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The SVD is the Swiss Army knife of matrix decompositions

—Diane O’Leary, 2006
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The definition

Theorem. For every A € R™*" there exists m x m orthogonal matrix U
and n x n orthogonal matrix V such that UT AV is an m x n diagonal
matrix 3 that has values 01 > 02 > ... > Opmin{n,my = 0 in its diagonal.

o l.e. every A has decomposition A = UXV '
» The singular value decomposition (SVD)
@ The values o; are the singular values of A

@ Columns of U are the left singular vectors and columns of V the
right singular vectors of A

A
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The fundamental theorem of linear algebra

The fundamental theorem of linear algebra states that every matrix
A € R™" induces four fundamental subspaces:
@ The range of dimension rank(A) = r
» The set of all possible linear combinations of columns of A
@ The kernel of dimension n—r
» The set of all vectors x € R" for which Ax =0

@ The coimage of dimension r
@ The cokernel of dimension m — r
The bases for these subspaces can be obtained from the SVD:
@ Range: the first r columns of U
e Kernel: the last (n — r) columns of V
o Coimage: the first r columns of V

o Cokernel: the last (m — r) columns of U

6
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Pseudo-inverses

Problem.
Given A € R™*" and b € R", find x € R" minimizing ||[Ax — b||>. J

@ If A is invertible, the solution is A”1Ax = A"'b < x = A~'b
o A pseudo-inverse A1 captures some properties of the inverse A™1

@ The Moose—Penrose pseudo-inverse of A is a matrix A" satisfying
the following criteria

» AATA=A (but it is possible that AAT # 1)
» ATAAT = AT (cf. above)

» (AAT)T =AAT (AAT is symmetric)

» (ATA)T = ATA (asis ATA)

o If A=USVT is the SVD of A, then |A* = vE-1UT |

» X1 replaces o;'s with 1/0; and transposes the result

Theorem.

The optimum solution for the above problem can be obtained using
x = A"b.




Truncated (thin) SVD

@ The rank of the matrix is the number of its non-zero singular values
» Easy to see by writing A = Z;":iq{"’m} o]
@ The truncated (or thin) SVD only takes the first k columns of U and
V and the main k x k submatrix of
> Ak = Zf:l O','U,'V,-T = UkEkaT
» rank(Ax) = k (if ox > 0)
» Uy and V/ are no more orthogonal, but they are column-orthogonal

@ The truncated SVD gives a low-rank approximation of A

A
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SVD and matrix norms

Let A =UXV be the SVD of A. Then
o A} = Syt o2
° ||All2 =01

» Remember: 01 > 02 > -+ > Opingp,my = 0
e Therefore |A]l2 < [|Al|r < /n||Al]2
@ The Frobenius of the truncated SVD is ||Ax||% = Ef;l o?

» And the Frobenius of the difference is ||A — Ax||2 = Z?‘:“;ﬁr”l”"} o?

The Eckart—Young theorem

Let A be the rank-k truncated SVD of A. Then A, is the closest rank-k
matrix of A in the Frobenius sense. That is

IIA — Akllr < ||A—BJg for all rank-k matrices B.




Eigendecompositions

@ An eigenvector of a square matrix A is a vector v such that A only
changes the magnitude of v

> le. Av = )v for some A € R
» Such A is an eigenvalue of A

@ The eigendecomposition of A is A = QAQ™!

» The columns of Q are the eigenvectors of A
» Matrix A is a diagonal matrix with the eigenvalues

o Not every (square) matrix has eigendecomposition
» If Ais of form BB, it always has eigendecomposition

@ The SVD of A is closely related to the eigendecompositions of AAT
and ATA
> The left singular vectors are the eigenvectors of AAT
» The right singular vectors are the eigenvectors of ATA

» The singular values are the square roots of the eigenvalues of both
AAT and ATA
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Factor interpretation

@ The most common way to interpret SVD is to consider the columns

of U (or V)

» Let A be objects-by-attributes and UxVv' its SVD

» If two columns have similar values in a row of VT, these attributes are
somehow similar (have strong correlation)

» If two rows have similar values in a column of U, these users are

somehow similar

re

Figure 3.2. The first two factors for a dataset ranking wines.

Skillicorn, p. 55

@ Example: people's ratings of
different wines
@ Scatterplot of first and
second column of U
> left: likes wine
> right: doesn't like
> up: likes red wine
» bottom: likes white vine
@ Conclusion: winelovers like
red and white, others care
more 12/35



Geometric interpretation
o Let UV be the SVD of

M
“ — I @ SVD shows that every linear
mapping y = Mx can be

considered as a series of
v* U rotation, stretching, and
rotation operations

. » Matrix V' performs the
> e first rotation y; = V' x
» Matrix X3 performs the

M=UX-V* stretching y, = Xy,
» Matrix U performs the
second rotation y = Uy,

Wikipedia user Georg-Johann 13 /35


http://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

Dimension of largest variance

@ The singular vectors give the
dimensions of the variance in the data

> The first singular vector is the
dimension of the largest variance
» The second singular vector is the
orthogonal dimension of the second
largest variance
* First two dimensions span a
hyperplane

@ From Eckart—Young we know that if we
project the data to the spanned
hyperplanes, the distance of the
projection is minimized

Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 14 /35



Component interpretation
o Recall that we can write A = UZVT =37 qiuv] =37 A;

> A,' = O’,'V,'U,-T
e This explains the data as a sums of (rank-1) layers

» The first layer explains the most

» The second corrects that by adding and removing smaller values

» The third corrects that by adding and removing even smaller values
> ...

@ The layers don't have to be very intuitive
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Problem

@ Most data mining applications do not use full SVD, but truncated
SVD

» To concentrate on “the most important parts”

@ But how to select the rank k of the truncated SVD?
» What is important, what is unimportant?

What is structure, what is noise?

Too small rank: all subtlety is lost

Too big rank: all smoothing is lost

vV vy

@ Typical methods rely on singular values in a way or another
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Guttman—Kaiser criterion and captured energy

@ Perhaps the oldest method is the Guttman—Kaiser criterion:
» Select k so that forall i > k, 0; < 1
» Motivation: all components with singular value less than unit are
uninteresting
@ Another common method is to select enough singular values such
that the sum of their squares is 90% of the total sum of the squared
singular values
» The exact percentage can be different (80%, 95%)
» Motivation: The resulting matrix “explains” 90% of the Frobenius
norm of the matrix (a.k.a. energy)

@ Problem: Both of these methods are based on arbitrary thresholds
and do not consider the “shape” of the data
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Cattell's Scree test

The scree plot plots the singular values in decreasing order
» The plot looks like a side of the hill, thence the name

The scree test is a subjective decision on the rank based on the shape

of the scree plot
The rank should be set to a point where

> there is a clear drop in the magnitudes of the singular values; or
> the singular values start to even out
Problem: Scree test is subjective, and many data don’t have any
clear shapes to use (or have many)
» Automated methods have been developed to detect the shapes from
the scree plot
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Entropy-based method
o Consider the relative contribution of each singular value to the overall
Frobenius norm
> Relative contribution of oy is fx = 02/ > . 07
@ We can consider these as probabilities and define the (normalized)
entropy of the singular values as

min{n,m}

E=-— Y filogf;

Iog(mln{n m}) P

The basis of the logarithm doesn’t matter
We assume that 0- oo =0
Low entropy (close to 0): the first singular value has almost all mass

>
>
>
» High entropy (close to 1): the singular values are almost equal

@ The rank is selected to be the smallest k such that Zf'(:l fi>E
o Problem: Why entropy?
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Random flip of signs

o Multiply every element of the data A randomly with either 1 or —1 to
get A
» The Frobenius norm doesn't change (||Al|r = ||A||f)
» The spectral norm does change (||Al]2 # ||A|l2)
* How much this changes depends on how much “structure” A has
@ We try to select k such that the residual matrix contains only noise
» The residual matrix contains the last m — k columns of U,
min{n, m} — k singular values, and last n — k rows of V" y
» If A_, is the residual matrix of A after rank-k truncated SVD and A_,
is that for the matrix with randomly flipped signs, we select rank k to
be such that (||A_k|l2 — [[A—kl|l2)/||A=k| F is small

@ Problem: How small is small?
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Normalization

@ Data should usually be normalized before SVD is applied
> If one attribute is height in meters and other weights in grams, weight
seems to carry much more importance in data about humans
> If data is all positive, the first singular vector just explains where in the
positive quadrant the data is
@ The z-scores are attributes whose values are transformed by
> centering them to 0
* Remove the mean of the attribute’s values from each value
» normalizing the magnitudes
* Divide every value with the standard deviation of the attribute
o Notice that the z-scores assume that
» all attributes are equally important
> attribute values are approximately normally distributed
@ Values that have larger magnitude than importance can also be
normalized by first taking logarithms (from positive values) or cubic
roots

@ The effects of normalization should always be considered
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Removing noise

@ Very common application of SVD is to remove the noise from the data
@ This works simply by taking the truncated SVD from the (normalized)

data

» The big problem is to select the rank of the truncated SVD

o Example:

s
S8l

‘v

o1 =11.73
o =1.71

@ Original data
> Looks like 1-dimensional with some noise

@ The right singular vectors show the directions
» The first looks like the data direction
» The second looks like the noise direction

@ The singular values confirm this

25 /35



Removing dimensions

@ Truncated SVD can also be used to battle the curse of
dimensionality
» All points are close to each other in very high dimensional spaces
» High dimensionality slows down the algorithms
o Typical approach is to work in a space spanned by the columns of VT
» If USV' is the SVD of A € R™*", project A to AV, € R™k where

V, has the first k columns of V
» This is known as the Karhunen—Loéve transform (KLT) of the rows

of A

* Matrix A must be normalized to z-scores in KLT
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Visualization

@ Truncated SVD with k = 2,3 allows us to visualize the data

» We can plot the projected data points after 2D or 3D Karhunen—Loéve
transform

» Or we can plot the scatter plot of two or three (first, left/right)
singular vectors

e

Figure 3.2. The first two factors for a dataset ranking wines.

Skillicorn, p. 55; Zaki & Meira Fundamentals of Data Mining Algorithms, manuscript 2013 27/35



Latent semantic analysis

@ The latent semantic analysis (LSA) is an information retrieval
method that uses SVD
@ The data: a term—document matrix A

» the values are (weighted) term frequencies
> typically tf/idf values (the frequency of the term in the document
divided by the global frequency of the term)

@ The truncated SVD A, = UkEkaT of A is computed
» Matrix Uy associates documents to topics
» Matrix Vi associates topics to terms
> If two rows of Uy are similar, the corresponding documents “talk about
same things"”
@ A query g can be answered by considering its term vector q
» q is projected to q, = qVX !
> q, is compared to rows of U and most similar rows are returned
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Algorithms for SVD

@ In principle, the SVD of A can be computed by computing the
eigendecomposition of AAT

» This gives us left singular vectors and squares of singular values
» Right singular vectors can be solved: vi=x-1u’a
» Bad for numerical stability!

e Full SVD can be computed in time O(nmmin{n, m})

» Matrix A is first reduced to a bidiagonal matrix
» The SVD of the bidiagonal matrix is computed using iterative methods
(similar to eigendecompositions)

@ Methods that are faster in practice exist
» Especially for truncated SVD

o Efficient implementation of an SVD algorithm requires considerable
work and knowledge

» Luckily (almost) all numerical computation packages and programs
implement SVD
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Lessons learned

@ SVD is the Swiss Army knife of (numerical) linear algebra
— ranks, kernels, norms, ...

@ SVD is also very useful in data analysis
— noise removal, visualization, dimensionality reduction, ...

@ Selecting the correct rank for truncated SVD is still a problem
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Suggested reading

e Skillicorn, Ch. 3

@ Gene H. Golub & Charles F. Van Loan: Matrix Computations, 3rd ed.
Johns Hopkins University Press, 1996

» Excellent source for the algorithms and theory, but very dense
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Basic information

@ Assignment sheet will be made available later today/early tomorrow
» We'll announce it in the mailing list

@ DL in two weeks, delivery by e-mail
» Details in the assignment sheet

@ Hands-on assignment: data analysis using SVD
@ Recommended software: R
» Good alternatives: Matlab (commercial), GNU Octave (open source),
and Python with NumPy, SciPy, and matplotlib (open source)
» Excel is not a good alternative (too complicated)
@ What you have to return?
» Single document that answers to all questions (all figures, all analysis
of the results, the main commands you used for the analysis if asked)
» Supplementary material containing the transcript of all commands you

issued/all source code
> Both files in PDF format
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http://www.r-project.org
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
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