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The SVD is the Swiss Army knife of matrix decompositions

—Diane O’Leary, 2006
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The definition

Theorem. For every A ∈ Rm×n there exists m ×m orthogonal matrix U
and n × n orthogonal matrix V such that UTAV is an m × n diagonal
matrix Σ that has values σ1 ≥ σ2 ≥ . . . ≥ σmin{n,m} ≥ 0 in its diagonal.

I.e. every A has decomposition A = UΣVT

I The singular value decomposition (SVD)

The values σi are the singular values of A

Columns of U are the left singular vectors and columns of V the
right singular vectors of A

=A U V
T

Σ
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The fundamental theorem of linear algebra

The fundamental theorem of linear algebra states that every matrix
A ∈ Rm×n induces four fundamental subspaces:

The range of dimension rank(A) = r
I The set of all possible linear combinations of columns of A

The kernel of dimension n − r
I The set of all vectors x ∈ Rn for which Ax = 0

The coimage of dimension r

The cokernel of dimension m − r

The bases for these subspaces can be obtained from the SVD:

Range: the first r columns of U

Kernel: the last (n − r) columns of V

Coimage: the first r columns of V

Cokernel: the last (m − r) columns of U
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Pseudo-inverses

Problem.

Given A ∈ Rm×n and b ∈ Rm, find x ∈ Rn minimizing ‖Ax− b‖2.

If A is invertible, the solution is A−1Ax = A−1b⇔ x = A−1b
A pseudo-inverse A+ captures some properties of the inverse A−1

The Moose–Penrose pseudo-inverse of A is a matrix A+ satisfying
the following criteria

I AA+A = A (but it is possible that AA+ 6= I)
I A+AA+ = A+ (cf. above)
I (AA+)T = AAT (AA+ is symmetric)
I (A+A)T = A+A (as is A+A)

If A = UΣVT is the SVD of A, then A+ = VΣ−1UT

I Σ−1 replaces σi ’s with 1/σi and transposes the result

Theorem.

The optimum solution for the above problem can be obtained using
x = A+b.
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Truncated (thin) SVD

The rank of the matrix is the number of its non-zero singular values

I Easy to see by writing A =
∑min{n,m}

i=1 σiuivT
i

The truncated (or thin) SVD only takes the first k columns of U and
V and the main k × k submatrix of Σ

I Ak =
∑k

i=1 σiuivT
i = UkΣkVT

k
I rank(Ak) = k (if σk > 0)
I Uk and Vk are no more orthogonal, but they are column-orthogonal

The truncated SVD gives a low-rank approximation of A

≈A U V
T

Σ
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SVD and matrix norms

Let A = UΣVT be the SVD of A. Then

‖A‖2F =
∑min{n,m}

i=1 σ2i
‖A‖2 = σ1

I Remember: σ1 ≥ σ2 ≥ · · · ≥ σmin{n,m} ≥ 0

Therefore ‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2

The Frobenius of the truncated SVD is ‖Ak‖2F =
∑k

i=1 σ
2
i

I And the Frobenius of the difference is ‖A− Ak‖2F =
∑min{n,m}

i=k+1 σ2
i

The Eckart–Young theorem

Let Ak be the rank-k truncated SVD of A. Then Ak is the closest rank-k
matrix of A in the Frobenius sense. That is

‖A− Ak‖F ≤ ‖A− B‖F for all rank-k matrices B.
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Eigendecompositions

An eigenvector of a square matrix A is a vector v such that A only
changes the magnitude of v

I I.e. Av = λv for some λ ∈ R
I Such λ is an eigenvalue of A

The eigendecomposition of A is A = Q∆Q−1

I The columns of Q are the eigenvectors of A
I Matrix ∆ is a diagonal matrix with the eigenvalues

Not every (square) matrix has eigendecomposition
I If A is of form BBT , it always has eigendecomposition

The SVD of A is closely related to the eigendecompositions of AAT

and ATA
I The left singular vectors are the eigenvectors of AAT

I The right singular vectors are the eigenvectors of ATA
I The singular values are the square roots of the eigenvalues of both

AAT and ATA
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Factor interpretation

The most common way to interpret SVD is to consider the columns
of U (or V)

I Let A be objects-by-attributes and UΣVT its SVD
I If two columns have similar values in a row of VT , these attributes are

somehow similar (have strong correlation)
I If two rows have similar values in a column of U, these users are

somehow similar
3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

Example: people’s ratings of
different wines

Scatterplot of first and
second column of U

I left: likes wine
I right: doesn’t like
I up: likes red wine
I bottom: likes white vine

Conclusion: winelovers like
red and white, others care
more 12 / 35Skillicorn, p. 55



Geometric interpretation

Let UΣVT be the SVD of
M

SVD shows that every linear
mapping y = Mx can be
considered as a series of
rotation, stretching, and
rotation operations

I Matrix VT performs the
first rotation y1 = VTx

I Matrix Σ performs the
stretching y2 = Σy1

I Matrix U performs the
second rotation y = Uy2

13 / 35Wikipedia user Georg-Johann
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Dimension of largest variance
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879




DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

The singular vectors give the
dimensions of the variance in the data

I The first singular vector is the
dimension of the largest variance

I The second singular vector is the
orthogonal dimension of the second
largest variance

F First two dimensions span a
hyperplane

From Eckart–Young we know that if we
project the data to the spanned
hyperplanes, the distance of the
projection is minimized

14 / 35Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013



Component interpretation

Recall that we can write A = UΣVT =
∑r

i=1 σiuiv
T
i =

∑r
i=1 Ai

I Ai = σiviuT
i

This explains the data as a sums of (rank-1) layers
I The first layer explains the most
I The second corrects that by adding and removing smaller values
I The third corrects that by adding and removing even smaller values
I . . .

The layers don’t have to be very intuitive
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Problem

Most data mining applications do not use full SVD, but truncated
SVD

I To concentrate on “the most important parts”

But how to select the rank k of the truncated SVD?
I What is important, what is unimportant?
I What is structure, what is noise?
I Too small rank: all subtlety is lost
I Too big rank: all smoothing is lost

Typical methods rely on singular values in a way or another
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Guttman–Kaiser criterion and captured energy

Perhaps the oldest method is the Guttman–Kaiser criterion:
I Select k so that for all i > k , σi < 1
I Motivation: all components with singular value less than unit are

uninteresting

Another common method is to select enough singular values such
that the sum of their squares is 90% of the total sum of the squared
singular values

I The exact percentage can be different (80%, 95%)
I Motivation: The resulting matrix “explains” 90% of the Frobenius

norm of the matrix (a.k.a. energy)

Problem: Both of these methods are based on arbitrary thresholds
and do not consider the “shape” of the data
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Cattell’s Scree test

The scree plot plots the singular values in decreasing order
I The plot looks like a side of the hill, thence the name

The scree test is a subjective decision on the rank based on the shape
of the scree plot
The rank should be set to a point where

I there is a clear drop in the magnitudes of the singular values; or
I the singular values start to even out

Problem: Scree test is subjective, and many data don’t have any
clear shapes to use (or have many)

I Automated methods have been developed to detect the shapes from
the scree plot
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Entropy-based method

Consider the relative contribution of each singular value to the overall
Frobenius norm

I Relative contribution of σk is fk = σ2
k/
∑

i σ
2
i

We can consider these as probabilities and define the (normalized)
entropy of the singular values as

E = − 1

log
(
min{n,m}

) min{n,m}∑
i=1

fi log fi

I The basis of the logarithm doesn’t matter
I We assume that 0 · ∞ = 0
I Low entropy (close to 0): the first singular value has almost all mass
I High entropy (close to 1): the singular values are almost equal

The rank is selected to be the smallest k such that
∑k

i=1 fi ≥ E

Problem: Why entropy?
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Random flip of signs

Multiply every element of the data A randomly with either 1 or −1 to
get Ã

I The Frobenius norm doesn’t change (‖A‖F = ‖Ã‖F )
I The spectral norm does change (‖A‖2 6= ‖Ã‖2)

F How much this changes depends on how much “structure” A has

We try to select k such that the residual matrix contains only noise
I The residual matrix contains the last m − k columns of U,

min{n,m} − k singular values, and last n − k rows of VT

I If A−k is the residual matrix of A after rank-k truncated SVD and Ã−k
is that for the matrix with randomly flipped signs, we select rank k to
be such that (‖A−k‖2 − ‖Ã−k‖2)/‖A−k‖F is small

Problem: How small is small?
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Normalization

Data should usually be normalized before SVD is applied
I If one attribute is height in meters and other weights in grams, weight

seems to carry much more importance in data about humans
I If data is all positive, the first singular vector just explains where in the

positive quadrant the data is

The z-scores are attributes whose values are transformed by
I centering them to 0

F Remove the mean of the attribute’s values from each value
I normalizing the magnitudes

F Divide every value with the standard deviation of the attribute

Notice that the z-scores assume that
I all attributes are equally important
I attribute values are approximately normally distributed

Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or cubic
roots

The effects of normalization should always be considered
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Removing noise

Very common application of SVD is to remove the noise from the data
This works simply by taking the truncated SVD from the (normalized)
data

I The big problem is to select the rank of the truncated SVD

Example:
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I Looks like 1-dimensional with some noise

The right singular vectors show the directions
I The first looks like the data direction
I The second looks like the noise direction

The singular values confirm this
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Removing dimensions

Truncated SVD can also be used to battle the curse of
dimensionality

I All points are close to each other in very high dimensional spaces
I High dimensionality slows down the algorithms

Typical approach is to work in a space spanned by the columns of VT

I If UΣVT is the SVD of A ∈ Rm×n, project A to AVk ∈ Rm×k where
Vk has the first k columns of V

I This is known as the Karhunen–Loève transform (KLT) of the rows
of A

F Matrix A must be normalized to z-scores in KLT
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Visualization

Truncated SVD with k = 2, 3 allows us to visualize the data
I We can plot the projected data points after 2D or 3D Karhunen–Loève

transform
I Or we can plot the scatter plot of two or three (first, left/right)

singular vectors

3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =



−0.390
0.089

−0.916


 u2 =



−0.639
−0.742
0.200




The projection matrix is given as

P2 = U2U
T
2 =



| |
u1 u2
| |



(

— uT1 —
— uT2 —

)
= u1u

T
1 + u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082
0.357 −0.082 0.839


+




0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04




=



0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879




DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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Latent semantic analysis

The latent semantic analysis (LSA) is an information retrieval
method that uses SVD

The data: a term–document matrix A
I the values are (weighted) term frequencies
I typically tf/idf values (the frequency of the term in the document

divided by the global frequency of the term)

The truncated SVD Ak = UkΣkVT
k of A is computed

I Matrix Uk associates documents to topics
I Matrix Vk associates topics to terms
I If two rows of Uk are similar, the corresponding documents “talk about

same things”

A query q can be answered by considering its term vector q
I q is projected to qk = qVΣ−1

I qk is compared to rows of U and most similar rows are returned
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Algorithms for SVD

In principle, the SVD of A can be computed by computing the
eigendecomposition of AAT

I This gives us left singular vectors and squares of singular values
I Right singular vectors can be solved: VT = Σ−1UTA
I Bad for numerical stability!

Full SVD can be computed in time O
(
nmmin{n,m}

)
I Matrix A is first reduced to a bidiagonal matrix
I The SVD of the bidiagonal matrix is computed using iterative methods

(similar to eigendecompositions)

Methods that are faster in practice exist
I Especially for truncated SVD

Efficient implementation of an SVD algorithm requires considerable
work and knowledge

I Luckily (almost) all numerical computation packages and programs
implement SVD
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Lessons learned

SVD is the Swiss Army knife of (numerical) linear algebra
→ ranks, kernels, norms, . . .

SVD is also very useful in data analysis
→ noise removal, visualization, dimensionality reduction, . . .

Selecting the correct rank for truncated SVD is still a problem
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Suggested reading

Skillicorn, Ch. 3

Gene H. Golub & Charles F. Van Loan: Matrix Computations, 3rd ed.
Johns Hopkins University Press, 1996

I Excellent source for the algorithms and theory, but very dense
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Basic information

Assignment sheet will be made available later today/early tomorrow
I We’ll announce it in the mailing list

DL in two weeks, delivery by e-mail
I Details in the assignment sheet

Hands-on assignment: data analysis using SVD

Recommended software: R
I Good alternatives: Matlab (commercial), GNU Octave (open source),

and Python with NumPy, SciPy, and matplotlib (open source)
I Excel is not a good alternative (too complicated)

What you have to return?
I Single document that answers to all questions (all figures, all analysis

of the results, the main commands you used for the analysis if asked)
I Supplementary material containing the transcript of all commands you

issued/all source code
I Both files in PDF format
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