
Informationssysteme
Kapitel 18 – Verwaltung von XML

18.1 Speicherung von XML in relationalen DBS
18.2 Indizierung von XML
18.3 Komprimierung von XML
18.4 XML-Datenbanken

SS 2004 Informationssysteme 18-1

18.1 Requirements for Storing XML
• Lossless reconstruction of documents

– order matters only for document-centric documents
– ignoring comments, processing instructions, entities, …

• Efficient reconstruction of documents
• Efficient query evaluation on documents

– Boolean queries with XPath

• Efficient updates of documents
– Addition, deletion of documents
– Modification of documents

SS 2004 Informationssysteme 18-2

Classification of Storage Methods
• Store complete XML documents in the file system
• Store in relational databases (RDBMS):

– Store the structure of XML documents (i.e., the XML data
graph) in generic tables

– Derive a schema-specific database schema for storing XML
documents (DTD or XML Schema required)

Big advantage: reuse existing RDBMS infrastructure and
experience from the last 20 years

• Natively store XML documents in a dedicated database
But: re-invent all the auxiliary strucures: indexes, cache, disk

organization, transaction management, log, …

SS 2004 Informationssysteme 18-3

XML and RDBMS
XML Relational databases
hierarchical, arbitrary deep structure flat, unnested tables

Elements may appear several times Columns have one fixed value per row

Elements are ordered Rows are unordered

Schema is optional and may be open Schema is mandatory

Complex element content with choices Single schema definition per row

Unclear how to map semistructured XML to well-structured RDBMS

SS 2004 Informationssysteme 18-4

Storing Complete XML Documents
Documents are stored as files or as CLOBs (Character
Large Object) in the database
• Very ineffective to answer queries (scan complete

document collections for answers)
• Build additional index structures:

– Inverted File Index (where does a term appear)
– Inverted File plus structure index to answer structural queries

SS 2004 Informationssysteme 18-5

Inverted File Index
Store appearance of terms in documents (like index of a book)

alphabet
database
index
information
retrieval
semistructured
XML
XPath

(15,42);(26,186);(31,86)
(41,10)
(15,76);(51,164);(76,641);(81,64)
(16,76)
(16,88)
(5,61);(15,174);(25,41)
(1,108);(2,65);(15,741);(21,421)
(5,90);(21,301)

(document-ID,position in the doc)

Answer queries like „xml and index“, „information near retrieval“

But: not suitable for evaluating path expressions
SS 2004 Informationssysteme 18-6

Structure Index
• Compact representation of structural information for

evaluating path expressions

Element (DocID,Pos) Order Parent
dblp (1,1) 1
article (1,10) 1 (1,1)
article (1,251) 2 (1,1)
author (1,21) 1 (1,10)
author (1,64) 2 (1,10)

SS 2004 Informationssysteme 18-7

Used in combination with inverted file to answer queries like
//article[CONTAINS(author,“Weikum“)]

But: only for XML trees
descendant-or-self axis is hard to evaluate
result must be constructed from original document

Generic Relational Tables for XML
Store both structure and content in relational tables

DocID ID ElementName Type Value Order Parent
1 1 dblp 1
1 2 article 1 1
1 3 author String P. Muth 1 2
1 4 author String G. Weikum 2 2
1 5 article 2 1

Elements

ElementDocID ElementID AttributeName Type Value
1 2 key ID MuthW00

Attributes

SS 2004 Informationssysteme 18-8

Mapping XPath to SQL
Queries (e.g. in XPath) are mapped to equivalent

SQL queries on the generic tables:

XPath: //article[author=“G. Weikum“]

SELECT e1.DocID,e1.ID
FROM Elements e1, Elements e2
WHERE e1.ElementName=“article“ AND

e2.ElementName=“author“ AND
e2.Value=“G. Weikum“ AND
e2.parent=e1.ID AND
e1.DocID=e2.DocID;

SS 2004 Informationssysteme 18-9

Generic Table Summary
• No DTD/Schema required to store XML documents in a

relational database
• Result documents are constructed from the SQL result
• descendant-or-self axis is hard to evaluate (cannot be

done directly in SQL!)
• Supports only XML trees (without links)

SS 2004 Informationssysteme 18-10

Generic Representation of Graphs
• Only one table for all kinds of nodes in the graph
• One additional table for edges of the graph
• Ignore order (use only for data-centric documents)

DocID ID NodeName Type Value
1 1 dblp Element
1 2 article Element
1 3 author Element
1 4 key Attribute MuthW00
1 5 author Text P. Muth

Nodes

SourceDocID SourceID TargetDocID TargetID Type
1 1 1 2 containment
1 3 1 4 attribute

Edges

…

SS 2004 Informationssysteme 18-11

DTD-Based Schema Generation (1)

SS 2004 Informationssysteme 18-12

Expoit DTD information to derive table definitions
Simple Example (just #PCDATA subelements):
<!ELEMENT article ((author)+,title,journal,year)>
<!ATTLIST article key ID #REQUIRED>
<!ELEMENT title (#PCDATA)> ...

article
DocID ID keyyearjournaltitle

1. Generate a table for the root
element article

2. Add DocumentID plus automatically maintained ID to the table

3. Add a column for each #PCDATA subelement that occurs at most once

4. Add a column for each attribute

DTD-Based Schema Generation (2)

SS 2004 Informationssysteme 18-13

Subelements that occur multiple times are moved to
separate relations linked with foreign keys

Simple Example (ctd.):
<!ELEMENT article ((author)+,title,journal,year)>
<!ATTLIST article key ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (firstname, lastname)>

article
DocID ID keyyearjournaltitle

author
pDocID pID firstname lastnameDocID ID

Foreign key ID for this
element

Generation for Complex Content
Complex Content is
• inlined, if it occurs at most once
• stored in an external table, if it may occur more often
Example:
<!ELEMENT dblp (meta,(article)*)>
<!ELEMENT meta (version,lastchange)>
<!ELEMENT article (author+,title,journal,year)>

dblp

DocID ID lastchangedversion
article

pDocID pID title journalDocID ID year
author

pDocID pID firstnameDocID ID lastname
SS 2004 Informationssysteme 18-14

Alternative for Complex Content
Complex Content can also always be stored externally and

point to its parent relation, regardless of its occurrence
(Makes creation easier, but query evaluation less efficient)
Example:
<!ELEMENT dblp (meta,(article)*)>
<!ELEMENT meta (version,lastchange)>
<!ELEMENT article (title,journal,year)>

dblp

DocID ID
article

pDocID pID title journalDocID ID year
meta

pDocID pID versionDocID ID lastchanged
SS 2004 Informationssysteme 18-15

Problem 1: Alternatives
Which schema should we generate for
<!ELEMENT vehicle (car|bike|truck|ship)>

Solution 1: encode all alternatives into one relation
⇒ many empty columns, not space-effective
Solution 2: store only the alternative that is used in an
external table and use foreign keys for linkage
⇒ saves space, but requires more time to evaluate queries

SS 2004 Informationssysteme 18-16

Problem 2: Recursions
Problematic Scenario:
<!ELEMENT E1 (A,B,E2)>
<!ELEMENT E2 (C,D,E1?)>

Solution:
Break recursion by storing information externally and
linking via foreign keys (as if E1 occurred multiple times)

SS 2004 Informationssysteme 18-17

Problem 3: ANY
What is a good database schema for
<!ELEMENT description ANY>

⇒ Cannot be efficiently converted to a database schema
⇒ Store complete content of this element as XML (using

a CLOB)

SS 2004 Informationssysteme 18-18

More on Schema Generation
• XPath queries can be mapped to SQL queries (typically

containing many joins)
• Very (space and time) efficient if XML is well structured

(data-centric)
• Not so efficient if XML is unstructured (document-

centric)
• Can be extended to automatically decide which children to

inline (based on query statistics: children that are often
used are likely to be inlined)

SS 2004 Informationssysteme 18-19

18.2 Indexing XML
Problem: How to evaluate an XPath expression like
//article/author[name=“Weikum“]

Two options:
• Traverse the complete XML graph and search for

matching subgraphs (but: very inefficient for large
graphs and small result sets)

• Maintain appropriate index structures to speed up query
evaluation; two kinds:
– Indexes on the content of elements and value of attributes
– Indexes on the structure of the XML graph

SS 2004 Informationssysteme 18-20

Content Index (CI)
Retrieval methods of CI:
• Find elements and/or attributes that have a string in their

content/value
• Find elements and/or attributes whose content/value

satisfies a given template
Result of these methods is a list of nodes (or node IDs) in

the XML graph that satisfy the search condition
Common implementation:
• Inverted Lists (maybe augmented with additional

information like tf- and idf- values) plus efficient string
search index on index entries

• Evaluation of arbitrary template expressions can be hard
SS 2004 Informationssysteme 18-21

Structure Index (SI)
SI should support all structural XPath axes:
child, descendant, descendant-or-self, self, parent,
ancestor, ancestor-or-self, following, preceding,
following-sibling, preceding-sibling, attribute

Most important axes: (⇒ Path Index PI)
• child (/)
• attribute (@)
• parent (..)
• descendant-or-self (//)

Interface Method of SI:
Given a node set N and an XPath axis A as input, compute

the nodes reachable from the nodes in N via the axis A
and return the set N‘ of these nodes.

SS 2004 Informationssysteme 18-22

XPath Evaluation
Evaluation of an XPath location step axis::test[condition]

with input node set N (result of the previous location step or
root node for the first location step in the location path):
• Compute the result set N1 by following axis from nodes

in N
• Compute set N2 of nodes in N1 that satisfy test

• Compute set N3 of nodes in N2 that satisfy condition

(which is again an XPath location path)
• If condition has the form .=“string“

– Compute (using CI) set N4 of nodes that satisfy the condition
– Compute N3 by intersecting N2 and N4

SS 2004 Informationssysteme 18-23

Using Pre- and Postorder as SI
Idea:
• Use two numbering schemes (pre- and postorder) for the

nodes in the XML tree
• Compute result of following an XPath axis from a given

node by evaluating conditions on pre- and postorder
ranks

How to compute pre- and postorder:
• Compute depth-first traversal of XML tree
• Preorder rank = order in which the traversal enters nodes
• Postorder rank = order in which the traversal exits nodes
(see Slides 17-28 and 17-29)

SS 2004 Informationssysteme 18-24

Details on Pre- and Postorder SI

ancestor

descendant

preceding

following a

b f

g h

i j

c

d e

0

1

2

3 4

5

6 7

8 90 1

2

3

4

5 6

7

8

9

Additionally store preorder rank of the parent

SS 2004 Informationssysteme 18-25

Pre- and Postorder Conditions
Database Schema for storing nodes:

Pre Post Par Tag
Preorder rank Postorder rank Parents preorder rank Stores the element tag or

attribute tag

SQL Query conditions for important axes:

Axis Pre Post Par Tag
child (pre(v),∞) [0,post(v)) pre(v) *
descendant (pre(v),∞) [0,post(v)) * *
descendant-or-self [pre(v),∞) [0,post(v)] * *
parent [par(v),par(v)] (post(v),∞) * *
ancestor [0,pre(v)) (post(v),∞) * *
ancestor-or-self [0,pre(v)] [post(v),∞) * *
following (pre(v),∞) (post(v),∞) * *
following-sibling (pre(v),∞) (post(v),∞) par(v) *

SS 2004 Informationssysteme 18-26

Pre-/Postorder Summary
Advantages:
• Supports all XPath axes
• Efficiently handles ancestor-or-self queries (//)

Problems:
• Does not support links
• Numbering scheme has to be recomputed upon updates
• Cannot compute the distance between nodes (would be

interesting for ranking results)

SS 2004 Informationssysteme 18-27

Modelling Links in the XML Graph
For simplicity, we model ID/IDREF-links by one single edge
(useful for information retrieval):

<node1 id=“sample“> … </node1>
…
<node2 idref=“sample“> … </node2>

node1 node2

id idref

SS 2004 Informationssysteme 18-28

APEX
APEX: Adaptive Path IndEx for XML Data
Components:
• Structural Summary: Compactly store information about

connections in-between node types
• Collect information about workload
• Refine structural summary to efficiently support often

used subqueries (at the price of possibly higher cost for
less frequently used queries)

• Adaptive to changing workloads
We consider an adaption of APEX to our XML data model

SS 2004 Informationssysteme 18-29

Step 1: Create Structural Summary
root

publications

author author editor editor book

name name name name title

book

title

0

1

2

3

4

5

6

7

8

9

10

11

12

13

SS 2004 Informationssysteme 18-30

Step 1: Create Structural Summary
root

publications

author author editor editor book

name name name name title

book

title

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Step 1a:
Combine nodes with identical
label to one supernode

SS 2004 Informationssysteme 18-31

Step 1: Create Structural Summary

name

bookeditorauthor

root

publications

title

Step 1b:
Add edges between
supernodes in reverse order

SS 2004 Informationssysteme 18-32

Step 1: Create Structural Summary

name

bookeditorauthor

root

publications

title

SS 2004 Informationssysteme 18-33

Step 1c:
augment supernodes with
sorted instance information

instances:
3,5,7,11

name

bookeditorauthor

Step 1: Create Structural Summary
root

publications

title

Step 1d:
augment edges with sorted
connection information

connections:
(2,3)
(4,5)

SS 2004 Informationssysteme 18-34

Step 1: Create Structural Summary

name

bookeditorauthor

SS 2004 Informationssysteme 18-35

root

publications

title

Step 1e:
create index over names of
supernodes (e.g. hashtable)

Index:
author
book
editor
name
publ.
title

Evaluation with Structural Summary
• //name:

search for “name“ in supernode name index, go to
supernode for “name“, extract instance list

• //author/name:
get supernode for “name“ as before, follow edge to
“author“ supernode, get instances from edge annotation

• author/name: (starting at one specific author node)
get supernode for “name“ as before, follow edge to
“author“ supernode, get instance for specified starting
node from edge annotation

Structural Summary is initial version of APEX‘

SS 2004 Informationssysteme 18-36

Step 2: Collect Workload Info
• Count how often paths appear in the query workload:

10x //author/name
3x //director/title

2x //movie/title

• Update structural summary to efficiently support often
used paths (with usage over a fixed threshold):
Split associated supernodes such that often used paths
can be evaluated without further evaluation
in our example: //author/name

SS 2004 Informationssysteme 18-37

Step 3: Update Structural Summary

SS 2004 Informationssysteme 18-38

name

bookeditorauthor

root

publications

title
name

instances:
3,5

instances:
7,11

Index:
…
name
…

author
other

//author/name

Most Effective on Longer Paths

SS 2004 Informationssysteme 18-39

name

bookeditorauthor

root

publications

title
name

//book/author/name

name

instances:
3

instances:
5

instances:
7,11

Index:
…
name
…

author
other

book
other

APEX Summary
Advantages:
• Adaptive to workload changes
• Efficiently handles ancestor-or-self queries (//)
• Efficiently handles often used queries
• Supports links

Problems:
• How to set threshold? (Guru required!)
• Performance under structural updates unclear
• Performs less efficiently for less frequently used queries
• Performs poorly for queries like a//b
SS 2004 Informationssysteme 18-40

Indexing the XML-based Web
How to index the XML-based Web of the future?
• Too large for existing index structures (>1010 pages)
• Inter-document queries (following XLinks)
• Optimized for IR (non-boolean queries)
• Distance-based ranking for // expressions
• Varying structure and element naming
• First results should be returned very quickly (⇒ architecture should

be pipelined)

“Normal“ queries (like this XXL-query) are no longer sufficient:
SELECT $p FROM INDEX
WHERE publication AS $p AND $p.author AS $a

AND $a LIKE “Weikum“ AND $p.content LIKE “XML“
AND $p.citation.author LIKE “Jim Gray“

SS 2004 Informationssysteme 18-41

Indexing the XML-based Web
How to index the XML-based Web of the future?
• Too large for existing index structures (>1010 pages)
• Inter-document queries (following XLinks)
• Optimized for IR (non-boolean queries)
• Distance-based ranking for // expressions
• Varying structure and element naming
• First results should be returned very quickly (⇒ architecture should

be pipelined)

Automatically add structural vagueness:
SELECT $p FROM INDEX
WHERE #.~publication AS $p AND $p.#.~author AS $a

AND $a LIKE “Weikum“ AND $p.#.~content LIKE “XML“
AND $p.#.~citation.#.~author LIKE “Jim Gray“

SS 2004 Informationssysteme 18-42

Connection Index
Evaluation of path expressions with structural vagueness
requires support for inner path wildcards (// or #)

Basic approach:
• Compute transitive closure C of XML graph

(containing all the connections between nodes)
• Find compact representation C‘ of C
• Evaluate wildcard expressions using C‘

SS 2004 Informationssysteme 18-43

Computing the Transitive Closure

SS 2004 Informationssysteme 18-44

Given a directed graph G=(V,E), the transitive closure
C=(V,T) can be computed in O(|V|³) using the Warshal
algorithm or in O(|T|*max(outdeg)) using the following alg:
Set T:=E∪{(v,v)|v∈V};
Set ∆T:=T;
while (∆T≠∅)
{ Set T‘:=∅;
for all p:=(v,u) in ∆T
for all e:=(u,w) in E
if (v,w)∉T then T‘:=T‘∪{(v,w)};

T:=T∪T‘;
∆T:=T‘;

}

Idea:
In round i of the loop,
compute all connections over
paths of length i+1 by
extending existing connections
over paths of length i

Compact Representation
• For each node v, maintain two sets of labels (which are

node names): Lin(v) and Lout(v)
• For each connection (v,w),

– choose a node u on the path from v to w
– add u to Lout(v) and to Lin(w)

• Then (v,w)∈T ⇔ Lout(v)∩Lin(w)≠∅

v u w

Two-hop Cover of T

• Minimize the sum of the label sizes
(NP-complete ⇒ approximation required)

SS 2004 Informationssysteme 18-45

Query Evaluation with Two-Hop

SS 2004 Informationssysteme 18-46

• //author:
search for “author“ among all nodes (can be done
efficiently using index on node names)

• //author/name:
get nodes for “author“ as before, go to connected nodes
with distance 1 and look for “name“ nodes (distance
information may be included in the index)

• author/name: (starting at one specific author node)
as before, for one specific author node

• //author//editor:
get “author“ nodes and the union of their Lout sets, get
“editor“ nodes and the union of their Lin sets, compute
intersection

Web-Scale XML Indexing
Existing indexing strategies are not usable for Web-scale data:
• Hardly support for inner-query path wildcards (necessary

for expressing structural vagueness)
• Documents are very heterogeneous (no single indexing

technique can be the best for all documents)
• Sometimes no support for intra-document links
• No explicit support for inter-document links (treat links as if

they were ordinary containment edges) ⇒ few, very large
documents to index

• Space, build and execution time for large-scale XML data is
unacceptable

SS 2004 Informationssysteme 18-47

FLIX: Index Framework for XML
Current Research Project: FLIX (Framework for Indexing

Large Collections of Interlinked XML Documents)
Basic Principles:
• Automatically construct fragments of the set of

interlinked XML documents
• Choose an „optimal“ connection index for each meta

document (depending on workload and available space)
• Incrementally build results for path queries with inner

path wildcards in approximate order of distance (⇒
most relevant results first)

SS 2004 Informationssysteme 18-48

FLIX Example
Step 1:
Choose meta documents
• using a graph-theoretic measure
• by identifying units with coherent

information
• by analyzing query workload

SS 2004 Informationssysteme 18-49

FLIX Example
Step 2:
Choose and build optimal
connection index for each
meta document

SS 2004 Informationssysteme 18-50

FLIX Example
Step 3:
Incrementally evaluate query
with inner path wildcard
//a//b

• Find set of instances of a

• Evaluate query within
resulting meta documents

• Find elements with outgoing
links in resulting meta
documents and follow the links
in ascending distance

• Evaluate rest of query (//b) in
target meta document

SS 2004 Informationssysteme 18-51

18.3 XML Compression
XML is not very storage efficient:
• contains a lot of redundancy (increases readability for

human users):
– opening and closing tags
– element and attribute names

• character-based:
– 4294967295 (10 bytes) vs. 0xFFFFFFFF (4 bytes)

⇒Compression can save much storage space
Text-based compressors (like gzip): ~80-90% compr. ratio

Using information about XML structure gives even
better compression ratios

SS 2004 Informationssysteme 18-52

Example: Web Log Data
ASCII File 15.9 MB (gzipped 1.6MB):

202.239.238.16|GET / HTTP/1.0|text/html|200|1997/10/01-00:00:02|-|4478|-|-|http://www.net.jp/|Mozilla/3.1202.239.238.16|GET / HTTP/1.0|text/html|200|1997/10/01-00:00:02|-|4478|-|-|http://www.net.jp/|Mozilla/3.1

<apache:entry>
<apache:host> 202.239.238.16 </apache:host>
<apache:requestLine> GET / HTTP/1.0 </apache:requestLine>
<apache:contentType> text/html </apache:contentType>
<apache:statusCode> 200</apache:statusCode>
<apache:date> 1997/10/01-00:00:02</apache:date>
<apache:byteCount> 4478</apache:byteCount>
<apache:referer> http://www.net.jp/ </apache:referer>
<apache:userAgent> Mozilla/3.1$[$ja$]$(I)</apache:userAgent>

</apache:entry>

<apache:entry>
<apache:host> 202.239.238.16 </apache:host>
<apache:requestLine> GET / HTTP/1.0 </apache:requestLine>
<apache:contentType> text/html </apache:contentType>
<apache:statusCode> 200</apache:statusCode>
<apache:date> 1997/10/01-00:00:02</apache:date>
<apache:byteCount> 4478</apache:byteCount>
<apache:referer> http://www.net.jp/ </apache:referer>
<apache:userAgent> Mozilla/3.1$[$ja$]$(I)</apache:userAgent>

</apache:entry>

XML-ized inflates to 24.2 MB (gzipped 2.1MB):

SS 2004 Informationssysteme 18-53

XMill
• Specialized compressor for XML data

• Utilizes three basic principles:
– Compress the structure separately from the data
– Group the data values per element type
– Apply semantic (specialized) compressors

⇒ Even better compression ratios (optimality of
compression can be proven)

(Slides for XMill partly taken from the original presentation at SIGMOD 2000)

SS 2004 Informationssysteme 18-54

XMill Principles (1)

Compress the structure separately from the data:

gzip Structure gzip Data

202.239.238.16
GET / HTTP/1.0
text/html
200
…

202.239.238.16
GET / HTTP/1.0
text/html
200
…

<apache:entry>
<apache:host> </apache:host>

. . .
</apache:entry>

<apache:entry>
<apache:host> </apache:host>

. . .
</apache:entry>

=1.75MB+

SS 2004 Informationssysteme 18-55

XMill Principles (2)

Group the data values per element type:

gzip Structure gzip host gzip url

<apache:entry>
. . .
</apache:entry>

<apache:entry>
. . .
</apache:entry>

202.23.23.16
224.42.24.55
…

202.23.23.16
224.42.24.55
…

GET / HTTP/1.0
GET / HTTP/1.1
…

GET / HTTP/1.0
GET / HTTP/1.1
…

=1.33MB+ +

SS 2004 Informationssysteme 18-56

XMill Principles (3)

Apply semantic (specialized) compressors for known types:

gzip Structure + gzip c1(host) + gzip c2(url) + ... =0.82MB

Examples:
• 8, 16, 32-bit integer encoding (signed/unsigned)
• differential compressing (e.g. 1999, 1995, 2001, 2000, 1995, ...)
• compress lists, records (e.g. 104.32.23.1 4 bytes)
semantic compressor selection by user and/or schema information

SS 2004 Informationssysteme 18-57

XMill Compression Factors

• gzip (orig) works on the original data
• gzip (xml) works on the XMLified data
• XMill // separates structure and data
• XMill //# additionally groups the data by element names
• XMill <u> additionally applies type-specific compressors

SS 2004 Informationssysteme 18-58

18.4 Native XML Databases
Key concepts of native XML Databases:
• (Logically) store XML documents without converting them
• Logical unit of information is a single XML Document
• Efficient query evaluation on the XML documents (with index

structures for structure and content)
• Update, insert and delete XML documents
• All „standard“ database features:

– Transactions
– Distribution, replication
– Parallel server
– Multiuser
– Security
– Query optimization, Performance
– …

SS 2004 Informationssysteme 18-59

Native XML vs. XML-Enabled RDMBS
XML-Enabled RDBMS:
• XML mapped to relational data model
• Optimizer tuned for relational algebra (projection, join,

selection)
• Evaluation of query may require numerous SQL joins
Native XML-DB:
• XML stored natively
• Optimizer tuned for tree algebra (e.g., tree traversal)
• Evaluation of query using specific index structures

SS 2004 Informationssysteme 18-60

XML Schema Design
• Basic unit is one XML document
• What should go into a document:

– Document = individual thing, event, …(about a product, report,
order, measurement, treatment)

– Document collects related information (about a project, process,
career, …)

• Principle: Store exactly the information within a single
document that is most often requested together

• Refer to less frequently used information via XLinks

SS 2004 Informationssysteme 18-61

XML Databases: Tamino
• Tamino: Transactional Architecture for Managing

Internet Objects
• Available since 1999 from Software AG
• Evaluation version available (252MB!)
• Best-known native XML database
• Key concepts:

– Extension of XPath for querying
– Updates, Inserts, Deletes
– Built-in Extensions for Information Retrieval
– Support for optional validation against XML Schema
– Transparent integration of non-XML data from other sources

(automatic mapping to XML view of the data)
– Extensible Architecture

SS 2004 Informationssysteme 18-62

Transaction Support in Tamino

SS 2004 Informationssysteme 18-63

• A transaction consists of a set of operations (queries
and/or updates) that form a unit

• Transactional principles (ACID):
– Atomicity (all-or-nothing)
– Consistency (maintain database consistency)
– Isolation (run transaction as if it was alone in the DB)
– Durability (data must survive failures)

• Transaction support in Tamino:
– A+D using logging (+restoring information from logs) plus

two-phase commit for distributed transactions (Windows only)
– I using document-level locks (⇒ potential performance

bottleneck)
– C by checking modified documents against constraints

Other XML Databases: Timber
• Research prototype from Uni Michigan

– Applies existing backend system Shore for disk management,
buffering, concurrency control

– XML documents are stored in fragments, where each fragment
roughly corresponds to a DOM node

– Supports content indexes on elements and attributes, variant of
pre/post-ordering as structure index

– Uses tree algebra for optimizing XQuery expressions (focus of
the project)

– Updates of XML documents supported (but with problems
with the numbering when too many updates occur)

SS 2004 Informationssysteme 18-64

Other XML Databases: Natix
• Research prototype from Uni Mannheim

– XML documents are split into fragments in a clever way
(minimizing reconstruction effort and maximizing query
performance) ⇒ one of the focusses of the project

– Sophisticated transaction management techniques (e.g.,
element-level locking, timestamps)

– Interfaces to Java, C++ (using DOM and SAX), WebDAV,
HTTP and Filesystem

– Inverted File as content index plus variant of pre/postorder
scheme as structure index

SS 2004 Informationssysteme 18-65

XML Databases: Xindice
• Open-source project from Apache

– Availabe from http://xml.apache.org
– Source code available (but not well documented)
– Optimized for many, small XML documents (max document

size: 5MB)
– Implements XPath and update operations
– API available
– Supports only content indexes, no structure index

⇒ poor query performance
– May be a starting point for using XML databases

SS 2004 Informationssysteme 18-66

Sources and Further Literature for Part 18
• M. Klettke, H. Meyer: Speicherung von XML-Dokumenten – eine

Klassifikation. Datenbank-Spektrum 3(5), 2003.
• H. Schöning: XML und Datenbanken. Hanser, 2003.
• D. Florescu, D. Kossmann: Storing and Querying XML Data using an

RDBMS. IEEE Data Engineering Bulletin 22(3), 1999.
• G. Kappel et al.: X-Ray – Towards Integrating XML and Relational

Database Systems. Technical Report, Uni Linz, 2000.
• T. Grust: Accelerating XPath Location Steps. SIGMOD Conference, 2002.
• C. Chun et al.: APEX: An Adaptive Path Index for XML data. SIGMOD

Conference, 2002.
• Q. Chen et al: D(K)-Index: An Adaptive Structural Summary for Graph-

Structured Data. SIGMOD Conference, 2003.
• H. Liefke and D. Suciu: XMILL: An Efficient Compressor for XML Data.

SIGMOD Conference, 2000.
• J.-K. Min et al.: XPRESS: A Queriable Compression for XML Data.

SIGMOD Conference, 2003.

SS 2004 Informationssysteme 18-67

Sources and Further Literature for Part 18
• Tamino: http://www.softwareag.com/tamino/
• Timber: http://www.eecs.umich.edu/db/timber/
• Th. Fiebig et al. : Natix: A Technology Overview. NODe

2002, Springer LNCS 2593.
• Xindice: http://xml.apache.org/xindice/

SS 2004 Informationssysteme 18-68

