
Design and Implementation of a High-Performance
Distributed Web Crawler�

Vladislav Shkapenyuk Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

vshkap@research.att.com, suel@poly.edu

Abstract

Broad web search engines as well as many more special-
ized search tools rely on web crawlers to acquire large col-
lections of pages for indexing and analysis. Such a web
crawler may interact with millions of hosts over a period
of weeks or months, and thus issues of robustness, flexibil-
ity, and manageability are of major importance. In addition,
I/O performance, network resources, and OS limits must be
taken into account in order to achieve high performance at
a reasonable cost.

In this paper, we describe the design and implementation
of a distributed web crawler that runs on a network of work-
stations. The crawler scales to (at least) several hundred
pages per second, is resilient against system crashes and
other events, and can be adapted to various crawling appli-
cations. We present the software architecture of the system,
discuss the performance bottlenecks, and describe efficient
techniques for achieving high performance. We also report
preliminary experimental results based on a crawl of ���
million pages on � million hosts.

1 Introduction
The World Wide Web has grown from a few thousand pages
in 1993 to more than two billion pages at present. Due to this
explosion in size, web search engines are becoming increas-
ingly important as the primary means of locating relevant in-
formation. Such search engines rely on massive collections
of web pages that are acquired with the help of web crawlers,
which traverse the web by following hyperlinks and storing
downloaded pages in a large database that is later indexed for
efficient execution of user queries. Many researchers have
looked at web search technology over the last few years, in-
cluding crawling strategies, storage, indexing, ranking tech-
niques, and a significant amount of work on the structural
analysis of the web and web graph; see [1, 7] for overviews
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of some recent work and [26, 2] for basic techniques.

Thus, highly efficient crawling systems are needed in order
to download the hundreds of millions of web pages indexed
by the major search engines. In fact, search engines compete
against each other primarily based on the size and currency
of their underlying database, in addition to the quality and
response time of their ranking function. Even the largest
search engines, such as Google or AltaVista, currently cover
only limited parts of the web, and much of their data is sev-
eral months out of date. (We note, however, that crawling
speed is not the only obstacle to increased search engine
size, and that the scaling of query throughput and response
time to larger collections is also a major issue.)

A crawler for a large search engine has to address two is-
sues. First, it has to have a good crawling strategy, i.e., a
strategy for deciding which pages to download next. Sec-
ond, it needs to have a highly optimized system architecture
that can download a large number of pages per second while
being robust against crashes, manageable, and considerate of
resources and web servers. There has been some recent aca-
demic interest in the first issue, including work on strategies
for crawling important pages first [12, 21], crawling pages
on a particular topic or of a particular type [9, 8, 23, 13], re-
crawling (refreshing) pages in order to optimize the overall
“freshness” of a collection of pages [11, 10], or scheduling
of crawling activity over time [25].

In contrast, there has been less work on the second is-
sue. Clearly, all the major search engines have highly op-
timized crawling systems, although details of these systems
are usually proprietary. The only system described in de-
tail in the literature appears to be the Mercator system of
Heydon and Najork at DEC/Compaq [16], which is used by
AltaVista. (Some details are also known about the first ver-
sion of the Google crawler [5] and the system used by the
Internet Archive [6].) While it is fairly easy to build a slow
crawler that downloads a few pages per second for a short
period of time, building a high-performance system that can
download hundreds of millions of pages over several weeks
presents a number of challenges in system design, I/O and



network efficiency, and robustness and manageability.

Most of the recent work on crawling strategies does not ad-
dress these performance issues at all, but instead attempts to
minimize the number of pages that need to be downloaded,
or maximize the benefit obtained per downloaded page. (An
exception is the work in [8] that considers the system per-
formance of a focused crawler built on top of a general-
purpose database system, although the throughput of that
system is still significantly below that of a high-performance
bulk crawler.) In the case of applications that have only very
limited bandwidth that is acceptable. However, in the case
of a larger search engine, we need to combine good crawling
strategy and optimized system design.

In this paper, we describe the design and implementation
of such an optimized system on a network of workstations.
The choice of crawling strategy is largely orthogonal to our
work. We describe the system using the example of a simple
breadth-first crawl, although the system can be adapted to
other strategies. We are primarily interested in the I/O and
network efficiency aspects of such a system, and in scalabil-
ity issues in terms of crawling speed and number of partici-
pating nodes. We are currently using the crawler to acquire
large data sets for work on other aspects of web search tech-
nology such as indexing, query processing, and link analy-
sis. We note that high-performance crawlers are currently
not widely used by academic researchers, and hence few
groups have run experiments on a scale similar to that of the
major commercial search engines (one exception being the
WebBase project [17] and related work at Stanford). There
are many interesting questions in this realm of massive data
sets that deserve more attention by academic researchers.

1.1 Crawling Applications

There are a number of different scenarios in which crawlers
are used for data acquisition. We now describe a few exam-
ples and how they differ in the crawling strategies used.

Breadth-First Crawler: In order to build a major search
engine or a large repository such as the Internet Archive
[18], high-performance crawlers start out at a small set of
pages and then explore other pages by following links in a
“breadth first-like” fashion. In reality, the web pages are of-
ten not traversed in a strict breadth-first fashion, but using a
variety of policies, e.g., for pruning crawls inside a web site,
or for crawling more important pages first1.

Recrawling Pages for Updates: After pages are initially
acquired, they may have to be periodically recrawled and
checked for updates. In the simplest case, this could be done
by starting another broad breadth-first crawl, or by simply
requesting all URLs in the collection again. However, a vari-

1See [12] for heuristics that attempt to crawl important pages first,
and [21] for experimental results showing that even strict breadth-first will
quickly find most pages with high Pagerank.

ety of heuristics can be employed to recrawl more important
pages, sites, or domains more frequently. Good recrawling
strategies are crucial for maintaining an up-to-date search
index with limited crawling bandwidth, and recent work by
Cho and Garcia-Molina [11, 10] has studied techniques for
optimizing the “freshness” of such collections given obser-
vations about a page’s update history.

Focused Crawling: More specialized search engines may
use crawling policies that attempt to focus only on certain
types of pages, e.g., pages on a particular topic or in a par-
ticular language, images, mp3 files, or computer science re-
search papers. In addition to heuristics, more general ap-
proaches have been proposed based on link structure anal-
ysis [9, 8] and machine learning techniques [13, 23]. The
goal of a focused crawler is to find many pages of interest
without using a lot of bandwidth. Thus, most of the previ-
ous work does not use a high-performance crawler, although
doing so could support large specialized collections that are
significantly more up-to-date than a broad search engine.

Random Walking and Sampling: Several techniques
have been studied that use random walks on the web graph
(or a slightly modified graph) to sample pages or estimate
the size and quality of search engines [3, 15, 14].

Crawling the “Hidden Web”: A lot of the data accessi-
ble via the web actually resides in databases and can only
be retrieved by posting appropriate queries and/or filling out
forms on web pages. Recently, a lot of interest has focused
on automatic access to this data, also called the “Hidden
Web”, “Deep Web”, or “Federated Facts and Figures”. Work
in [22] has looked at techniques for crawling this data. A
crawler such as the one described here could be extended
and used as an efficient front-end for such a system. We
note, however, that there are many other challenges associ-
ated with access to the hidden web, and the efficiency of the
front end is probably not the most important issue.

1.2 Basic Crawler Structure

Given these scenarios, we would like to design a flexible sys-
tem that can be adapted to different applications and strate-
gies with a reasonable amount of work. Note that there are
significant differences between the scenarios. For exam-
ple, a broad breadth-first crawler has to keep track of which
pages have been crawled already; this is commonly done us-
ing a “URL seen” data structure that may have to reside on
disk for large crawls. A link analysis-based focused crawler,
on the other hand, may use an additional data structure to
represent the graph structure of the crawled part of the web,
and a classifier to judge the relevance of a page [9, 8], but
the size of the structures may be much smaller. On the other
hand, there are a number of common tasks that need to be
done in all or most scenarios, such as enforcement of robot
exclusion, crawl speed control, or DNS resolution.



For simplicity, we separate our crawler design into two
main components, referred to as crawling application and
crawling system. The crawling application decides what
page to request next given the current state and the previ-
ously crawled pages, and issues a stream of requests (URLs)
to the crawling system. The crawling system (eventually)
downloads the requested pages and supplies them to the
crawling application for analysis and storage. The crawling
system is in charge of tasks such as robot exclusion, speed
control, and DNS resolution that are common to most sce-
narios, while the application implements crawling strategies
such as “breadth-first” or ”focused“. Thus, to implement a
focused crawler instead of a breadth-first crawler, we would
use the same crawling system (with a few different parame-
ter settings) but a significantly different application compo-
nent, written using a library of functions for common tasks
such as parsing, maintenance of the “URL seen” structure,
and communication with crawling system and storage.

System
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Figure 1: Basic two components of the crawler
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At first glance, implementation of the crawling system
may appear trivial. This is however not true in the high-
performance case, where several hundred or even a thou-
sand pages have to be downloaded per second. In fact, our
crawling system consists itself of several components that
can be replicated for higher performance. Both crawling
system and application can also be replicated independently,
and several different applications could issue requests to the
same crawling system, showing another motivation for the
design2. More details on the architecture are given in Sec-
tion 2. We note here that this partition into application and
system components is a design choice in our system, and not
used by some other systems3, and that it is not always obvi-
ous in which component a particular task should be handled.
For the work in this paper, we focus on the case of a broad
breadth-first crawler as our crawling application.

1.3 Requirements for a Crawler

We now discuss the requirements for a good crawler, and
approaches for achieving them. Details on our solutions are

2Of course, in the case of the application, replication is up to the de-
signer of the component, who has to decide how to partition data structures
and workload.

3E.g., Mercator [16] does not use this partition, but achieves flexibility
through the use of pluggable Java components.

given in the subsequent sections.

Flexibility: As mentioned, we would like to be able to use
the system in a variety of scenarios, with as few modifica-
tions as possible.

Low Cost and High Performance: The system should
scale to at least several hundred pages per second and hun-
dreds of millions of pages per run, and should run on low-
cost hardware. Note that efficient use of disk access is cru-
cial to maintain a high speed after the main data structures,
such as the “URL seen” structure and crawl frontier, be-
come too large for main memory. This will only happen
after downloading several million pages.

Robustness: There are several aspects here. First, since
the system will interact with millions of servers, it has to
tolerate bad HTML, strange server behavior and configura-
tions, and many other odd issues. Our goal here is to err on
the side of caution, and if necessary ignore pages and even
entire servers with odd behavior, since in many applications
we can only download a subset of the pages anyway. Sec-
ondly, since a crawl may take weeks or months, the system
needs to be able to tolerate crashes and network interruptions
without losing (too much of) the data. Thus, the state of the
system needs to be kept on disk. We note that we do not
really require strict ACID properties. Instead, we decided to
periodically synchronize the main structures to disk, and to
recrawl a limited number of pages after a crash.

Etiquette and Speed Control: It is extremely impor-
tant to follow the standard conventions for robot exclusion
(robots.txt and robots meta tags), to supply a contact
URL for the crawler, and to supervise the crawl. In addi-
tion, we need to be able to control access speed in several
different ways. We have to avoid putting too much load on
a single server; we do this by contacting each site only once
every �� seconds unless specified otherwise. It is also de-
sirable to throttle the speed on a domain level, in order not
to overload small domains, and for other reasons to be ex-
plained later. Finally, since we are in a campus environment
where our connection is shared with many other users, we
also need to control the total download rate of our crawler.
In particular, we crawl at low speed during the peek usage
hours of the day, and at a much higher speed during the late
night and early morning, limited mainly by the load toler-
ated by our main campus router.

Manageability and Reconfigurability: An appropriate
interface is needed to monitor the crawl, including the speed
of the crawler, statistics about hosts and pages, and the sizes
of the main data sets. The administrator should be able to
adjust the speed, add and remove components, shut down
the system, force a checkpoint, or add hosts and domains to
a “blacklist” of places that the crawler should avoid. After a
crash or shutdown, the software of the system may be modi-
fied to fix problems, and we may want to continue the crawl



using a different machine configuration. In fact, the software
at the end of our first huge crawl was significantly different
from that at the start, due to the need for numerous fixes and
extensions that became only apparent after tens of millions
of pages had been downloaded.

1.4 Content of this Paper

In this paper, we describe the design and implementation of
a distributed web crawler that runs on a network of work-
stations. The crawler scales to (at least) several hundred
pages per second, is resilient against system crashes and
other events, and can be adapted to various crawling appli-
cations. We present the software architecture of the system,
discuss the performance bottlenecks, and describe efficient
techniques for achieving high performance. We also report
preliminary experimental results based on a crawl of ���
million pages on � million hosts.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the architecture of our system and its major
components, and Section 3 describes the data structures and
algorithmic techniques that were used in more detail. Sec-
tion 4 presents preliminary experimental results. Section 5
compares our design to that of other systems we know of.
Finally, Section 6 offers some concluding remarks.

2 System Architecture

We now give a more detailed description of the architecture
of our distributed crawler. As mentioned before, we parti-
tion the system into two major components - crawling sys-
tem and crawling application. The crawling system itself
consists of several specialized components, in particular a
crawl manager, one or more downloaders, and one or more
DNS resolvers. All of these components, plus the crawling
application, can run on different machines (and operating
systems) and can be replicated to increase the system perfor-
mance. The crawl manager is responsible for receiving the
URL input stream from the applications and forwarding it to
the available downloaders and DNS resolvers while enforc-
ing rules about robot exclusion and crawl speed. A down-
loader is a high-performance asynchronous HTTP client ca-
pable of downloading hundreds of web pages in parallel,
while a DNS resolver is an optimized stub DNS resolver
that forwards queries to local DNS servers.

An example of a small configuration with three download-
ers is given in Figure 2, which also shows the main data
flows through the system. This configuration is very simi-
lar to the one we used for our crawls, except that most of
the time we used at most � downloaders. A configuration
as the one in Figure 2 would require between � and � work-
stations, and would achieve an estimated peek rate of ��� to
��� HTML pages per second4. We discuss scaling in more

4The peek rate depends on the machine configuration and network con-
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detail further below.

Communication in our system is done in two ways: via
sockets for small messages, and via file system (NFS) for
larger data streams. The use of NFS in particular makes
the design very flexible and allows us to tune system per-
formance by redirecting and partitioning I/O between disks.
While NFS has its performance limitations, we believe that
the basic approach will scale well for networks of low-cost
workstations and that if necessary it would be easy to switch
to a more optimized file transfer mechanism. Not shown in
Figure 2 are the interactions between crawling application
and storage system, downloaders and web server, and be-
tween crawl manager and a separate web interface for sys-
tem management. The entire system contains about ����
lines of C++ and Python code. Implementation was started
in July 2000 as part of the first author’s Senior Project. The
first significant crawls were performed in January 2001, and
development is still continuing. We now give some more
details on each components.

2.1 Crawl Manager

The crawl manager is the central component of the system,
and the first component that is started up. Afterwards, other
components are started and register with the manager to of-
fer or request services. The manager is the only component
visible to the other components, with the exception of the
case of a parallelized application, described further below,
where the different parts of the application have to interact.
The manager receives requests for URLs from the applica-
tion, where each request has a priority level, and a pointer to
a file containing several hundred or thousand URLs and lo-

nection. Due to limited network capacity, we are not able to run at more
than ��� pages per second on our campus connection.



cated on some disk accessible via NFS. The manager will
enqueue the request, and will eventually load the corre-
sponding file in order to prepare for the download, though
this is done as late as possible in order to limit the size of the
internal data structures. In general, the goal of the manager
is to download pages in approximately the order specified
by the application, while reordering requests as needed to
maintain high performance without putting too much load
on any particular web server. This policy is formalized in
Subsection 3.5.

After loading the URLs of a request files, the manager
queries the DNS resolvers for the IP addresses of the servers,
unless a recent address is already cached. The manager then
requests the file robots.txt in the web server’s root di-
rectory, unless it already has a recent copy of the file. This
part was initially implemented as a separate component that
acted as an application issuing requests for robot files with
high priority back to the manager. It is now incorporated
into the manager process, and the robot files are written to
a separate directory from the other data so they can be ac-
cessed and parsed by the manager later (see Figure 2). Fi-
nally, after parsing the robots files and removing excluded
URLs, the requested URLs are sent in batches to the down-
loaders, making sure that a certain interval between requests
to the same server is observed. The manager later notifies
the application of the pages that have been downloaded and
are available for processing.

The manager is also in charge of limiting the overall speed
of the crawl and balancing the load among downloaders and
DNS resolvers, by monitoring and adjusting DNS resolver
load and downloader speed as needed. The manager per-
forms periodic snapshots of its data structures, and after a
crash, a limited number of pages may have to be recrawled.
It is up to the application to detect these duplicate pages.
The crawl manager is implemented in C++ and uses Berke-
ley DB5 and STL for the major data structures, which are
described in more detail in Subsection 3.4.

2.2 Downloaders and DNS Resolvers

The downloader component, implemented in Python,
fetches files from the web by opening up to ���� connec-
tions to different servers, and polling these connections for
arriving data. Data is then marshaled into files located in a
directory determined by the application and accessible via
NFS. Since a downloader often receives more than a hun-
dred pages per second, a large number of pages have to be
written out in one disk operation. We note that the way pages
are assigned to these data files is unrelated to the structure
of the request files sent by the application to the manager.
Thus, it is up to the application to keep track of which of its
URL requests have been completed. The manager can ad-

5Available at http://www.sleepycat.com

just the speed of a downloader by changing the number of
concurrent connections that are used.

The DNS resolver, implemented in C++, is also fairly sim-
ple. It uses the GNU adns asynchronous DNS client li-
brary6 to access a DNS server usually collocated on the same
machine. While DNS resolution used to be a significant bot-
tleneck in crawler design due to the synchronous nature of
many DNS interfaces, we did not observe any significant
performance impacts on our system while using the above
library. However, DNS lookups generate a significant num-
ber of additional frames of network traffic, which may re-
strict crawling speeds due to limited router capacity.

2.3 Crawling Application

As mentioned, the crawling application we consider in this
paper is a breadth-first crawl starting out at a set of seed
URLs, in our case the URLs of the main pages of several
hundred US Universities, which are initially sent to the crawl
manager. The application then parses each downloaded page
for hyperlinks, checks whether these URLs have already
been encountered before, and if not, sends them to the man-
ager in batches of a few hundred or thousand. The down-
loaded files are then forwarded to a storage manager for
compression and storage in a repository. The crawling appli-
cation is implemented in C++ using STL and the Red-Black
tree implementation in the kazlib library7. (The applica-
tion consists of two threads each using a Red-Black tree data
structure; this required use of two different implementations
since the current implementation in STL is not thread-safe.)

The data structure and performance aspects of the applica-
tion will be discussed in detail in Subsection 3.2. We note
however the following important two points: First, since
each page contains on average about � hyperlinks, the set
of encountered (but not necessarily downloaded) URLs will
grow very quickly beyond the size of main memory, even af-
ter eliminating duplicates. Thus, after downloading �� mil-
lion pages, the size of the set of encountered URLs will be
well above ��� million. Second, at this point, any hyperlink
parsed from a newly downloaded page and sent to the man-
ager will only be downloaded several days or weeks later.
Thus, there is no reason for the manager to immediately in-
sert new requests into its dynamic data structures.

2.4 Scaling the System

One of our main objectives was to design a system whose
performance can be scaled up by adding additional low-cost
workstations and using them to run additional components.
Starting from the configuration in Figure 2, we could sim-
ply add additional downloaders and resolvers to improve
performance. We estimate that a single manager would be
fast enough for about � downloaders, which in turn would

6http://www.chiark.greenend.org.uk/ ian/adns/
7http://users.footprints.net/ kaz/kazlib.html



require maybe � or � DNS resolvers. Beyond this point,
we would have to create a second crawl manager (and thus
essentially a second crawling system), and the application
would have to split its requests among the two managers.
However, the first bottleneck in the system would arise be-
fore that, in our crawl application, which is currently able
to parse and process up to ��� pages per second on a typ-
ical workstation. While this number could be improved
somewhat by more aggressive optimizations, eventually it
becomes necessary to partition the application onto several
machines.
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Figure 3: Large configuration

Figure 3 shows a possible scaled up version of our system
that uses two crawl managers, with � downloaders and �

DNS resolvers each, and with four application components.
We point out that we have never been able to test the perfor-
mance of such a configuration, which would involve about
�� machines and result in download rates of probably about
���� pages per second, way beyond the capacity of our T3,
or even a dedicated OC3 link.

Partitioning the breadth-first crawler into � components is
quite simple, using a technique similar to that employed by
the Internet Archive crawler [6]. We partition the space of
all possible URLs into � subsets using a hash function, such
that each application component is responsible for process-
ing and requesting one subset. Recall that the manager will
make sure that pages downloaded for different applications
are stored in separate directories, as determined by the appli-
cations. If during parsing, a component encounters a hyper-
link belonging to a different subset, then that URL is simply
forwarded to the appropriate application component (as de-

termined by the hash value). Each crawl manager could be
used by two application components; to the manager, they
would appear as completely unrelated applications. Undue
load on any particular server could be avoided by either mul-
tiplying the �� second interval by the number of crawl man-
agers, or by making sure that each host is mapped to at most
one subset; this second option would also avoid an increase
in the cost of robot exclusion and DNS resolution.

Some other crawling strategies such as focused crawling
may be harder to parallelize, but this is unavoidable and not
particular to our design. We note that the only communica-
tion involving significant amounts of data is the transmission
of the downloaded files. Thus, in principle our system could
be used even in a wide-area distributed environment, assum-
ing we can tolerate the fact that the downloaded files may
end up in several remote locations (e.g., by collocating an
application component at each downloader location).

Some more discussion on system configuration and result-
ing performance is given in Subsection 4.3.

3 Implementation Details and Algorithmic
Techniques

We now describe some of the specific problems and perfor-
mance bottlenecks that we encountered, and the data struc-
tures and techniques used to deal with them. We start out
with the application and then follow the path of the URLs
through the system. Recall that our breadth-first crawl ap-
plication parses the newly downloaded documents for hy-
perlinks, then checks a data structure to see which of the
URLs in the hyperlinks have already been encountered, and
then sends the new URLs to the manager for downloading.

3.1 Application Parsing and Network Performance

Parsing is implemented using the Perl Compatible Regular
Expression (PCRE) library8. Note that we only parse for
hyperlinks, and not for indexing terms, which would sig-
nificantly slow down the application. Parsing for indexing
terms would have to be done by a separate application that
scans the documents from the repository, and is outside the
scope of this paper. Our current parsing implementation can
process up to ��� pages per second at about ��KB per page.

After tuning the parser, NFS and network performance
considerations become more important on the application
side. We usually have the downloader store the pages via
NFS on a disk on the machine running the crawling applica-
tion. Later, the application reads the files for parsing, and a
storage manager copies them to a separate permanent repos-
itory, also via NFS. Thus, each data item has to enter and
leave the machine running the application via the network.
Our machines are connected by full-duplex switched Fast
Ethernet. At �� KB per page, maybe about ��� pages per

8Available at http://www.pcre.org/



second can enter and leave the application machine under
realistic assumptions about network and NFS performance.

There are several possible solutions. We can scale the sys-
tem by partitioning the application into several components
as soon as the bottleneck arises, as described in Subsec-
tion 2.4. (We could also partition the downloaded files over
several other machines, possibly at the downloaders, and
have the application read via NFS, but this would not buy
much.) Alternatively, an upgrade to Gigabit Ethernet and
switch to using rcp should largely remove this bottleneck.

3.2 URL Handling

The hyperlinks parsed from the files, after normalization
of relative links, are then checked against the “URL seen”
structure that contains all URLs that have been downloaded
or encountered as hyperlinks thus far9. A parsing speed of
��� pages per second results in more than ���� URLs per
second that need to be checked and possibly inserted. Each
URL has an average length of more than �� bytes, and thus
a naive representation of the URLs would quickly grow be-
yond memory size.

Several solutions have been proposed for this problem. The
crawler of the Internet Archive [6] uses a Bloom filter stored
in memory; this results in a very compact representation, but
also gives false positives, i.e., some pages are never down-
loaded since they collide with other pages in the Bloom fil-
ter. Lossless compression can reduce URL size to below ��

bytes [4, 24], though this is still too high for large crawls.
In both cases main memory will eventually become a bot-
tleneck, although partitioning the application will also parti-
tion the data structures over several machines. A more scal-
able solution uses a disk-resident structure, as for example
done in Mercator [16]. Here, the challenge is to avoid a
separate disk access for each lookup and insertion. This is
done in Mercator by caching recently seen and frequently
encountered URLs, resulting in a cache hit rate of almost
���. Nonetheless, their system used several fast disks for
an average crawl speed of ��� pages per second.

Our goal in the design was to completely avoid random
disk accesses, or at least a linear growth of such accesses
with the URLs. To achieve this, we perform the lookups
and insertion in a bulk or offline operation. Thus, we take
the following approach, based on well-known techniques:
We initially keep the URLs in main memory in a Red-Black
tree. When the structure grows beyond a certain size, we
write the sorted list of URLs out to disk and switch to bulk
mode. We now use the Red-Black tree in main memory
to buffer newly encountered URLs, and periodically merge
the memory-resident data into the disk-resident data using a
simple scan-and-copy operation, during which all necessary

9We have not yet implemented any fingerprint technique, such as the
one used in Mercator, to filter out downloaded pages with identical content
but different URLs.

lookups and insertions are performed. The merge is per-
formed by spawning a separate thread, so that the applica-
tion can continue parsing new files, and the next merge will
only be started an hour after the previous one has completed.
Thus, the system will gracefully adapt as the merge oper-
ations start taking longer while the structure grows. Effi-
ciency is also optimized by storing URLs on disk in a simple
compressed form, by removing common prefixes between
subsequent URLs in the sorted order. Using this method,
lookups and insertions were never a bottleneck.

Now recall that on average each page contains about � hy-
perlinks, and thus even after removing duplicates, the num-
ber of encountered but not yet downloaded pages will grow
very quickly. After downloading �� million pages, we have
more than ��� million pages in the queue waiting to be
downloaded. This has a number of consequences. First,
any URL now parsed out of a page will only be down-
loaded in several days or weeks. Second, this justifies our
decision to perform the lookup and insertion operations in
a bulk fashion, since the URLs are not immediately needed
by the crawling system. Moreover, if our goal is to only
download ��� million pages, then we can switch off most
of the application at this point, since the crawling system al-
ready has enough requests in the queue. Finally, it raises the
question what exactly it means for the application to “keep
up with the system”. In our design of the breadth-first ap-
plication, we have to parse all the files at the speed they
are downloaded, so that they can afterwards be permanently
transferred to storage. Alternatively, we could first store the
pages, and retrieve and parse them later, as long as we can
generate enough URLs to keep the crawling system busy.

3.3 Domain-Based Throttling

It is important not to put too much load on a single web
server, by observing a time-out period between requests.
It is also desirable to do domain-based throttling, to make
sure that requests are balanced between different second- or
higher-level domains. There are several motivations for this.
Some domains may have a fairly slow network connection,
but large number of web servers, and could be impacted by
a crawler. Another problem we encountered was that larger
organizations, such as universities, have intrusion detection
systems that may raise an alarm if too many servers on cam-
pus are contacted in a short period of time, even if timeouts
are observed between accesses to the same server. Finally,
our crawler does timeouts between accesses based on host-
name and not IP address, and does not detect if web servers
are collocated on the same machine. In some cases, many
hosts in a domain are collocated on one machine10.

We decided to address domain-based throttling in the crawl

10We suspect that this is sometimes done to try to influence search en-
gines with link-based ranking, since there were cases of such sites forming
large cliques with very similar content or structure.



application, since this seemed to be the easiest way. We first
note that fetching URLs in the order they were parsed out of
the pages is a very bad idea, since there is a lot of second-
level domain locality in the links. (Consider the case of the
large cliques, which are sometimes attached to fairly cranky
webmasters.) However, if we “scramble” the URLs into a
random order, URLs from each domain will be spread out
evenly. In fact, we can do this in a simple deterministic way
with provable load balancing properties:

(1) Put the hostname of each URL into reverse order (e.g.,
com.amazon.www) before inserting the URL into the
data structures of Subsection 3.2.

(2) After checking for duplicates, take the sorted list of new
URLs and perform a �-way unshuffle permutation, say
for � 	 ����, before sending them to the manager.

A �-way unshuffle is easily implemented by scanning over
the URLs in sorted order, dividing them among � files in a
round-robin fashion, and concatenating these files. In fact,
such unshuffle permutations have been used instead of ran-
dom permutations in parallel computation [19] because of
their balancing properties, which in our case guarantee that
adjacent URLs in the sorted order are spread out far apart 11.
By reversing the hostname, pages in the same domain are
spread out over the set of requests. We note that in our large
crawl, we did not actually reverse the hostnames. We did
not encounter any problems because of this, although this
approach does not provide any provable bounds.

3.4 Crawl Manager Data Structures

The crawl manager maintains a number of data structures for
scheduling the requests on the downloaders while observ-
ing robot exclusion and request interval policies. The main
structures are shown in Figure 4. In particular, we have a
FIFO request queue containing a list of the request files that
have been sent by the manager. Each request file typically
contains a few hundred or thousand URLs, for reasons of
I/O efficiency, and is located on a disk accessible via NFS.
Note that the files themselves are not immediately loaded by
the managers, but stay on disk as long as possible.

Next, there are a number of FIFO host queues containing
URLs, organized by hostname. These structures are imple-
mented in Berkeley DB using a single B-tree, with hostname
as a key, but the reader should think of them as separate
queues for each host. Hosts themselves are organized in sev-
eral host data structures; once a host has been selected for
download, we take the first entry in the corresponding host
queue and send it to a downloader. We have three different
host structures: (i) a host dictionary containing an entry for
each host currently in the manager, with a pointer to the cor-
responding host queue, (ii) a priority queue with pointers to

11Note that a bit-reversal permutation has a similar effect.
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those hosts that are ready for download (the ready queue),
and (iii) a priority queue with pointers to those hosts that
have recently been accessed and are now waiting for �� sec-
onds before they can be contacted again (the waiting queue).
Each URL sent to the manager has an implicit request num-
ber corresponding to its ordering in the request stream. The
goal of the manager is to preserve this ordering as much as
possible, while observing the interval between requests and
achieving high performance.

This is done as follows. Each host pointer in the ready
queue has as its key value the request number of the first
URL in the corresponding host queue. Thus, by extracting
the host with minimum key value, we select the URL with
the lowest request number among all URLs that are ready
to be downloaded, and send it to the downloader. After the
page has been downloaded, a pointer to the host is inserted
into the waiting queue, with the key value equal to the time
when the host can be accessed again. By checking on the
minimum element in this priority queue, and extracting it if
its waiting time has passed, we can transfer hosts back into
the ready queue.

When a new host is encountered, we first create a host
structure and put it into the host dictionary. Once DNS res-
olution and robot exclusion have been finished, we insert a
pointer to the host into the ready queue. When all URLs in
a queue have been downloaded, the host is deleted from the
structures. However, certain information in the robots files
is kept so that a host does not have to be recontacted when
another URL comes in and the host structure is reinitialized.
Finally, if a host is not responding, we put the host into the
waiting queue for some time, and for an even longer time
if it is down on the second try. Applications can also de-
cide to give longer or shorter timeouts to certain hosts, e.g.,
to crawl a powerful server faster12. The priority queues and
dictionary are implemented using STL.

12In [21] it is suggested to choose as timeout the time for the previous
download to complete, multiplied by ��. This could be easily incorporated
into our system.



3.5 Scheduling Policy and Manager Performance

We now discuss the scheduling policy and the performance
of the manager data structures. As mentioned, the number
of requested URLs that are waiting to be downloaded may
be in the hundreds of millions, and the number of hosts may
be several millions. If we immediately insert all the URLs
into the Berkeley DB B-tree structure, it will quickly grow
beyond main memory size and result in bad I/O behavior (we
would expect a disk access for almost all URLs, especially
after unshuffling the URL sets in the application).

Thus, we would like to delay inserting the URLs into the
structures as long as possible. Recall that we have pointers
to the URL files organized as a queue. We now follow a
simple policy: Whenever there are less than � hosts in the
ready queue, we read the next batch of URLs into the man-
ager data structures. Our goal is to significantly decrease the
size of the structures, or to at least get better I/O behavior.
We choose some value � � � � �, where � is the number of
pages crawled per second, and � is the timeout interval for a
host (�� seconds). Thus, as long as we have � hosts in this
queue, we have enough hosts to keep the crawl running at
the given speed. (We note that we do not count the hosts in
the waiting queue, since it also contains hosts that are timed
out for longer periods due to servers being down.) The total
number of host structures and corresponding URL queues at
any time is about �
 � � �
��
��, where � is the number
of hosts in the ready queue, � � � is an estimate of the number
of hosts currently waiting because they have recently been
accessed, �� is the number of hosts that are waiting because
they were down, and �� is the number of hosts in the dic-
tionary that are in neither queue, which is small since this
only happens during robot exclusion, DNS lookup, or the
actual process of downloading a page. Ignoring� �, which is
hard to estimate, the number of host structures will usually
be less than ��. For example, we typically used � 	 �����,
which for a speed of ��� pages per second resulted in at most
����� hosts in the manager.

We now look at the consequences for I/O performance.
As it turns out, even with this limited number of hosts, the
B-tree for the URL queues in Berkeley DB will eventually
grow beyond main memory size, due to a number of hosts
with many URLs that are waiting to be downloaded and
whose queues continue to grow. However, if we look at
caching effects, we find that each queue has only two data
pages that are really “active”: one at the head, where URLs
are removed, and one at the tail where new ones are inserted.
(In fact, the head of one queue is likely to be on the same
page as the tail of the next queue, and the structures of hosts
waiting for longer times because they were down are rarely
accessed.) Thus, if we make sure that there is enough main
memory cache to hold most active data pages, we would ex-
pect that reasonable caching policies will work well. We

used various sizes between ��� and ��� MB for Berkeley
DB cache size, and always observed good behavior. As a
result, the manager uses only moderate CPU, memory, and
disk resources for a small number of downloaders.

We could now ask how this policy affects the order in
which pages are sent to the downloaders. The answer is that
the ordering is in fact the same as if we immediately insert
all request URLs into the manager. Here, we assume that
when the number of hosts in the ready queue drops below
�, the manager will be able to increase this number again to
at least � before the downloaders actually run out of work,
which seems reasonable. (There is also a “host oblivious-
ness” assumption essentially saying that changes in the exact
timing of a host access should not result in widely different
host response time.) Thus, we have the following result:

Any two requests for pages from the same host will be
downloaded in the order they were issued by the applica-
tion. Any two requests for pages from different hosts will be
downloaded in the order they were issued, unless one host
queue is “backed up” with requests due to the timeout rule
or the host being down, or a delay occurred during robot ex-
clusion, DNS resolution, or the actual process of download-
ing from a host. (The case of the delay should only matter if
the requests were issued very close to each other.)

4 Experimental Results and Experiences
We now finally present some preliminary experimental re-
sults and experiences. A detailed analysis of performance
bottlenecks and scaling behavior is beyond the scope of this
paper, and would require a fast simulation testbed, since it
would not be possible (or appropriate) to do such a study
with our current Internet connection or on real web sites.

4.1 Results of a Large Crawl

We ran a crawl of over ��� million web pages on about �
million hosts. The crawl was performed over a period of ��
days; however, the crawler was not continuously in opera-
tion during this time. There were three longer network out-
ages, two of them due to outside attacks on the campus net-
work. We had a number of crawler crashes in the beginning,
since this was our first crawl of this size. The crawler was
also offline for many hours while changes to the software
were implemented. Finally, in the last � days, the crawler
was running at very low speed to download URLs from a
few hundred very large host queues that remained (the appli-
cation was switched off much earlier after enough URLs had
been discovered). After a crash, the crawler would recrawl a
limited number of pages from the previous checkpoint. Dur-
ing operation, the speed of the crawler was limited by us to
a certain rate, depending on time of day, to make sure that
other users on campus were not (too much) inconvenienced.
Table 4.1 shows approximate statistics for the crawl (some
percentages were estimated from a subset of the logs).



HTTP requests 161,549,811
network errors 5,873,685
read timeout exceeded errors 2,288,084
robots.txt requests 16,933,942
successful non-robots requests 138,742,184
average size of page 13,354 bytes
total data size 1.85 TB

Table 4.1. Basic crawl statistics

total successfull non-robot 138,742,184 100.00%
200 (OK) 121,292,132 87.42%
404 (not found) 7,379,633 5.32%
302 (moved temporarily) 6,065,464 4.37%
301 (moved permanently) 2,885,665 2.08%
403 (forbidden) 488,132 0.35%
401 (unauthorized) 413,853 0.30%
500 (internal server error) 91,891 0.07%
other 125,414 0.09%

Table 4.2. HTTP errors

Network errors include a server that is down, does
not exist, behaves incorrectly or is extremely slow
(read timeout exceeded). Some robots files were down-
loaded many times, since they expire from the cache after
�� hours. We estimate that at least ��� million of the ���
million successful requests were to unique pages. Note that
these numbers include HTTP errors, shown in Table 4.2:

4.2 Network Limits and Speed Control

As mentioned, we had to control the speed of our crawler so
that impact on other campus users is minimized. To do this,
we agreed with the network administrator on reasonable lim-
its during different times of the day. We usually limited rates
to about �� pages per second (�����) during peak times
and up to ��� pages per second during the late night and
early morning. These limits can be changed and displayed
via a web-based Java interface. Our campus is connected
to the Internet by a T3 link to AppliedTheory, with a Cisco
3620 as main campus router. We observed that this router
gets clogged with requests as we approach the capacity of
the T3. We briefly ran it at a rate of ��� pages per second,
but doing this longer would probably bring down the router
(again).

To achieve the speed control, the crawl manager varies the
number of connections that each downloader opens simulta-
neously. Thus, if the measured download rate is below the
target, the number is increased, and decreased otherwise. As
it turns out, controlling speed automatically is quite chal-
lenging, since there are many factors that influence perfor-
mance. Adding more and more connections when the cam-
pus network is busy or down is not a good idea, and de-

creasing the number of connections can in some cases in-
crease speed, if the bottleneck was on the machines running
the downloaders. We ended up with a not completely sat-
isfactory solution that modifies the number of connections
while also having an absolute upper bound on the number of
connections for each speed setting.

In the next figure, we have the number of incoming bytes,
outgoing bytes, and outgoing frames for our T3 campus con-
nection, courtesy of AppliedTheory. This data includes all
traffic going in and out of the poly.edu domain over the
�� hours of May 28, 2001. During this day, the crawler was
run at high speed, and there was relatively little other traffic
originating from campus. The crawler performed a check-
point every � hours, during which crawling speed was close
to zero for a few minutes. This is clearly shown in the graph
for the number of incoming bytes, and the bottoms in this
curve can be used to estimate the amount of bandwidth taken
by the crawler versus the other campus traffic. The pattern
does not exist in the outgoing bytes, since the crawler only
sends out small requests, but is clearly visible in the num-
ber of outgoing frames, partly due to HTTP requests and the
DNS system13.

4.3 System Performance and Configuration

For the above crawl, we used � Sun Ultra10 workstations
and a dual-processor Sun E250. We did not try to mini-
mize the amount or cost of the hardware used, and the above
configuration is powerful enough for much higher download
rates on a fast enough network. We now try to give a rough
estimate of what amount of hardware is really needed. This
requires some understanding of the CPU, memory, and disk
requirements of the different components, so that some of
them can be collocated on the same machine. A downloader
with a thousand connections will take up most of the CPU,
but little memory. The manager takes only little CPU time
(depending on how many downloaders are attached), and
needs a reasonable amount (100 MB) of buffer space for
Berkeley DB. The application needs both CPU and memory,
and should thus not be collocated with a downloader.

As an example of a low-end configuration, we used two
Sun Ultra 10 with � � �� GB of EIDE disks each and �

GB and ��� MB of memory, respectively. By running a
downloader and the manager on one machine, and all other
components on the other, we observed a sustained crawling
speed of about ��� pages per second14; similar performance
is also achievable on two comparable Linux workstations.
(Attempts to increase this speed often result in sharply lower
speed, due to components starving each other.)

13We also note that the number of outgoing bytes is unusually high in
the figure, probably due to one of the mentioned break-ins that brought our
campus network down several times.

14Actually, for the machine running the manager and downloader, about
��� MB of memory would suffice.



We note that this translates to a crawling speed of more
than �� million pages per day, enough for most academic
research projects. For larger configurations, we believe
that between �� and ��� pages per second and per node
should be achievable by distributing components appropri-
ately, though this remains to be studied.

4.4 Other Experiences

As observed by Brin and Page [5], running a high-speed
crawler “generates a fair amount of email and phone calls”.
This is still the case, and thus crawler supervision is very im-
portant. A small “host blacklist” data structure at the man-
ager, which can be changed quickly to prevent the crawler
from re-annoying already annoyed people, is highly useful.
One issue we ran in repeatedly came from security software
that raises an alarm when it believes someone is trying to
break in by scanning ports on many machines, and several
University networks alarmed our own network administra-
tor about suspected attacks. (These tools are often unaware
that they are dealing with HTTP requests.) Another com-
pany that tries to protect their customers’ ports from scan-
ning issued a stern alarm after only three accesses, which is
problematic when the port protected in such a way formerly
used to house a web server still linked to by over a hundred
pages all over the web, according to AltaVista. Among other
events were bugs in robot exclusion15, helpful bug reports,
and various curious questions. There are clearly numerous
social and legal issues that arise.

5 Comparison with Other Systems

We now compare our architecture and performance with
that of other systems that we know of. While all the ma-
jor search engines, and a number of other navigation ser-
vices and ”copyright surveillance” companies, have their
own high-performance crawling systems, most of the details
of these systems are not public. The only detailed descrip-
tion of a high-performancecrawler in the academic literature
that we know is that of the Mercator crawler by Heydon and
Najork [16], used by the AltaVista search engine. We give

15It is surprisingly difficult to write a parser for robot files that works
correctly on millions of servers, and a number of available libraries are
buggy.

a detailed comparison with their system and with a recent
successor system called Atrax [20] concurrently developed
with our system. We also compare with certain aspects of
other crawlers that we know about, though we are not famil-
iar with many other aspects of these systems. For work on
crawling strategies, see the references in Section 1.

Mercator was written completely in Java, which gives flex-
ibility through pluggable components, but also posed a num-
ber of performance problems addressed in [16]. Mercator is
a centralized crawler, designed for a fairly powerful server
with several CPUs and fast disk. One major difference to our
system is that we try to completely avoid random I/O, while
Mercator uses caching to catch most of the random I/O, and
a fast disk system to handle the still significant remaining
accesses. An advantage of such a centralized system is that
data can be directly parsed in memory and does not have
to be written from disk as in our system. When schedul-
ing URLs for download, Mercator obtains good I/O perfor-
mance by hashing hostnames to a set of about ��� queues,
instead of one queue for each host as we do. Mercator uses a
thread for each queue that opens one connection using syn-
chronous I/O, while we have a few fairly powerful down-
loaders that open hundreds of asynchronous connections.

A recent distributed version of Mercator called Atrax [20]
essentially ties several Mercator systems together using the
technique for partitioning the application described in Sub-
section 2.4, which has been earlier used in the Internet
Archive crawler [6]. Atrax also uses a disk-efficient merge,
similar to that described in Subsection 3.2. We are not yet
familiar with many details of Atrax, which are still unpub-
lished. However, one could say that Atrax employs a very
similar approach for scaling, but uses a powerful centralized
system (Mercator) as its basic unit of replication, while we
replicate a small distributed system on a network of work-
stations, such as the one in Figure 2, to get a larger one as
shown in Figure 3. (Another way of looking at the differ-
ence is to say that Atrax scales by replicating several vertical
slices (Mercators), while our system layers several scalable
horizontal slices (services) such as application, URL queu-
ing in the manager, downloader.)

Some limited details on an early version of the Google
crawler are given in [5]. The system also uses asynchronous



I/O in Python for its downloaders. One difference is that
parsing for indexing terms is integrated with the crawling
system, and thus download speed is limited by the indexing
speed. The already mentioned Internet Archive crawler [6]
uses a Bloom filter for identifying already seen pages, which
allows the structure to be held in memory but also results in
some pages being falsely omitted.

6 Conclusions and Future Work
We have described the architecture and implementation de-
tails of our crawling system, and presented some prelimi-
nary experiments. There are obviously many improvements
to the system that can be made. A major open issue for fu-
ture work is a detailed study of the scalability of the system
and the behavior of its components. This could probably
be best done by setting up a simulation testbed, consisting
of several workstations, that simulates the web using either
artificially generated pages or a stored partial snapshot of
the web16. We are currently considering this, and are also
looking at testbeds for other high-performance networked
systems (e.g., large proxy caches).

Our main interest is in using the crawler in our research
group to look at other challenges in web search technology,
and several students are using the system and acquired data
in different ways.
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