Kapitel 1

Einführung

Einführung

Was ist ein Datenbanksystem (DBS)?
 Ein System zum Speichern und Verwalten von Daten.

Warum kein herkömmliches Dateisystem verwenden?
 Ausfallsicherheit und Skalierbarkeit nur mit hohem Aufwand erreichbar.

Beispiele

Traditionelle Anwendungsbiete:

- Geschäftsdaten
- Buchhaltung
- Verwaltung
- ...

Heute sehr viel breiter:

- Wissenschaftliche/Medizinische Daten
- Data Mining
- Informationsintegration
- Websuche
- ...

Beispiele(2)

Indirekt benutzten wir ständig Datenbanken:

- Websuche bei Google, Yahoo, ...
- Anfragen bei Amazon, EBay, ...
- Backend vieler großer Webseiten

Viele Spielarten (DB/IR, zentralisiert/dezentralisiert etc.)

Datenbanken werden fast immer eingesetzt wenn

- die Datenmengen groß sind
- die Daten wertvoll sind

Beispiele(3)

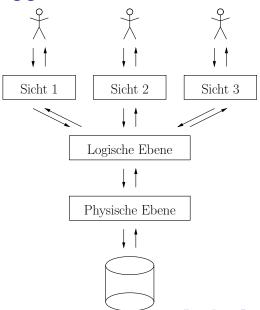
Die großen kommerziellen Datenbanksysteme:

- Oracle
- IBM DB2
- Microsoft SQL Server
- Sybase

Einige freie Datebanksysteme:

- PostgreSQL
- MySQL
- MonetDB

Noch viele weitere, teils stark spezialisierte Systeme.


Typische Probleme ohne DBS

- Redundanz und Inkonsistenz
- Verschiedene Datenformate
- Probleme beim Mehrbenutzerbetrieb
- Verlust von Daten
- Integritätsverletzungen
- Sicherheitsprobleme
- Hohe Entwicklungskosten für Anwendungsprogramme

Gründe für den DBS-Einsatz

- Datenunabhängigkeit
- Deklarative Anfragesprachen
- Mehrbenutzersynchronisation
- Fehlerbehandlung
- Sicherstellung der Datenintegrität
- Effizienz und Skalierbarkeit

Datenunabhängigkeit

Datenunabhängigkeit(2)

- Sicht: beschreibt wie ein Benutzer die Daten sieht.
- Logische Ebene: beschreibt wie die Daten strukturiert sind
- Physische Ebene: beschreibt wie die Daten gespeichert werden

Datenunabhängigkeit(3)

- DBS entkoppelt Anwendungen von der eigentlichen Struktur und Speicherung der Daten
- Logische Datenunabhängigkeit
 - Änderungen auf der logischen Ebene haben keinen Einfluß auf Anwendungen
- Physische Datenunabhängigkeit
 - Änderungen auf der physischen Ebene haben keinen Einfluß auf Anwendungen
 - Wird in fast allen modernen DBS durchgesetzt

Deklarative Anfragesprache

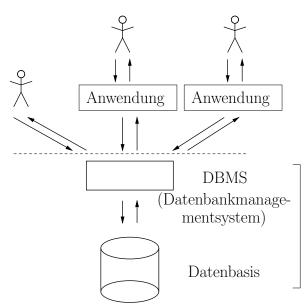
- Benutzer sagt DBS was f
 ür Daten geholt werden sollen . . .
- ... und nicht wie die Daten geholt werden sollen
- Weniger fehleranfällig (beim Formulieren von Anfragen/Entwickeln von Anwendungen), da kein Wissen über die tieferen Schichten des DBS nötig sind

Mehrbenutzersynchronisation

- Wenn mehrere Benutzer ohne jegliche Kontrolle gleichzeitig Daten ändern können, gibt es große Probleme
- DBS erlaubt gleichzeitigen Zugriff und verhindert schlimme Seiteneffekte

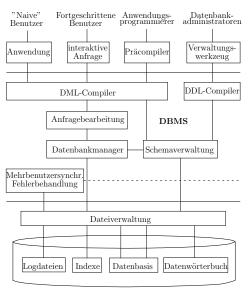
Fehlerbehandlung

- DBS kann Zustand zum Zeitpunkt eines Absturzes rekonstruieren
- Dafür werden Logdateien vom DBS angelegt und verwaltet


Datenintegrität

- Datenverarbeitung in einer Anwendung läuft nicht völlig zufällig ab, sondern folgt gewissen Prinzipien
- DBS befolgt (angegebene) Prinzipien und schützt so vor:
 - Benutzerfehlern
 - Programmfehlern

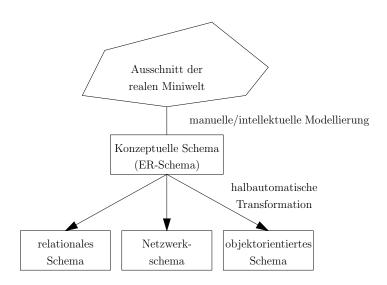
Effizienz and Skalierbarkeit


- DBSe sind für groß angelegte Anwendungen konzipiert
- In DBSen sind Techniken integriert, die mit großen Datenvolumen umgehen können

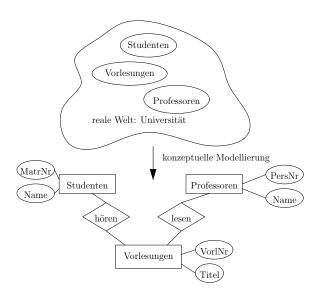
Grobe Architektur

Datenbank System

Detailiertere Übersicht


Datenmodellierung

- Auch wenn DBS vieles kann, es kann nicht alles!
- Ein Benutzer muß immer noch die Anforderungen einer Anwendung . . .
- ... und die Art von Daten die gespeichert werden sollen spezifizieren
- Zwei wichtige Konzepte beim Entwurf:
 - Datenmodell: legt fest, welche Konstrukte zum Beschreiben der Daten existieren
 - Schema: eine konkrete Beschreibung einer bestimmten Datensammlung (unter Verwendung eines Datenmodells)


Datenmodelle

- Konzeptuelle Modelle:
 - Entity-Relationship-Modell (ER-Modell)
 - Unified Modeling Language (UML)
- Logische Modelle:
 - Hierarchisches Modell
 - Netzwerkmodell
 - Relationales Modell
 - Objekt-orientiertes Modell
 - Objekt-relationales Modell
 - Semistrukturiertes Modell

Schritte der Modellierung

Beispiel

Beispiel(2)

Relationales Schema

Studenten		hören		Vorlesungen	
MatrNr	Name	MatrNr	VorlNr	VorlNr	Titel
26120	Fichte	25403	5022	5001	Grundzüge
25403	Jonas	26120	5001	5022	Glaube und Wissen

Zusammenfassung

- Viele Anwendungen haben ähnliche Erfordernisse was die Datenverwaltung angeht
- Ein DBS bildet eine gemeinsame Basis und bietet eine Infrastruktur die diese Anwendungen unterstützt
- Für eine Übersicht über das was geboten wird siehe Folie "Gründe für den DBS-Finsatz"

Übersicht über Vorlesung

- Wir versuchen zwei Seiten abzudecken:
 - Wie benutzt man ein DBMS?
 - Was passiert hinter den Kulissen?

Übersicht über Vorlesung(2)

Inhalt:

•	Relationales Modell
•	Datenbankentwurf
•	SQL
•	Relationale Entwurfstheorie
•	Physische Datenorganisation
•	Anfragebearbeitung
•	Transaktionsverwaltung
•	Fehlerbehandlung
•	Mehrbenutzersynchronisation
•	Verteilte Datenbanksysteme

(Kapitel 3)
(Kapitel 2)
(Kapitel 4)
(Kapitel 5)
(Kapitel 6)
(Kapitel 7)
(Kapitel 8)
(Kapitel 9)
(Kapitel 10)
(Kapitel 11)