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Web Dynamics

Part 7 – Human Behaviour on the Web 

7.1 Recommendation

7.2 Personalized Search
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High-Level View of Recommendation

Input: Collected data on behavior of users

• Items (books, dvds, cds,…) purchased

• Items (books, movies, hotels, …) rated

• Web sites browsed or bookmarked

• Searches and clicked search results

• Sequence of activities (browsing, searching, …)

• Mails, Documents read and written

• Profile in social networks (contacts)

⇒ build extensive user models
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High-Level View of Recommendation

Output: Items of potential interest to user

• Items (books, movies, hotels,…) to 

purchase/view/visit/…

• Web sites to visit

• Improved search results

• Potential query expansions/refinements

• People to meet in social networks
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Three orthogonal approaches

User-centric approach („nearest neighbors“):

User A likes/buys/visits item X     user B may like

(model of ) user B similar to          item X as well
(model of) user A 

Item-centric approach:

User A likes/buys/visits item X      user A may like

Item X similar to item Y                   item Y as well

Static approach: Many people buy X
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Example 1: Web site suggestion
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Example 1: Web site suggestion

⇒⇒⇒⇒ item-centric approach, (seemingly) no user model used
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Example 2: Product Recommendations

⇒⇒⇒⇒ static and item-centric approach
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Example 2: Product Recommendation
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Example 3: Book Recommendations
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Towards user-centric recommendations

Assume n users U, m items I.

Model user-item relation as n x m – matrix V:

• V={0,1}nxm: binary purchase matrix

• V=[min,max]nxm: quantified preference matrix

Both are very sparse!

(Librarything: 1,000,000 users, 52 mio books,

less than 200 books for most users

⇒0,0004% non-zero entries)

„semantics“: vij seen as „vote“ of user i for item j
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Recommendation Problem

Inputs:

• Set of votes of user u with items Iu

• Set of votes of other users

Goal: predict votes of u for items in I\Iu

(to identify the items with highest votes)

⇒ yields scalability problem (|I| is large!)
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Vote Prediction

Initial vote calibration (to remove bias):

Predict vote of user u for item j as weighted average over

the votes of all other users:
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Estimating User-User Similarity

• Correlation-Based similarity:

• Vector similarity (cosine):
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Reducing Dimensionality: SVD

Replace V by rank-k approximation of V using SVD:

A: user-concept similarity matrix (n×r)

S: diagonal matrix of singular values (with r nonzero

entries, where r=rank(V)), corresponding to topics

BT:  concept-item similarity (r×m)

Additionally restrict to k largest singular values to

further reduce dimensionality
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SVD Example
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SVD Example
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Recommendations with SVD

• Predict votes on A, not on V

⇒ compute estimate v‘uj for each topic j

• Extend the vote estimate from topics to items

New issue: Maintaining the SVD when data changes
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Reducing Dimensionality: Clustering

• Reduce number of users by precomputing

K clusters of similar users

• Represent each cluster P by its centroid c(P):

• For prediction:

– Assign user to one of the clusters

– Compute „nearest neighbor“-prediction for clusters

instead of users

• Potential problem: 

users may belong to multiple clusters
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User-Centric is Expensive

• User actions are highly dynamic

– difficult to precompute and maintain similarities

– best recommendations based on items just bought

• One recommendation takes time O(n+m):

– needs to scan all users and their items

– most users have ≤C1 items

– few users (≤C2) have >C1 items

– cost bounded by (n-C2)·C1 + C2·m=O(n+m)

– n,m large

• Recommendations need to be computed in real 
time (≤200ms)
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Item-centric Recommendations

Observation:

Relationships of items (i.e., correlation in purchases) a lot
less dynamic than relationships of users

– information from yesterday still reasonably accurate today

– not recommending new items tolerable

Predict vote of user u for item j as weighted average over

the votes of user u for other items:
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Estimating Item-Item Similarity

using correlation-based or cosine similarity

(similar to user-user similarity)

Example: cosine similarity

Computing similarities expensive (O(m2n)), but offline

Computing predictions is cheap (O(m) if only constant

number of items considered)
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Using Search to Recommend

Assume we can identify features of items

(genre, actors, director, keywords, …)

• Identify frequent/characteristic features for the

user‘s items

• Submit search for those features and 

recommend the results

Problems:

• Does not scale well for many owned items

• Does not provide good recommendations
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Probabilistic Models for Recommendation

Consider joint probability distribution for

m-dimensional set of items (binary preferences):

P[v1…vm]: probability that random user has

vote vector (v1,…vm)

Predict unknown value vui as P[vi=1|vj=1 for j∈Iu]

Impossible to maintain explicitly (2m parameters!)

⇒approximate through finite mixture:

assume independence within each component:
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Evaluating Recommender Systems

Goal:

Out of several recommendation algorithms,
determine which gives best recommendations.

Required components of such a benchmark:

• set of (user,item,rating) tuples for training

(known to the algorithm in advance)

• set of (user,item,rating) tuples for testing

(where the algorithm needs to predict rating)

– Can be offline (part of the data) or live user experiment

• metrics for quantifying result quality
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Properties of Data Sets for Evaluation

• can be synthetic vs. real-life

• features of the application domain

– novelty vs. quality focus of recommendations

– cost/benefit ratio of true/false positive/negatives

– granularity of true user preferences (vs. ratings)

• inherent features of the data set (and ratings)

– Implicit or explicit ratings

– scale & dimensions of ratings

– history of ratings (timestamps) and recommendations

• sample features

– density of rating set (overall & for test users)

– size of data set
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Offline Evaluation vs. User Experiments

• Offline evaluation: compare predicted votes to 

actual votes made by the user

– low effort, can be done automatically

– can be used to evaluate series of ratings (timestamps)

– But: limited choice of predictions to evaluate

• Live user experiments: ask user for opinion or

observe user behavior

– understand if and why people like (or dislike) 

recommendations, interfaces, systems



Summer Term 2010 Web Dynamics 7-27

Evaluation metrics

Widely used: measure accuracy of predictions by

measuring the error of prediction and actual rating

– mean absolute error (MAE)

– Root mean square error (RMSE; emphasises large errors)

– precision/recall, rank accuracy metrics, …
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Additional Evaluation Dimensions

• Coverage:

– Recommendations for how many items

– How many items are actually recommended

• Learning rate:

– How fast recommendation quality increases with increased
amount of training data

• Novelty:

– Focus on items unknown to the user, but within its scope
(e.g., new movie of favourite director)

• Serendepity:

– Surprising recommendations (e.g., new movie of new director
that fits the user‘s taste)

• Confidence
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Benchmarks: Netflix Prize

• http://www.netflixprize.com

• set up by online movie portal

• provides (anonymized) training data
(480,000 users, 18,000 movies, 106 ratings
on a 1..5 scale)

• Goal: improve over portal‘s own recommender
(RMSE: 0.9514)

• High reward to make the benchmark attractive:
1,000,000$ for the first 10% improvement in 
RMSE on test data (1.4 million user-movie pairs),
50,000$ intermediate progress award per year
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Netflix: Result Improvements over Time

10% improvement

reached on July 26, 2009
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Web Dynamics

Part 7 – Human Behaviour on the Web 

7.1 Recommendation

7.2 Personalized Search
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Goal: Resolve inherent disambiguity of search

Example 1: Search for „IR“ may return

• Ingersoll-Rand Company

• Web pages in Arabic from Iran (*.ir)

• Infrared Light

• Information Retrieval

Example 2: Search for „Java“ should return

• Programming tools for a programmer

• Tutorials for a teacher

• FAQ lists for a novice user
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Goal: Resolve inherent disambiguity of search

Example 3: Search for „restaurant“ should return

• places in Geneva while planning for SIGIR 10

• places in Singapore while planning for VLDB 10

• places in Saarbrücken otherwise

Example 4: Search for „Saarbrücken“ should return

• Restaurants (when I‘ve been searching for them)

• Computer shops, dentists, hospitals, …

Search results may depend on current context

(that is not constant and may change over time)
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Dimensions of Personalized Search

• Different kinds of user contexts:

– global: background of the user, long-term profile

– session: set of queries following similar needs

– query: use last query & actions

each only for searches, for all browser actions, or

for (more/all) actions

• Different places to collect & use context info:

– Service provider vs. Web server vs. local client

• Different actions to use context info:

– modify query vs. rerank results
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Simple Personalization: Relevance Feedback

• collect feedback from user for query results

– explicit feedback (buttons in the interface)

– implicit feedback (clicks of the user)

• generate improved query

– add new terms

– drop some old terms

– change weights of terms
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Example: Simple Feedback on iGoogle

Give positive or negative

feedback for results



Summer Term 2010 Web Dynamics 7-38

Example: Simple Feedback on iGoogle
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Feedback in the current Google interface
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iGoogle: Collaborative Feedback
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Implicit Feedback from Clicks

General rules to collect implicit feedback:

• Clicked results are relevant for the query

– unless the user left that page immediately

• Non-clicked results don‘t really help

– User may immediately rate them as nonrelevant

(from the snippet)

– User may already know the result (which may be

relevant or nonrelevant)

– User may not have looked at the result (was satisfied

by other results)
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Advanced Implicit Feedback

Modify browser to collect behavior data:

• dwelling time on a page

• scrolling

• mouse movements

• mouse clicks

• followed links

⇒ Yields better estimate of “relevance”
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iGoogle: Logging Searches and Clicks
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Context-based Search on Google
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Personal Google Web history
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Personal Google Web history
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Searching personal histories



Summer Term 2010 Web Dynamics 7-48

where

q(t) weight of term t in the query

rt number of relevant results with term t

R number of relevant results

nt number of nonrelevant results with term t

N number of nonrelevant results

Standard RF: Rocchio‘s Method (1971)

•Goal: Find query that is close to relevant documents

•Compute Rocchio weights [1971] for each term
(also used as weight in query):

• Select n terms with highest weight to expand query
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Simple Use of Feedback: Promoting

Idea: Push results with positive feedback up

• Locally for each user:

– remember feedback for each user

– promote results with feedback when query returns

(approximately 30% of queries [Dou, WWW07])

• Globally for all users:

– collect feedback for (frequent) queries

– promote results with feedback from „most“ users

– does not work well for ambigous queries

⇒ pure reranking approach
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User Profiles

Goal: Construct summary of the user‘s interests

– from the pages she accessed

– from her documents, her mails, … (optional)

General approach:

• For each page p, consider term vector t(p)

• For set of browsed pages B, compute average

term vector t(B):
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Persistent vs. Session Profile

Long-term interests of user may differ from
interest in current search session

⇒ maintain two profiles: persistent & session

• Session profile:

– consider pages accessed in the current session only

– Session boundaries by time or page coherence

• Persistent profile:

– consider all pages ever visited by the user

– lower weight for older pages (exponential decay)

Profile is mixture of session & persistent profiles
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Personalization with User Profiles

Reranking of search result based on profile match:

• compute set of results R for query

• for each result p, measure similarity of p with

profile vector (e.g., cosine)

• rank results in descending order of similarity
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Improving Profiles by Collaborative Filtering

Problem: 

User profile often sparse (based on few pages)

Approach:

Predict missing term weights analogously to

user-centric recommendation

• Find similar users based on similarity of their profiles

• Compute predictions for term weights based on 

weighted average over neighborhood
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Reranking Problem: Similar Results

Reranking cannot work when all results are similar

(and nonrelevant to the query)

Example:

– Query: windows (as built into houses)

– Results: only about the operating system
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Reranking diversified results

Exploit information about query sequences

Example:

windows → house windows → vinyl windows

→ windows xp → windows vista

Approach:

To get K results for reranking for query q,

submit top-K/(k+1)-queries for k most

frequent/diverse following queries of q in the log
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