Relationale Algebra

Notation:

- $\mathcal{A}(e)$ Attribute der von e erzeugten Tupel (auch $\mathrm{sch}(e)$)
- $\mathcal{F}(e)$ Freie Variablen des Ausdrucks e
- $x_{\mid A}$ Die Projektion des Tupels xauf die Attribute A
- $x =_{|A} y$ Abgekürzte Schreibweise für $x_{|A} = y_{|A}$

Relationale Algebra:

Relationale Algebra:		
$e_1 \cup e_2$	Vereinigung	
	Voraussetzung:	$\mathcal{A}(e_1) = \mathcal{A}(e_2)$
	Schema:	$\mathcal{A}(e_1)$
	Ausprägung:	$\{x x\in e_1\vee x\in e_2\}$
$e_1 \cap e_2$	Schnitt	
	Voraussetzung:	$\mathcal{A}(e_1) = \mathcal{A}(e_2)$
	Schema:	$\mathcal{A}(e_1)$
	Ausprägung:	$\{x x\in e_1\wedge x\in e_2\}$
$e_1 \setminus e_2$	Differenz	
	Voraussetzung:	$\mathcal{A}(e_1) = \mathcal{A}(e_2)$
	Schema:	$\mathcal{A}(e_1)$
	Ausprägung:	$\{x x\in e_1\wedge x\not\in e_2\}$
$\rho_{a \to b}(e)$	Umbenennung	
	Voraussetzung:	$a \in \mathcal{A}(e) \land b \not\in \mathcal{A}(e)$
	Schema:	$\mathcal{A}(e) \setminus \{a\} \cup \{b\}$
	Ausprägung:	$\{x_{ \mathcal{A}(e)\setminus\{a\}} \circ [b:x.a] x \in e\}$
$\Pi_A(e)$	Projektion	
	Voraussetzung:	_ 、,
	Schema:	A
	Ausprägung:	$\{x_{ A} x\in e\}$
$e_1 \times e_2$	Kreuzprodukt	
	Voraussetzung:	(-/ (-/
	Schema:	$\mathcal{A}(e_1)\cup\mathcal{A}(e_2)$
	Ausprägung:	$\{x \circ y x \in e_1 \land y \in e_2\}$
$\sigma_p(e)$	Selektion	-4.
	Voraussetzung:	
	Schema:	$\mathcal{A}(e)$
	Ausprägung:	$\{x x\in e\wedge p(x)\}$

Abgeleitet Operatoren:

 $e_1 \bowtie_p e_2$ Join

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2)))$

Schema: $\mathcal{A}(e_1) \cup \mathcal{A}(e_2)$

Ausprägung: $\{x \circ y | x \in e_1 \land y \in e_2 \land p(x \circ y)\}$

 $e_1 \bowtie e_2$ Natürlicher Join

Voraussetzung: $\forall_{[a:ta] \in \mathcal{A}(e_1), [b:tb] \in \mathcal{A}(e_2)} a \neq b \lor ta = tb$

Schema: $\mathcal{A}(e_1) \cup \mathcal{A}(e_2)$

Ausprägung: $\{x \circ y_{|\mathcal{A}(e_2)\setminus\mathcal{A}(e_1)}| x \in e_1 \land y \in e_2 \land x =_{|\mathcal{A}(e_1)\cap\mathcal{A}(e_2)} y\}$

 $e_1 \div e_2$ Division

Voraussetzung: $\mathcal{A}(e_2) \subseteq \mathcal{A}(e_1)$ Schema: $\mathcal{A}(e_1) \setminus \mathcal{A}(e_2)$

Ausprägung: $\{x_{|\mathcal{A}(e_1)\setminus\mathcal{A}(e_2)}|x\in e_1 \land \forall y\in e_2: x=_{|\mathcal{A}(e_1)\cap\mathcal{A}(e_2)}y\}$

 $e_1 \ltimes_p e_2$ Semijoin

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2)))$

Schema: $\mathcal{A}(e_1)$

Ausprägung: $\{x | x \in e_1 \land \exists y \in e_2 : p(x \circ y)\}$

 $e_1 \triangleright_p e_2$ Antijoin

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2)))$

Schema: $\mathcal{A}(e_1)$

Ausprägung: $\{x | x \in e_1 \land \not\exists y \in e_2 : p(x \circ y)\}$

 $e_1 \bowtie_p e_2$ outer-join

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2)))$

Schema: $\mathcal{A}(e_1) \cup \mathcal{A}(e_2)$

Ausprägung: $(e_1 \bowtie_p e_2) \cup \{x \circ \circ_{a \in \mathcal{A}(e_2)} [a : NULL] | x \in (e_1 \bowtie_p e_2)\}$

 $e_1 \nearrow p e_2$ full outer-join

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2)))$

Schema: $\mathcal{A}(e_1) \cup \mathcal{A}(e_2)$

Ausprägung: $(e_1 \bowtie_p e_2) \cup (e_2 \bowtie_p e_1)$

Erweiterungen der relationalen Algebra:

(nicht Teil der ursprünglichen relationalen Algebra)

 $\chi_{a:f}(e)$ map

Voraussetzung: $a \notin \mathcal{A}(e) \land \mathcal{F}(f) \subseteq \mathcal{A}(e)$

Schema: $\mathcal{A}(e) \cup \{a\}$

Ausprägung: $\{x \circ [a:f(x)] | x \in e\}$

 $\Gamma_{A;a:f}(e)$ Gruppierung

Voraussetzung: $A \subseteq \mathcal{A}(e) \land a \not\in A \land f$ is a function on $p \subseteq e$

Schema: $A \cup \{a\}$

Ausprägung: $\{x \circ [a:f(y)]|x \in \Pi_A(e) \land y = \{z|z \in e \land x = |A|z\}\}$

 $e_1 \bowtie_p e_2$ Abhängiger Join

Voraussetzung: $(\mathcal{A}(e_1) \cap \mathcal{A}(e_2) = \emptyset) \wedge (\mathcal{F}(p) \subseteq (\mathcal{A}(e_1) \cup \mathcal{A}(e_2))) \wedge (\mathcal{F}(e_2) \subseteq \mathcal{A}(e_1))$

Schema: $\mathcal{A}(e_1) \cup \mathcal{A}(e_2)$

Ausprägung: $\{x \circ y | x \in e_1 \land y \in e_2(x) \land p(x \circ y)\}$

Formalisierung von Tupeln und Relationen:

(Dient nur zur Erläuterung, nicht für die Vorlesung notwendig)

Ein Tupel ist eine Zuordnung von Werten zu Attributnamen. Wenn ein Tupel t ein Attribut a enthält $(a \in t)$ liefert t.a den zugehörigen Wert. Induktiv ist ein Tupel wie folgt definiert:

- 1. Das leere Tupel t = [] ist ein Tupel. Es gilt $\forall a : a \notin t.$
- 2. Ein Tupel mit einem Attribut t = [a:x] ist ein Tupel. Es gilt $a \in t \land \forall a' (a' \neq a \Rightarrow a' \notin t)$ sowie t.a = x.
- 3. Sind t_1 und t_2 disjunkte Tupel (d.h. $\forall a (a \notin t_1 \lor a \notin t_2)$) so ist auch die Konkatenation $t = t_1 \circ t_2$ ein Tupel. Es gilt $\forall a ((a \in t_1 \Rightarrow a \in t \land t.a = t_1.a) \land (a \in t_2 \Rightarrow a \in t \land t.a = t_2.a) \land (a \notin t_1 \land a \notin t_2 \Rightarrow a \notin t)$.

Zwei Tupel t_1 und t_2 sind identisch $(t_1 = t_2)$ genau dann wenn gilt:

$$\forall a((a \in t_1 \Rightarrow a \in t_2) \land (a \in t_2 \Rightarrow a \in t_1) \land (a \in t_1 \Rightarrow t_1.a = t_2.a)).$$

Ein *Schema* ist eine eine Zuordnung von Typen (Wertebereichen) zu Attributnamen, d.h. ein Schema ist ein Tupel bei dem alle Werte Mengen sind.

Ein Tupel t entspricht einem Schema S genau dann wenn gilt:

$$\forall a((a \in S \Rightarrow a \in t) \land (a \in t \Rightarrow a \in S) \land (a \in S \Rightarrow t.a \in S.a)).$$

Sofern die Typen aus dem Zusammenhang klar sind identifiziert man ein Schema häufig mit der Menge der enthaltenen Attribute. Entsprechend kann man (etwas informal) Mengenoperationen auf Schemata definieren:

- Wenn S_1 und S_2 Schemata sind so ist auch $S_1 \setminus S_2 = \{[x:S_1.x] | x \in S_1 \land x \notin S_2\}$ ein Schema.
- Wenn S_1 und S_2 Schemata sind so ist auch $S_1 \cap S_2 = \{[x:S_1.x] | x \in S_1 \land x \in S_2\}$ ein Schema. Hinweis: Diese Operation ist meist nur sinnvoll wenn S_1 und S_2 typkonform sind oder getestet werden soll ob S_1 und S_2 disjunkt sind.
- Zwei Schemata S_1 und S_2 sind typkonform genau dann wenn $\forall a (a \in S_1 \land a \in S_2 \Rightarrow S_1.a = S_2.a)$.
- Wenn S_1 und S_2 typkonforme Schemata sind so ist auch $S_1 \cup S_2 = S_1 \circ (S_2 \setminus (S_2 \cap S_1))$ ein Schema.
- Wenn S ein Schema ist so gilt $S = \emptyset$ genau denn wenn S = []. (Bei der ersten Gleichung wird S als die Menge seiner enthaltenen Attribute aufgefasst).

Hinweis: Alle oben definieren relationalen Operatoren gehen implizit davon aus dass alle beteiligten Schemata typkonform sind, d.h. der Attributname den Typ festlegt. Das gleiche gilt für freie Variablen.

Eine Relation R besteht aus einem Schema \mathcal{R} und einer Instanz R. (Häufige Schreibweise: R (oder R) für die Instanz, $\mathcal{A}(R)$ (oder sch(R)) für das Schema).

 \mathcal{R} ist dabei ein beliebiges Schema, R eine Menge von Tupeln die dem Schema \mathcal{R} entsprechen.