our
prototype), mediates between the SQL and the XML worlds by converting the results of SQL statements into
XML and generating SQL calls to store incoming XML data via JDBC. Most importantly, XSQL could be easily
extended through so-called custom XSQL action handlers to accomodate functions that are specific to our
workflow environment. We will present details of this customized extension in Sections 4 and 5.

CORBA

Wrapper

Application

Wrapper

Application

Wrapper

Application

MENTOR-lite Custom
XSQL Action Handlers
For Flow Control Data

Built-in
XSQL Action Handlers

For Business Data

ORACLE
XSQL Servlet

RDBMS

<xsql:query>
<xsql:insert-request>
 . . .

<xsql:mlite-ctrl-put>
<xsql:mlite-ctrl-get>

<xsql:mlite-set-page-param>

IIOP

JDBC

HTTP-POST

HTTP-GET

D
SI

se
rv

er

Figure 3 : Architecture of the XML-based Mentor-lite version

The XML mediator is also the ideal middle man in a cross-organizational workflow with highly
heterogeneous server platforms, as it encapsulates the servers with regard to the clients and can maintain a
moderate number of sessions with heterogeneous workflow or business-object servers with reasonable
efficiency. Thus, problem 4 mentioned in Section 3.2 is also, to a large extent, rectified in the new architecture.

The overall XML-based architecture of Mentor-lite is illustrated in Figure 3.

4 The XML Mediator

4.1 Conceptual Overview

The XML mediator provides a high-level abstraction for WFMS interoperability in the context of global
(i.e., cross-enterprise) workflow management. It offers an Internet-based, worldwide accessible interface to
invoke workflows or activities and pass results to the proper destinations. By viewing an activity as an
abstraction of either an invoked application or a subworkflow the mediator enables seamless integration of all

kinds of business activities. As underlying IT infrastructure we consider workflow, application, and business-
object servers, where the latter are typically database servers. Our goal is to hide all infrastructure details
(location of servers etc.) behind a simple XML interface.

<?XML?>
mediator

BPP1
•Business Object Server
•Workflow Server
•Application Server

BPP2
•Business Object Server
•Workflow Server
•Application Server

Interactive Activities

WfMC
APIs 3,4

WfMC
APIs 3,4

WfMC API 2

Figure 4 : Role of the XML mediator

Consider a scenario, depicted in Figure 4, with two enterprises involved in a global business process, i.e., an
e-service such as providing personalized multimedia newspapers to subscribers. Both business process
participants, BPP1, which could be the business portal for this e-service, and BPP2, which could be the content
provider, have their own specific IT solutions. The XML mediator facilitates the interoperation between these
two information systems, thus making global workflows feasible (e.g., for setting up the service of a new
subscriber). There may also be interactive activities, which are introduced solely for the purpose of the global
workflow. The XML mediator hides implementation details (underlying middleware, firewalls etc.) of BPP1 and
BPP2 to each other party and to the interactive activity. Special XML messages that contain only business and
flow control data are exchanged between the various parties via the XML mediator. The mediator is responsible
for the message delivery according to the receiver’s identification and the tags in the XML message. In our
prototype, for example, different tags are used to identify business vs. flow control data, with the latter being
delivered to the workflow engine and the business data sent to an activity or, upon completion of the activity,
back to a database server. Note that an activity is itself an abstraction that comprises interactive activities (the
case on which we mostly focus), automated activities that invoke applications, or activities that encapsulate a
subworkflow running on a different workflow engine.

 We identify activities, which may be subworkflows by a triple <workflow-type, workflow-id, process-id>.
XML messages that are sent to an activity to invoke the activitiy (and whatever application or subworkflow is
behind the activity) are structured as follows:

<?xml version=’1.0’ ?>
<activity name=’some name’ wftype=’x’ wfid=’y’ pid=’z’>
 <business-data>
 <relation1><row1><attr1>...</attr2></row1> ... </relation1>
 ...
 </business-data>
 <workflow-ctrl>
 <variable name=’var-name1’ value=’var-value1’/>
 ...
 </workflow-ctrl>
</activity>

Here we assume that business objects typically reside in relational databases, but extensions to incorporate
object-oriented or object-relational databases would be straightforward. When an activity completes, it sends an
analogously structured XML message with its output to the mediator, which then parses the message and derives
the necessary follow-up actions like storing new or modified business objects and sending flow control data to a
workflow engine.

4.2 Interfaces

Upon the start of an activity, the client’s Web browser obtains its input data in XML format by an http get
call. Analogously, results from the activity are returned by an http post call. The corresponding DSIserver to
which the output should eventually be delivered is referenced by the triple <workflow type, workflow ID,
process ID> which is automatically resolved by the XML mediator using the CORBA name service. So the
application that implements the activity on the client side need not know details about where input data comes
from and how result data is handled further on.

The core of the XML mediator is implemented using Oracle’s XSQL servlet. This Java servlet serves to
combine results of SQL queries into XML documents or to extract SQL updates from such documents. A strong
feature of the XSQL servlet is the option for adding “custom XSQL action handlers” that can be invoked by the
XSQL servlet based on special XML elements, marked by the prefix xsql, in the XSQL page. Both, custom and
built-in action handlers conform to the Java interface shown in Figure 5. The function init (line 2) serves to
initialize the action handler, typically by reading the attributes of the action element. The handleAction function
(line 3) executes the action itself. The parameter rootNode refers to the node that will be inserted in place of the
action element in the resulting XML document. For each appearance of an XSQL action element in the XSQL
page the XSQL servlet creates a new instance of the corresponding action handler class, and invokes the method
init and handleAction on the recently created instance subsequently [XSQL].

1 public interface XSQLActionHandler {
2 void init(XSQLPageRequest env, Element actionElement) ... ;
3 void handleAction(Node rootNode) ... ;
4 }

Figure 5 : Generic Java interface of the XSQL action handlers

Custom action handlers are needed in the context of workflow management to handle the flow control and
business data that are exchanged between an activity and the workflow engine. Table 1 shows three basic XML
elements and corresponding action handlers for reading and manipulating control flow variables, i.e., variables
that are required by the workflow engine for control flow decisions (e.g., return codes).

action element action handler class action

<xsql:mlite-ctrl-get> mlite.controlFlowGetHandler to read flow data

<xsql:mlite-ctrl-put> mlite.controlFlowPutHandler to write flow data

<xsql:mlite-set-page-param> mlite.setPageParamHandler
to read flow data to be set as a parameter
at the page-level

Table 1 : Mentor-lite specific custom XSQL action handlers

To keep the implementation of the custom action handlers simple, we have designed a class hierarchy shown
in Figure 6. All action handler classes are derived from the basic class mliteHelper that includes generic
functions like communication interfaces (e.g., requests to the CORBA name service). The class mliteHelper

itself extends the XSQLActionHandlerImpl class, a base implementation of XSQL action handlers that includes a
set of useful helper methods (e.g., for error handling and monitoring). The XSQLActionHandlerImpl class is part
of the runtime library by Oracle.

XSQLActionHandlerImpl

mlite.mliteHelper

mlite.controlFlowGetHandler mlite.controlFlowPutHandler mlite.setPageParamHandler

Figure 6 : Class hierarchy of the action handlers

4.3 Implementation

Figure 7 shows the implementation of the mliteHelper class that extends the base implementation of the
XSQLActionHandlerImpl class. It provides a simple API to identify the workflow engine responsible for the
current workflow instance and the primary error handling that is necessary for using the CORBA name service.

 1 public abstract class mliteHelper extends XSQLActionHandlerImpl {
 2 private static NamingContext rootContext;
 3 private static org.omg.CORBA.ORB orb;
 4 static {
 5 System.err.print("initializing CORBA interface ... ");
 6 orb = ORB.init((String[]) null, null);
 7 System.err.println("done");
 8 System.err.print("initializing NamingService ... ");
 9 try {
10 org.omg.CORBA.Object ns =
11 orb.resolve_initial_references("NameService");
12 rootContext = NamingContextHelper.narrow(ns);
13 } catch(Exception e) {
14 System.err.println(e.getMessage());
15 }
16 System.err.println("done");
17 }
18 public dsiserver getWfEngine(String engineName) throws Exception {
19 System.err.print("Search for the engine " + engineName + " ... ");
20 NameComponent[] name = new NameComponent[1];
21 name[0] = new NameComponent(engineName, null);
22 org.omg.CORBA.Object wfe = rootContext.resolve(name);
23 System.err.println("done");
24 return mlite.dsiserverHelper.narrow(wfe);
25 }
26 public void insertException(org.w3c.dom.Node n, Exception e) {
27 this.reportError(n, e.toString());
28 e.printStackTrace();
29 }
30 }

Figure 7 : Implementation of action handler mliteHelper

The lines 4 to 17 initialize the CORBA interface and connect to the name service. The function getWfEngine
(lines 18 to 25) determines the workflow engine that is responsible for the execution of the current workflow
instance. So the application programs that implement the workflow activities do not need to know anything
about the location of the engine or its distribution over the network. The function insertException (lines 26 to
29) supports exception handling.

/* error handling code isn’t shown here */
 1 public class controlFlowPutHandler extends mliteHelper {
 2 public void handleAction(Node rootNode) throws SQLException {
 3 Document xmlDoc = this.getPageRequest().getPostedDocument();
 4 Element xmlRoot = xmlDoc.getDocumentElement();
 5 String wftype = xmlRoot.getAttribute("wftype");
 6 String wfid = xmlRoot.getAttribute("wfid");
 7 String pid = xmlRoot.getAttribute("pid");
 8 NodeList wfCtrlBlock =
 9 xmlRoot.getElementsByTagName("workflow-ctrl");
10 NodeList variables =
11 ((Element) wfCtrlBlock.item(0)).getElementsByTagName("variable");
12 int varcount = variables.getLength();
13 String engine_name = "dsiserver" +
14 wftype + '_' +
15 wfid + '_' +
16 pid;
17 try {
18 dsiserver wfengine = this.getWfEngine(engine_name);
19 Element curr_elem;
20 String varval;
21 for(int i=0; i < varcount; i++) {
22 curr_elem = (Element) variables.item(i);
23 varval =
24 curr_elem.getAttribute("name") +
25 '=' +
26 curr_elem.getAttribute("value");
27 wfengine.put(varval, "");
28 }
29 wfengine._release();
30 this.reportStatus(rootNode,
31 "result",
32 varcount + " variables inserted");
33 } catch(Exception e) {
34 insertException(rootNode,e);
35 };
36 }
37 }

Figure 8 : Implementation of action handler controlFlowPutHandler

As an example of the implementation of a workflow-specific action handler, Figure 8 shows the Java code
for the controlFlowPutHandler class that is associated with the action element <xsql:mlite-ctrl-put> and will be
automatically called by the XSQL servlet when processing the XML output of an activity. The
controlFlowPutHandler class overwrites the method handleAction of the base implementation. When
handleAction is invoked, we obtain a reference to the posted XML document as an XML DOM object by calling
the method getPostedDocument of the interface XSQLPageRequest in line 3. Subsequently we are able to
manipulate or read nodes of the posted XML document in lines 4 to 7. First we extract the attributes wftype,
wfid, and pid from the root node activity, i.e., the responsible DSIserver can be identified by calling the method

getWfEngine of the base class mliteHelper. The list of the control flow variables is obtained by calling the
getElementsByTagName (lines 8 to 11) on the workflow-ctrl DOM element object. After the connection to the
workflow engine is established (line 18), flow control data can be transferred to the workflow engine by calling
wfengine.put method (lines 21 to 28).

5 A Simple Case Study
In this section, we present the implementation of a simplified e-commerce scenario as an example of a

workflow application. This case study serves as a proof of concept for our mediator approach. In addition, it
shows that the implementation of new workflow applications for e-services can be carried out in a
straightforward manner in very short time and thus with very low cost. In the example, we focus on the interface
between the workflow engines and the applications invoked for interactive activities.

The workflow is based on the TPC-C order-entry benchmark for transaction systems [TPC], with the key
difference that we combine multiple transaction types into a workflow and further enhance the functionality (see
[GMW+99] for a full description of this workflow).

Shipment_S

CreditCardCheck_S NewOrder_S
[PayByCreditCard and
NewOrder_DONE]
/st!(CreditCardCheck) [PayByBill and

NewOrder_DONE] [CreditCardOK and
CreditCardCheck_DONE]

[CreditCardNotOK and
CreditCardCheck_DONE]

[in(Notify_EXIT_S) and
in(Delivery_EXIT_S) and

PayByCreditCard]
/st!(CreditCardCharge)

CreditCardCharge_S

EC_EXIT_S

[CreditCardCharge_DONE]
Payment_S

[Payment_DONE]

[in(Notify_EXIT_S) and
in(Delivery_EXIT_S) and
PayByBill]
/st!(Payment)

/st!(NewOrder)

EC_SC

EC_INIT_S

Notify_S Notify_EXIT_S

[Notify_DONE] /st!(Notify)

Notify_INIT_S

FindStore_S CheckStore_S
 [ItemsLeft and

FindStore_DONE]
/fs!(ItemAvailable)
st!(CheckStore)

[ItemAvailable and
CheckStore_DONE]

[AllItemsProcessed]

/st!(FindStore)

Delivery_EXIT_S

Delivery_INIT_S

Figure 9 : State chart of the electronic commerce (EC) workflow example

Figures 9 and 10 show the workflow specification as a state and activity chart, a formalism [Har87, HG97]
that has been adopted for the behavioral dimension of the UML industry standard and is used in our prototype

system Mentor-lite [WW97, MWW+98a]. Each state in Figure 9 corresponds to an activity in Figure 10 or one
(or multiple, parallel) subworkflow(s), except for initial and final states. We assume that for every activity act
the condition act_DONE is set to true when act is finished.

EC_AC

@EC_SC

NewOrder

FindStore

CreditCardCheck

CreditCardCharge

Notify

CheckStore

Payment

StoreID, Item list, ...

OrderID, e-mail address, ...

 Name, Date, Credit Card Number, Amount, ...

 Name, Date, Credit Card Number, Amount, ...

Acknowledgment

Item list,
OrderID,...

OrderID, Address, Amount, ...

Order Number,
Amount, ...

Figure 10 : Activity chart of the electronic commerce (EC) workflow example

Figure 11 : Output of the DHTML application for activity NewOrder

The workflow proceeds as follows. Initially, the NewOrder activity is started. After the termination of
NewOrder, the control flow branches. If the customer wants to pay by credit card, the condition
PayByCreditCard is set and the CreditCardCheck activity checks the validity of the credit card. If there are
problems with the credit card, the workflow is terminated. Otherwise the shipment, represented by the nested
top-level state Shipment_S, is initiated spawning two orthogonal/parallel subworkflows. The first subworkflow
has only one activity that sends a notification mail. The second subworkflow (sequentially) invokes for each
ordered item an activity that identifies a store from which the item could be shipped. Then, a second activity
instructs the store to deliver the item and waits for an acknowledgement. The two activities FindStore and
CheckStore are repeated within a loop over all ordered items. After the termination of both subworkflows, the
control flow is synchronized, and branches again depending on the mode of payment. The workflow terminates
in the state EP_EXIT_S.

In the following, we look closer at the NewOrder activity to illustrate the role of the XML mediator in the
activity handling. This activity is implemented as a Dynamic HTML (DHTML) application (see Figure 11). In
general there are two approaches to handle XML on the client side using Microsoft IE 5.0. First, the XML data
can be transformed by the stylesheet engine of the browser into DHTML after downloading XML and XSL.
Alternatively, a client application can be implemented in DHTML directly. In the latter case so-called "XML
data islands" [XML] can be defined within a DHTML document, in order to separate the input data from the
presentation. An XML data island can easily be bound ("Data Binding" [XML]) to an HTML element as a
dynamic source object (DSO) to be visualized within the DHTML document. The main advantage of using this
Data Binding is that the HTML element will be updated automatically if the corresponding DSO has changed.
Once initialized in the browser, the DHTML document for the NewOrder activity contains an empty XML data
island <xml id=”dsoCustomer”></xml>. The <xml id …> tag is a special HTML tag for defining XML data
islands. For convenience the user may simply input the customer id and click on the “Check This” button. On
this event the function checkCustomer() (Figure 12) will be executed, which loads the content of the XSQL page
customer.xsql (Figure 13), processed by XSQL servlet, into the XML DOM object dsoCustomer (line 4). Form
fields like "Phone" are automatically filled with the content of the <phone> tag of dsoCustomer (line 6 in Figure
14) by specifying <input size="50" name=”phn” datasrc="#dsoCustomer" datafld="phone"> in the DHTML
script. The attributes datasrc and datafld refer to the DSO object and the field of interest in this object. All other
form fields are filled analogously (lines 3 to 14).

1 function checkCustomer() {
2 dsoCustomer.async = false;
3 url = "customer.xsql?customerID=" + customer.ID.value;
4 dsoCustomer.load(url);
5 }

Figure 12 : JScript function for fetching the customer data according to the customer ID

(part of the DHTML code for activity NewOrder)

 1 <?xml version="1.0" ?>
 2 <customer connection="mlite-demo">
 3 <xsql:query xmlns:xsql="urn:oracle-xsql"
 4 rowset-element="" id-attribute=""
 5 row-element="" tag-case="lower">
 6 SELECT *
 7 FROM CUSTOMERS
 8 WHERE id={@customerID}
 9 </xsql:query>
10 </customer>

Figure 13 : XSQL page customer.xsql

 1 <?xml version="1.0" ?>
 2 <customer>
 3 <id>2</id>
 4 <name>Abraham O´Brian</name>
 5 <mail>a.obrian@mailbox.com</mail>
 6 <phone>+1(802)1234567890</phone>
 7 <address>
 8 <street>3384 Alohea Ave</street>
 9 <city>Honolulu</city>
10 <state>HI</state>
11 <zip>96816-2202</zip>
12 </address>
13 <balance>0</balance>
14 <discount>0</discount>
15 </customer>

Figure 14 : Output produced by XSQL servlet after processing customer.xsql

Unlike customer data, items can be added to the “shopping cart” several times. To avoid repeatedly checking
item Ids by calling the XML mediator, we prefetch relevant parts of the product catalog into the browser by
defining an xml data island <xml id=”dsoProducts” src=”products.xsql”></xml>. The XSQL page products.xsql
and an example of the resulting document are shown in Figures 15 and 16. Now suppose the user inputs id=7
and quantity=1 and clicks on the “Add Item” button. In order to check the details of this item we call
dsoProducts.selectSingleNode(“//product[id=7]”). All manipulations on the DHTML page such as adding items
are processed locally without involving any servers or the XML mediator.

1 <?xml version=’1.0’ ?>
2 <products connection=’mlite-demo’>
3 <xsql:query xmlns:xsql="urn:oracle-xsql" …>
4 select * from products
5 </xsql:query>
6 </products>

Figure 15 : XSQL page products.xsql

 1 <?xml version="1.0"?>
 2 <products>
 3 <product>
 4 <id>2</id>
 5 <description>HDD 20MB</description>
 6 <price>199.95</price>
 7 <store>Detroyt-Store</store>
 8 <supply>100</supply>
 9 </product>
10 <product>
11 <id>3</id>
12 <description>Printer Laser 1600</description>
13 <price>400</price>
14 <store>Boston-Store</store>
15 <supply>310</supply>
16 </product>
 …
 </products>

Figure 16 : Resulting content of the XML data island

When the NewOrder activity is finished, i.e., the user has entered all ordered items and pushed the submit
button, an XML document that includes both the business and flow control data is sent to the XSQL servlet by a
http post call. An example for such an output is given in Figure 17. The structure of the output is generic and the
same for all activities. The <activity> element in line 2 specifies the activity and the corresponding workflow
instance followed by a block of business data (lines 3 to 18) and a block of flow control data (lines 19 to 23).

 1 <?xml version="1.0"?>
 2 <activity name="NewOrder" wftype="5" wfid="45" pid="1">
 3 <business-data>
 4 <order>
 5 <row>
 6 <order_id>1</order_id>
 7 <customer_id>3</customer_id>
 8 <prod_id>100223</prod_id>
 9 <count>12</count>
10 </row>
11 <row>
12 <order_id>1</order_id>
13 <customer_id>3</customer_id>
14 <prod_id>100002</prod_id>
15 <count>1</count>
16 </row>
17 </order>
18 </business-data>
19 <workflow-ctrl>
20 <variable name="PayByCreditCard" value="1"/>
21 <variable name="PayByBill" value="0"/>
22 <variable name="NEWORDER_OK" value="1"/>
23 </workflow-ctrl>
24 </activity>

Figure 17 : XML output of the activity NewOrder

The XSQL page that receives the document is shown in Figure 18. The <xsql:insert-request> action element
(lines 3 to 5), one of the built-in action elements from Oracle, refers to an XSQL action handler that stores the
business data in the specified table. The action element <xsql:mlite-ctrl-put> (line 6) is assigned to the action
handler controlFlowPutHandler that transfers the flow control data to the DSIserver, i.e., the workflow engine,
as described in Section 4.

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <activity xmlns:xsql="urn:oracle-xsql" connection="mlite-demo">
3 <xsql:insert-request
4 tag-case="lower"
5 table="orders"/>
6 <xsql:mlite-ctrl-put/>
7 </activity>

Figure 18 : NewOrder.xsql for http post

The bottom line of this walk-through of our example scenario is that surprisingly little code is needed to
build a simple but not unrealistic e-service application.

6 Concluding Remarks
In this paper we have described an XML-enabled architecture for distributed workflow management on the

Internet. The architecture is fully implemented in our Mentor-lite prototype system. In comparison to our earlier,
Java-centric, implementation, we have achieved both substantial performance improvements and also a drastic
reduction in the coding that is necessary for building workflow applications. Especially for the latter reason we
believe that this architecture, that builds on ubiquitous standard infrastructure enhanced by an XML mediator, is
particularly well geared for easy, fast, and inexpensive setup of advanced e-services on the Internet.

To this end, it is crucial that clients do not need any specific software installations or setups, as it would be a
nightmare to make millions of potential clients ready for e-service usage and maintain their local software
environment as services undergo evolution. In this regard, Java applets, upon which our earlier prototype relied,
are much less ubiqituous than what marketing makes us believe, once these applets include non-trivial resource
manipulation such as IIOP calls. Our current implementation, as presented in this paper, avoids these
complications by delegating these non-trivial resource accesses to the XML mediator as an interface between
workflow engines and activities. This way XML technology allows clients to participate in Internet workflows
and e-services without any special setup and with user-acceptable performance.

Future work includes the practical proof of concept that the mediator can also be leveraged for the
communication between different WFMSs (API 4 of the WfMC reference architecture). Furthermore, we plan to
extend the mediator to support transactional communication (i.e., using 2PC among workflow engines,
applications, and business-object servers). So, in the long term, the mediator should evolve into a standard
middle tier for data exchange between WFMSs and applications as well as between different WFMSs.

References
[ACM90] ACM Computing Surveys, Special Issue on Heterogeneous Databases, Volume 22, Number 3, 1990
[AFH+99] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, N. Weiler: WISE: Business to Business E-

Commerce, Int’l. Workshop on Research Issues in Data Engineering (RIDE), Sydney, Australia, 1999
[BCL+00] C. Bornhövd, M. Cilia, C. Liebig, A. Buchmann: An Infrastructure for Meta-Auctions, Int'l. Workshop on

Advanced issues of E-Commerce and Web-Based Information Systems (WECWIS), San Jose, California,
2000

[CHD+99] Q. Chen, M. Hsu, U. Dayal, M. Griss: Multi-Agent Cooperation, Dynamic Workflow and XML for E-
Commerce Automation, Technical Report, Hewlett Packard Software Technology Laboratory, 1999

[CIJ+00] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M.-C. Shan: eFlow: a Platform for Developing and Managing
Composite e-Services, Technical Report, Hewlett Packard Software Technology Laboratory, 2000,
http://www.hpl.hp.com/techreports/2000/HPL-2000-36.html

[CZB+99] P. Chrysanthis, T. Znati, S. Bunjeree, S.-K. Chang: Establishing Virtual Enterprises by means of Mobile
Agents, Intl'l. Workshop on Rea´search Issues in Data Engineering (RIDE), Sydney, Australia, 1999

[DKO+98] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth (Eds.): Workflow Management Systems and
Interoperability, NATO Advanced Study Institute, Springer-Verlag, 1998

[Fra99] P. Fraternali: Tools and Approaches for Developing Data-Intensive Web Applications: A Survey, ACM
Computing Surveys, Vol. 31, No. 3, 1999

[GHS95] D. Georgakopoulos, M. Hornick, A. Sheth: An Overview of Workflow Management: From Process Modeling
to Workflow Automation Infrastructure, Distributed and Parallel Databases, Vol. 3, No. 2, 1995

[GMW+99] M. Gillmann, P. Muth, G. Weikum, J. Weissenfels: Benchmarking of Workflow Management Systems (in
German), German Conf. on Database Systems in Office, Engineering, and Scientific Applications (BTW),
Freiburg, Germany, 1999

[GSC+99] D. Georgakopoulos, H. Schuster, A. Cichocki, D. Baker: Managing Process and Service Fusion in Virtual
Enterprises, Information Systems, Vol. 24, No. 6, 1999

[GWS+00] M. Gillmann, J. Weissenfels, G. Shegalov, W. Wonner, G. Weikum: A Goal-driven Auto-Configuration Tool
for the Distributed Workflow Management System Mentor-lite (Demo Description), ACM SIGMOD Conf.
on Modeling of Data (SIGMOD), Dallas, Texas, 2000

[GWW+00] M. Gillmann, J. Weissenfels, G. Weikum, A. Kraiss: Performance and Availability Assessment for the
Configuration of Distributed Workflow Management Systems, Int’l Conf. on Extending Database Technology
(EDBT), Konstanz, Germany, 2000

[Har87] D. Harel, State Charts: A Visual Formalism for Complex Systems, Science of Computer Programming, Vol.
8, 1987

[HG97] D. Harel, E. Gery: Executable Object Modeling with Statecharts, IEEE Computer, Vol. 30, No. 7, 1997
[HLG+00] Y. Hoffner, H. Ludwig, C. Gülcü, P. Grefen, Architecture for Cross-Organisational Business Processes, Int'l.

Workshop on Advanced issues of E-Commerce and Web-Based Information Systems (WECWIS), San Jose,
California, 2000

[IONA] IONA Technologies, http://www.iona.com
[JB96] S. Jablonski, C. Bussler: Workflow-Management, Modeling Concepts, Architecture and Implementation,

International Thomson Computer Press, 1996
[KSD99] G. Kaiser, A. Stone, S. Dossick: A Mobile Agent Approach to Lightweught Process Workflow, Int'l. Process

Technology Workshop (IPTW), Villars de Lans, France, 1999
[LBS+99] H. Ludwig, C. Bussler, M.-C. Shan, P. Grefen: Cross-Organizational Workflow Management and Co-

ordination, WACC'99 Workshop Report,
http://www.zurich.ibm.com/%7Ehlu/WACCworkshop/Summary.html

[Ley95] F. Leymann: Workflows Make Objects Really Useful, Int'l. Workshop on High Performance Transaction
Systems (HPTS), 1995

[LR99] F. Leymann, D. Roller, Production Workflow: Concepts and Techniques, Prentice Hall, 1999
[Moh99] C. Mohan, Workflow Management in the Internet Age, Tutorial, Workshop on Next Generation Information

Technologies and Systems (NGITS), Zikhron-Yaakov, Israel, 1999, http://www-rodin.inria.fr/~mohan
[MWG+99] P. Muth, J. Weissenfels, M. Gillmann, G. Weikum: Integrating Light-Weight Workflow Management

Systems within Existing Business Environments, Int'l Conf. on Data Engineering (ICDE), Sydney, Australia,
1999

[MWW+98a] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz Dittrich, Enterprise-wide Workflow Management
based on State and Activity Charts, in [DKO+98]

[MWW+98b] P. Muth, D. Wodtke, J. Weissenfels, A. Kotz Dittrich, G. Weikum: From Centralized Workflow Specification
to Distributed Workflow Execution, Intelligent Information Systems, Special Issue on Workflow
Management, Vol. 10, No. 2, 1998

[Pap99] M. Papazoglou: The Role of Agent Technology in Business to Business Electronic Commerce, in: M. Klusch,
O. Shehory, G. Weiß (eds.): Cooperative Information Agents III, Lecture Notes in Computer Science
(LNCS), Vol. 1652, Springer, 1999

[SDD+97] M.-C. Shan, J. Davis, W. Du, Y. Huang: HP Workflow Research: Past, Present, and Future, Technical Report,
Hewlett Packard Software Technology Laboratory, 1997

[SOAP] Microsoft Developer Network (MSDN): Simple Object Access Protocol,
 http://msdn.microsoft.com/workshop/xml/general/soapspec.asp
[TPC] Transaction Processing Performance Council, http://www.tpc.org
[Vei99] J. Veijalainen: Transactions in Mobile Electronic Commerce, in: G. Saake, K. Schwarz, C. Türker (eds.):

Transactions and Database Dynamics, Lecture Notes in Computer Science (LNCS), Vol. 1773, Springer,
1999

[WfMC] Workflow Management Coalition (WfMC), Reference Model and Glossary, http://www.wfmc.org
[WfMC00] Workflow Management Coalition (WfMC), Workflow Standard - Interoperability Wf-XML Binding,

Document Draft, January 2000, http://www.wfmc.org
[WfMC98] Workflow Management Coalition (WfMC), Workflow and Internet: Catalysts for Radical Change, White

Paper, June 1998, http://www.wfmc.org

[WGR+00] J. Weissenfels, M. Gillmann, O. Roth, G. Shegalov, W. Wonner: The Mentor-lite Prototype: A Light-Weight
Workflow Management System (Demo Description), Int’l. Conf. on Data Engineering (ICDE), San Diego,
California, 2000

[WW97] D. Wodtke, G. Weikum, A Formal Foundation For Distributed Workflow Execution Based on State Charts,
Int’l Conf. on Database Theory (ICDT), Delphi, Greece, 1997

[XML] Microsoft Developer Network (MSDN): XML Developer Center, http://msdn.microsoft.com/xml/default.asp
[XSQL] Oracle Technology Network, http://technet.oracle.com/tech/xml/xsql_servlet

