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Abstract

Probabilistic Latent Semantic Indexing is a novel approach
to automated document indexing which is based on a sta-
tistical latent class model for factor analysis of count data.
Fitted from a training corpus of text documents by a gen-
eralization of the Expectation Maximization algorithm, the
utilized model is able to deal with domain{speci�c synonymy
as well as with polysemous words. In contrast to standard
Latent Semantic Indexing (LSI) by Singular Value Decom-
position, the probabilistic variant has a solid statistical foun-
dation and de�nes a proper generative data model. Retrieval
experiments on a number of test collections indicate sub-
stantial performance gains over direct term matching meth-
ods as well as over LSI. In particular, the combination of
models with di�erent dimensionalities has proven to be ad-
vantageous.

1 Introduction

With the advent of digital databases and communication
networks, huge repositories of textual data have become
available to a large public. Today, it is one of the great
challenges in the information sciences to develop intelli-
gent interfaces for human{machine interaction which sup-
port computer users in their quest for relevant informa-
tion. Although the use of elaborate ergonomic elements like
computer graphics and visualization has proven to be ex-
tremely fruitful to facilitate and enhance information access,
progress on the more fundamental question of machine intel-

ligence is ultimately necessary to ensure substantial progress
on this issue. In order for computers to interact more nat-

urally with humans, one has to deal with the potential am-
bivalence, impreciseness, or even vagueness of user requests,
and has to recognize the di�erence between what a user
might say or do and what she or he actually meant or in-
tended.

One typical scenario of human{machine interaction in in-
formation retrieval is by natural language queries: the user
formulates a request, e.g., by providing a number of key-
words or some free-form text, and expects the system to

return the relevant data in some amenable representation,
e.g., in form of a ranked list of relevant documents. Many
retrieval methods are based on simple word matching strate-
gies to determine the rank of relevance of a document with
respect to a query. Yet, it is well known that literal term
matching has severe drawbacks, mainly due to the ambiva-
lence of words and their unavoidable lack of precision as well
as due to personal style and individual di�erences in word
usage.

Latent Semantic Analysis (LSA) [1] is an approach to
automatic indexing and information retrieval that attempts
to overcome these problems by mapping documents as well
as terms to a representation in the so{called latent seman-

tic space. LSA usually takes the (high dimensional) vec-
tor space representation of documents based on term fre-
quencies [14] as a starting point and applies a dimension
reducing linear projection. The speci�c form of this map-
ping is determined by a given document collection and is
based on a Singular Value Decomposition (SVD) of the cor-
responding term/document matrix. The general claim is
that similarities between documents or between documents
and queries can be more reliably estimated in the reduced
latent space representation than in the original representa-
tion. The rationale is that documents which share frequently
co-occurring terms will have a similar representation in the
latent space, even if they have no terms in common. LSA
thus performs some sort of noise reduction and has the po-
tential bene�t to detect synonyms as well as words that refer
to the same topic. In many applications this has proven to
result in more robust word processing.

Although LSA has been applied with remarkable success
in di�erent domains including automatic indexing (Latent
Semantic Indexing, LSI) [1, 3], it has a number of de�cits,
mainly due to its unsatisfactory statistical foundation. The
primary goal of this paper is to present a novel approach
to LSA and factor analysis { called Probabilistic Latent Se-

mantic Analysis (PLSA) { that has a solid statistical foun-
dation, since it is based on the likelihood principle and de-
�nes a proper generative model of the data. This implies in
particular that standard techniques from statistics can be
applied for questions like model �tting, model combination,
and complexity control. In addition, the factor represen-
tation obtained by PLSA allows to deal with polysemous
words and to explicitly distinguish between di�erent mean-
ings and di�erent types of word usage.
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2 The Aspect Model

The core of PLSA is a statistical model which has been called
aspect model [7, 15]. The latter is a latent variable model for
general co-occurrence data which associates an unobserved
class variable z 2 Z = fz1; : : : ; zKg with each observation,
i.e., with each occurrence of a word w2W = fw1; : : : ; wMg
in a document d2D=fd1; : : : ; dNg. In terms of a generative
model it can be de�ned in the following way:

� select a document d with probability P (d),

� pick a latent class z with probability P (zjd),

� generate a word w with probability P (wjz).

As a result one obtains an observed pair (d;w), while the
latent class variable z is discarded.

Translating this process into a joint probability model
results in the expression

P (d;w) = P (d)P (wjd) ; where (1)

P (wjd) =
X
z2Z

P (wjz)P (zjd) : (2)

Essentially, to derive (2) one has to sum over the possible
choices of z which could have generated the observation.
The aspect model is a statistical mixture model [9] which
is based on two independence assumptions: First, observa-
tion pairs (d;w) are assumed to be generated independently;
this essentially corresponds to the `bag{of{words' approach.
Secondly, the conditional independence assumption is made
that conditioned on the latent class z, words w are gen-
erated independently of the speci�c document identity d.
Given that the number of states is smaller than the number
of documents (K� N), z acts as a bottleneck variable in
predicting w conditioned on d.

Notice that in contrast to document clustering models
document{speci�c word distributions P (wjd) are obtained
by a convex combination of the aspects or factors P (wjz).
Documents are not assigned to clusters, they are character-
ized by a speci�c mixture of factors with weights P (zjd).
These mixing weights o�er more modeling power and are
conceptually very di�erent from posterior probabilities in
clustering models and (unsupervised) naive Bayes models
(cf. [7]).

Following the likelihood principle, one determines P (d),
P (zjd), and P (wjz) by maximization of the log{likelihood
function

L =
X
d2D

X
w2W

n(d;w) log P (d;w) ; (3)

where n(d;w) denotes the term frequency, i.e., the number of
times w occurred in d. It is worth noticing that an equivalent
symmetric version of the model can be obtained by inverting
the conditional probability P (zjd) with the help of Bayes'
rule, which results in

P (d;w) =
X
z2Z

P (z)P (wjz)P (djz): (4)

This is just a re-parameterized version of the generative
model described by (1), (2).

3 Model Fitting with Tempered EM

The standard procedure for maximum likelihood estimation
in latent variable models is the Expectation Maximization
(EM) algorithm [2]. EM alternates two steps: (i) an expec-
tation (E) step where posterior probabilities are computed
for the latent variables z, based on the current estimates of
the parameters, (ii) an maximization (M) step, where pa-
rameters are updated for given posterior probabilities com-
puted in the previous E{step.

For the aspect model in the symmetric parameterization
Bayes' rule yields the E{step

P (zjd;w) =
P (z)P (djz)P (wjz)P
z0
P (z0)P (djz0)P (wjz0)

; (5)

which is the probability that a word w in a particular docu-
ment or context d is explained by the factor corresponding
to z. By standard calculations one arrives at the following
M{step re-estimation equations

P (wjz) =

P
d
n(d; w)P (zjd;w)P

d;w0
n(d;w0)P (zjd;w0)

; (6)

P (djz) =

P
w
n(d;w)P (zjd;w)P

d0;w
n(d0; w)P (zjd0; w)

; (7)

P (z) =
1

R

X
d;w

n(d;w)P (zjd;w); R �
X
d;w

n(d;w) : (8)

Alternating (5) with (6){(8) de�nes a convergent procedure
that approaches a local maximum of the log{likelihood in
(3).

So far we have focused on maximum likelihood estima-
tion or, equivalently, word perplexity reduction. One has,
however, to distinguish between the predictive performance
of the model on training data and the expected performance
on unseen test data. In particular, it is to naive to assume
that a model will generalize well on new data just based
on the fact that it might achieve low perplexity on training
data. To derive conditions under which generalization on
unseen data can be guaranteed is actually the fundamental
problem of statistical learning theory. Here, we propose a
generalization of maximum likelihood for mixture models {
called tempered EM (TEM) { which is based on entropic
regularization and is closely related to a method known as
deterministic annealing [13].

Since a principled derivation of TEM is beyond the scope
of this paper (the interested reader is referred to [12, 7]), we
will present the necessary modi�cation of standard EM in an
ad hocmanner. Essentially, one introduces a control param-
eter � (inverse computational temperature) and modi�es the
E-step in (5) according to

P�(zjd;w)=
P (z) [P (djz)P (wjz)]�P
z0
P (z0) [P (djz0)P (wjz0)]�

: (9)

Notice that � = 1 results in the standard E{step, while for
� < 1 the likelihood part in Bayes' formula is discounted
(additively on the log{scale).

It can be shown, that TEM minimizes an objective func-
tion known as the free energy [11] and hence de�nes a conver-
gent algorithm. While temperature{based generalizations of
EM and related algorithms for optimization are often used
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as a homotopy or continuation method to avoid unfavorable
local extrema, the main advantage of TEM in our context
is to avoid over�tting. Somewhat contrary to the spirit of
annealing as a continuation method we propose to utilize
(9) to temper EM by \heating". In order to determine the
optimal value of � we propose to make use of some held{out
portion of the data. This idea can be implemented by the
following scheme:

i. Set �  1 and perform EM until the performance on
held{out data deteriorates (early stopping).

ii. Decrease �, e.g., by setting �  �� with some rate
parameter � < 1.

iii. As long as the performance on held-out data improves
continue TEM iterations at this value of �.

iv. Stop on �, i.e., stop when decreasing � does not yield
further improvements, otherwise goto step (ii).

v. Perform some �nal iterations using both, training and
held-out data.

In our experiments, the typical number of iterations TEM
performed starting from randomized initial conditions was
40� 60, where each iteration requires one pass through the
data, i.e., of the order of R �K arithmetical operations.

4 Probabilistic Latent Semantic Analysis

4.1 Latent Semantic Analysis

As mentioned in the introduction, the key idea of LSA
[1] is to map documents (and by symmetry terms) to a
vector space of reduced dimensionality, the latent seman-

tic space. This mapping is computed by decomposing the
term/document matrix N with SVD, N = U�Vt, where
U and V are orthogonal matrices UtU = VtV = I and
the diagonal matrix � contains the singular values of N.
The LSA approximation of N is computed by thresholding
all but the largest K singular values in � to zero (= ~�),
which is rank K optimal in the sense of the L2-matrix norm
as is well-known from linear algebra, i.e., one obtains the
approximation ~N = U ~�Vt � U�Vt = N. Note that the
L2{norm approximation does not prohibit entries of ~N to
be negative.

4.2 Geometry of the Aspect Model

Now consider the class-conditional multinomial distribu-
tions P (�jz) over the vocabulary in the aspect model which
can be represented as points on the M � 1 dimensional sim-
plex of all possible multinomials. Via its convex hull, this set
of K points de�nes a K � 1 dimensional sub-simplex. The
modeling assumption expressed by (2) is that all conditional
distributions P (�jd) are approximated by a multinomial rep-
resentable as a convex combination of the class-conditionals
P (�jz). In this geometrical view, the mixing weights P (zjd)
correspond exactly to the coordinates of a document in that
sub-simplex. A simple sketch of the geometry is shown in
Figure 1. This demonstrates that despite of the discrete-
ness of the latent variables introduced in the aspect model,
a continuous latent space is obtained within the space of all
multinomial distributions. Since the dimensionality of the
sub-simplex is K � 1 as opposed to M � 1 for the complete

+ P(w|d)

P(w|z )

P(w|z ) P(w|z )3

spanned 
sub-simplex

simplex

2

1

0

embedding 

KL divergence
projection

Figure 1: Sketch of the probability sub-simplex spanned by
the aspect model.

probability simplex, this can also be thought of in terms of
dimensionality reduction and the sub-simplex can be iden-
ti�ed with a probabilistic latent semantic space.

4.3 Mixture Decomposition vs. Singular Value De-

composition

To stress this point and to clarify the relation to LSA, let
us rewrite the aspect model as parameterized by (4) in ma-

trix notation. Hence de�ne matrices by Û= (P (dijzk))i;k ,

V̂= (P (wjjzk))j;k, and �̂= diag(P (zk))k. The joint prob-
ability model P can then be written as a matrix product
P = Û�̂V̂t. By comparing this decomposition with the
SVD decomposition in LSA, one can point out the following
re-interpretation of concepts of linear algebra:

i. The weighted sum over outer products between rows of
Û and V̂ reects conditional independence in PLSA.

ii. The left/right eigenvectors in SVD are seen to corre-
spond to the factors P (wjz) and the component dis-
tributions P (djz) of the aspect model.

iii. The mixing proportions P (z) in PLSA substitute the
singular values of the SVD in LSA.

Despite this similarity, there is also a fundamental dif-
ference between PLSA and LSA, which is the objec-
tive function utilized to determine the optimal decomposi-
tion/approximation. In LSA, this is the L2{norm or Frobe-
nius norm, which corresponds to an implicit additive Gaus-
sian noise assumption on counts. In contrast, PLSA relies
on the likelihood function of multinomial sampling and aims
at an explicit maximization of the predictive power of the
model. On the modeling side this o�ers important advan-
tages, for example, the mixture approximation P of the co-
occurrence table is a well-de�ned probability distribution
and factors have a clear probabilistic meaning in terms of
mixture component distributions.

4.4 Kullback{Leibler Projection vs. Orthogonal

Projection

Returning to the geometrical view of the aspect model as
sketched in Figure 1, it is interesting to reveal the projec-
tion principle which is implicitly used in the aspect model.
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\plane" \space shuttle" \family" \Hollywood"

plane space home �lm

airport shuttle family movie

crash mission like music

ight astronauts love new

safety launch kids best

aircraft station mother hollywood

air crew life love

passenger nasa happy actor

board satellite friends entertainment

airline earth cnn star

Table 1: Four factors from a 128 factor decomposition of
the TDT-1 corpus. Factor are represented by their 10 most
probable words, i.e., the words are ordered according to
P (wjz).

\Bosnia" \Iraq" \Rwanda" \Kobe"

un iraq refugees building

bosnian iraqi aid city

serbs sanctions rwanda people

bosnia kuwait relief rescue

serb un people buildings

sarajevo council camps workers

nato gulf zaire kobe

peacekeepers saddam camp victims

nations baghdad food area

peace hussein rwandan earthquake

Table 2: Four additional factors from the 128 factor decom-
position of the TDT-1 corpus (cf. Table 1).

Rewriting the log{likelihood in (3) one arrives at

L =
X
d2D

n(d)

"X
w2W

n(d;w)

n(d)
log P (wjd) + log P (d)

#
: (10)

The �rst term in brackets corresponds to the negative
Kullback{Leibler (KL) divergence (or cross{entropy) be-
tween the empirical distribution of words in a document
P̂ (wjd) � n(d;w)=n(d) and the model distribution P (wjd).
For �xed factors P (wjz) maximizing the log{likelihood
w.r.t the mixing proportions P (zjd) thus amounts to pro-

jecting P̂ (wjd) on the subspace spanned by the factors based
on the KL{divergence. This is very di�erent from any type
of squared deviation which would result in an orthogonal
projection (cf. [10] for more details on the geometry of sta-
tistical models).

4.5 Factor Representation: An Example

In order to visualize the factor solution found by PLSA we
present an elucidating example. We have performed exper-
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Figure 2: Folding in a query conisting of the terms \aid",
\food", \medical", \people", \UN", and \war": evolution
of posterior probabilities and the mixing proportions P (zjq)
(rightmost column in each bar plot) for the four factors de-
picted in Table 2 after 1 (�rst row), 2 (second row), 3 (third
row), and 20 (fourth row) iterations.

iments with the TDT-1 collection, which contains 15,862
documents of broadcast news stories [8].1 Stop words have
been eliminated by a standard stop word list, no stemming
or further preprocessing has been performed. Table 1 shows
a reduced representation of 4 factors from a 128 factor solu-
tion.

The �rst two factors have been selected as the ones
with the highest probablity to generate the word \ight",
the last two factors have the highest probability to gener-
ate the word \love". It is interesting to see that the �rst
two factors indeed capture two di�erent types of usage for
the term \ight": ights with planes and ights with space
ships/shuttles. Similarly the last two factors capture two
distinguishable contexts in which the word \love" occurs in

1Since the TDT-1 collection contains documents on topics and

events most readers will be familiar with, this collection has been

preferred over the test collections utilized in Section 6.
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MED CRAN CACM CISI

precision improvement precision improvement precision improvement precision improvement

cos+tf 44.3 - 29.9 - 17.9 - 12.7 -

LSI 51.7 +16.7 �28.7 -4.0 �16.0 -11.6 12.7 �0:0

PLSI-U 63.1 +42.4 32.8 +9.7 19.2 +7.2 14.0 +10.2

PLSI-Q 63.9 +44.2 35.1 +17.4 22.9 +27.9 18.8 +48.0

PLSI-U� 67.5 +52.4 33.3 +11.4 19.5 +8.9 14.7 +15.7

PLSI-Q� 66.3 +49.7 37.5 +25.4 26.8 +49.7 20.1 +58.3

cos+t�df 49.0 - 35.2 - 21.9 - 20.2 -

LSI 64.6 +31.8 38.7 +9.9 23.8 +8.7 21.9 +8.4

PLSI-U 69.5 +41.8 38.9 +10.5 25.3 +15.5 23.3 +15.3

PLSI-Q 63.2 +29.0 38.6 +9.7 26.6 +21.5 23.1 +14.4

PLSI-U� 72.1 +47.1 40.4 +14.8 27.6 +26.0 24.6 +21.8

PLSI-Q� 66.3 +35.3 40.1 +13.9 28.3 +29.2 24.4 +20.8

Table 3: Average precision results and relative improvement w.r.t. the baseline method (cos+tf and cos+t�df, respectively)
for the 4 standard test collections. Compared are LSI, PLSI, and the two PLSI variants (PLSI-U, PLSI-Q) as well as results
obtained by combining PLSI models (PLSI-U� and PLSI-Q�, respectively). An asterix for LSI indicates that no performance
gain could be achieved over the baseline, the result at 256 dimensions with a 1 : 2 combination with the baseline score is
reported in this case.

the TDT-1 collection: real love in the context of family life
as opposed to staged love in the sense of \Hollywood".

4.6 Folding-In Queries

Folding-in refers to the problem of computing a represen-
tation for a document or query that was not contained in
the original training collection. In the LSA approach, this is
simply done by a linear mapping that e�ectively represents
a document or query by the center of its constituent terms
(with an appropriate term weighting) [1]. In PLSA, mix-
ing proportions can be computed by EM iteration, where
the factors are �xed such that only the mixing proportions
P (zjq) are adapted in each M{step.

Table 2 shows some more factors for the TDT-1 collec-
tion which clearly reect the vocabulary dealing with certain
events: the war in Bosnia and Iraq, the crisis in Rwanda,
and the earthquake in Kobe. Based on this four factors,
we have computed a representation for a test query consist-
ing of the terms \aid", \food", \medical", \people", \UN",
and \war". Figure 2 visualizes the evolution of the posterior
probabilities and the mixing proportions in the course of the
EM procedure. The query has been designed such that only
the \Rwanda" factor is matching all query terms (e.g., the
UN was not involved in the Kobe earthquake, there was no
medical aid provided for the Iraq during the Gulf war, etc.).
As can be seen this factor has indeed the highest weight af-
ter the �rst iteration, but notice that the other factors still
account for more than half of the probability. However this
changes after some EM iterations, since the aspect model
introduces feedback between the terms. For example, al-
though a term like \UN" would by itself be best explained
by the \Bosnia" factor, the context of the other query terms

drastically increases the probability that this particular oc-
currence of \UN" is related to the events in Rwanda. The
same mechanism is able to detect \true" polysems [6].

5 Probabilistic Latent Semantic Indexing

5.1 Vector-Space Models and LSI

One of the most popular families of information retrieval
techniques is based on the Vector{Space Model (VSM) for
documents [14]. A VSM variant is characterized by three
ingredients: (i) a transformation function (also called local
term weight), (ii) a term weighting scheme (also called global
term weight), and (iii) a similarity measure. In our experi-
ments we have utilized (i) a representation based on the (un-
transformed) term frequencies (tf) n(d;w) which has been
combined with (ii) the popular inverse document frequency

(idf) term weights, and the (iii) standard cosine matching
function. The same representation applies to queries q such
that the matching function for the baseline methods can be
written as

s(d; q) =

P
w
n̂(d;w)n̂(q; w)pP

w
n̂(d;w)2

pP
w
n̂(q; w)2

; (11)

where n̂(d;w) = idf(w) � n(d;w) are the weighted word fre-
quencies.

In latent semantic indexing, the original vector space rep-
resentation of documents is replaced by a representation in
the low{dimensional latent space and the similarity is com-
puted based on that representation. Queries or documents
which were not part of the original collection can be folded

in by a simple matrix multiplication (cf. [1] for details). In
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Figure 3: Precision{recall curves for the 4 test collections with idf term weighting (lower row) and without (upper row).
Depicted are curves for direct term matching, LSI, and the best performing PLSI� variant.

our experiments, we have actually considered linear combi-
nations of the original similarity score (11) (weight �) and
the one derived from the latent space representation (weight
1 � �), as suggested in [3] (cf. [16] for a more detailed em-
pirical investigation of linear combination schemes for infor-
mation retrieval systems).

5.2 Variants of Probabilistic Latent Semantic In-

dexing

Two di�erent schemes to exploit PLSA for indexing have
been investigated: (i) as a context{dependent unigram

model to smoothen the empirical word distributions in docu-
ments (PLSI-U), (ii) as a latent space model which provides
a low{dimensional document/query representation (PLSI-
Q):

PLSI-U For each document d in the collection, PLSA pro-
vides a multinomial distribution P (wjd) over the vocabulary
as given by (2). This distribution will in general be a smooth

version of the empirical distribution P̂ (wjd) = n(d;w)=n(d).
We propose to utilize P (wjd) (thought of as a document vec-
tor) in order to compute a matching score between a docu-
ment an a query. Notice that P (wjd) is a representation in
the original (word) space obtained by back{projection from
the probabilistic latent space. The vector P (�jd) can (op-
tionally) be weighted with the inverse document frequen-
cies and compared with the (weighted) query by the co-
sine.2 We have considered two ways of combining PLSA-
U with the standard VSM: (i) by linearly combining the
cosine similarities as discussed above for LSI, and (ii) by
additively combining the multinomials like in interpolation
methods for language modeling, i.e., by using the represen-
tation ~P (wjd) = �P̂ (wjd) + (1 � �)P (wjd). Both methods
have empirically shown almost identical performance and we
will only report results of variant (i), because this scheme
has also been used in the case of LSI.

2Folding{in queries, though possible, has empirically shown no ad-

vantages in the PLSI-U scheme.
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Figure 4: Model performance K = 256 on the Cran�eld collection in terms of perplexity (upper plot) and precision (lower plot,
absolute gain vs. baseline for di�erent recall levels) at di�erent values of �. The model has been annealed (0:7 ! � ! 1:0)
and trained up to convergence; no early stopping was performed.

PLSI-Q In this scheme we use the low{dimensional repre-
sentation P (zjd) and P (zjq) to evaluate similarities. There-
fore, queries have to be folded in, which is done by �xing the
P (wjz) parameters and calculating weights P (zjq) by TEM.
How to optimally take into account (global) term weights
in PLSI-Q is an only partially resolved problem. We have
used the ad hoc approach to reweight the di�erent model
components by the quantities

P
w
P (wjz) � idf(w), but this

may not make optimal use of the term weight priors.
One advantage of using statistical models vs. SVD tech-

niques is that it allows us to systematically combine di�er-
ent models. While this should optimally be done accord-
ing to a Bayesian model combination scheme, we have uti-
lized a much simpler approach in our experiments which has
nevertheless shown excellent performance and robustness.
In the PLSI-U we have combined the probability estimates
P (wjd) for models with di�erent number of components K
additively with uniform weights. In the PLSI-Q scheme,
we have simply combined the cosine scores of all models
with a uniform weight. The resulting methods are referred
to as PLSI-U� and PLSI-Q�, respectively. Empirically we
have found the performance to be very robust w.r.t. di�er-
ent (non-uniform) weights and also w.r.t. the �{weight used
in combination with the original cosine score. This is due
to the noise reducing bene�ts of (model) averaging. Notice
that LSA representations for di�erent K form a nested se-
quence, which is not true for the statistical models which
are expected to capture a larger variety of reasonable de-
compositions.

6 Experimental Results

The performance of PLSI has been systematically compared
with the standard term matching method based on the raw
term frequencies (tf) and their combination with the inverse
document frequencies (t�df), as well as with LSI. We have
utilized the following four medium{sized standard document
collection: (i) MED (1033 document abstracts from the Na-
tional Library of Medicine), (ii) CRAN (1400 document ab-
stracts on aeronautics from the Cran�eld Institute of Tech-
nology), (iii) CACM (3204 abstracts from the CACM jour-
nal), and (iv) CISI (1460 abstracts in library science from
the Institute for Scienti�c Information). The condensed re-
sults in terms of average precision recall (at the 9 recall
levels 10% � 90%) are summarized in Table 3. A selection
of average precision recall curves can be found in Figure 3.

Here are some details of the experimental setup: PLSA
models at K = 32; 48; 64; 80; 128 have been trained by
TEM for each data set with 10% held{out data. For PLSI-
U/PLSI-Q we report the best result obtained by any of these
models, for LSI we report the best result obtained for the
optimal dimension (exploring 32{512 dimensions at a step
size of 8). The combination weight � with the cosine baseline
score has been coarsely optimized by hand, MED, CRAN:
� = 1=2, CACM, CISI: � = 2=3; in general slightly smaller
weights have been utilized for the combined models.

The experiments consistently validate the advantages of
PLSI over LSI. Substantial performance gains have been
achieved for all 4 data sets and both term weighting schemes.
In particular, PLSI-Q/PLSI-Q� work particularly well on
the raw term frequencies, where LSI on the other hand
may even fail completely (in accordance with the results
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reported in [1]). We explain this by the fact that large fre-
quencies dominate the squared error deviation used in SVD
and a dampening (e.g., by idf weighting) is necessary to get
a reasonable decomposition of the term/document matrix.
Since PLSI-Q can not take much advantage from the term
weighting scheme, PLSI-U/PLSI-U� performs slightly bet-
ter in this case. We suspect that even better results could
be achieved by an improved integration of term weights in
PLSI-Q. The bene�ts of model combination are also very
substantial. In all cases the (uniformly) combined model
performed better than the best single model. As a sight-
e�ect, model averaging also deliberates from selecting the
\optimal" model dimensionality.

In terms of computational complexity, despite of the it-
erative nature of EM, the computing time for TEM model
�tting at K = 128 was roughly comparable to SVD in a
standard implementation. For larger data sets one may also
consider speeding up TEM by on-line learning [11]. Notice
that the PLSI-Q scheme has the advantage that documents
can be represented in a low{dimensional vector space (as
in LSI), while PLSI-U requires the calculation of the high{
dimensional multinomials P (wjd) which o�ers advantages in
terms of the space requirements for the indexing information
that has to be stored.

Finally, we have also performed an experiment to stress
the importance of tempered EM over standard EM{based
model �tting. Figure 4 plots the performance of a 128 fac-
tor model trained on CRAN in terms of perplexity and in
terms of precision as a function of �. It can be seen that
it is crucial to control the generalization performance of the
model, since the precision is inversely correlated with the
perplexity. In particular, notice that the model obtained by
maximum likelihood estimation (at � = 1) actually deterio-
rates the retrieval performance.

7 Conclusion and Outlook

We have presented a novel method for automated indexing
based on a statistical latent class model. This approach has
important theoretical advantages over standard LSI, since it
is based on the likelihood principle, de�nes a generative data
model, and directly minimizes word perplexity. It can also
take advantage of statistical standard methods for model
�tting, over�tting control, and model combination. The
empirical evaluation has clearly con�rmed the bene�ts of
Probabilistic Latent Semantic Indexing which achieves sig-
ni�cant gains in precision over both, standard term match-
ing and LSI. Further investigation is needed to take full ad-
vantage of the prior information provided by term weighting
schemes. Recent work has also shown that the bene�ts of
PLSA extend beyond document indexing and that a similar
approach can be utilized, e.g., for language modeling [4] and
collaborative �ltering [5].
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