Wrapping It Up
Pauli Miettinen
Jilles Vreeken

24 July 2014 (TADA)
What did we do?

- Introduction
- Tensors
- Information Theory
- Mixed Grill
- Wrap-up + <ask-us-anything>
Take Home: overall

Overview of the hot topics in data mining that Pauli and Jilles think are cool strongly biased sample – by interest and available time

We wanted to give a general picture of what data mining is, what makes it special, and what’s currently happening at the edge of human knowledge
Data mining is **descriptive** not **predictive**
the goal is to give you insight into your data,
to offer (parts of) candidate hypotheses,
what you do with those is up to you.
Take Home: **Tensors**

Multi-way extensions

of matrices

Anything you can do with matrices
you can do with tensors...
...only harder
...and taking into account
multi-way relationships
Take Home: Decompositions

Different tensor decompositions reveal different types of patterns

The choice of correct decomposition must be based on application’s needs; there’s no golden bullet
Take Home: Information Theory

Exploratory data analysis
wandering around your data,
looking for interesting things,
without being asked questions
you cannot know the answer of.

Questions like:

What distribution should we assume?

How many clusters/factors/patterns do you want?

Please parameterize this Bayesian network?
Take Home: Interestingness

Interestingness is ultimately subjective

Still, to have algorithms that can find potentially interesting things we somehow need to formalize it
Take Home: Information Theory

Information Theory is a branch of statistics, concerned with measuring information

information = reduction of uncertainty

Uncertainty can be quantified in bits

Everything new you learn about your data allows you to compress it better
Take Home: **MDL**

The Minimum Description Length (MDL) principle

given a set of models \mathcal{M}, the best model $M \in \mathcal{M}$ is that M that minimizes

$$L(M) + L(D|M)$$

in which

$L(M)$ is the length, in bits, of the description of M

$L(D|M)$ is the length, in bits, of the description of the data when encoded using M
Take Home: **Maximum Entropy**

The principle of Maximum Entropy

given a set of testable statistics B, the best distribution p^* is that p that satisfies

$$
\int_S p(x)f_i(x)dx = \alpha_i \quad \text{for } (f_i, \alpha_i) \in B
$$

while maximizing

$$
H(p)
$$

p^* is the **most** uniform, **least** biased distribution that corresponds with belief set B
it models **your** expectation – assuming you use B optimally
Take Home: Graph Mining

Most graph mining approaches are **global** and **predictive**

‘*Explain everything in one go*’

real graphs are too complex for that

Taking a **local** and **descriptive** approach allows for more detailed results, richer problems, easier formalization, efficient solutions

very little done so far, many cool open problems
Take Home: **Redescriptions**

Redescriptions explain the same thing many times

Emerging topic that has not yet fully broken into the data mining canon

Can be seen as **translation** *within* a dataset
Data is rarely static even though many algorithms expect that.

Streaming algorithms work when data is too big to fit anywhere while **dynamic algorithms** aim to adjust the answer with the changing data.

Take Home: Dynamic Data
Take Home: Assignments

“What the hell where they thinking??”

We wanted you to learn to read scientific papers without getting lost in details quickly forming high level pictures of complex ideas read critically, seeing through scientific sales-pitches show independent thinking, make ideas your own.

We were not disappointed.
Take Home: TADA

Data analysis is important, upcoming, but still very young

aims to tackle impossible problems, such as finding interesting things in enormous search spaces

is a weird mix of theory and practice: likes to be foundational, yet not afraid of ad hoc

and, not unimportant, it’s lots of fun.
Exam dates

The Exam
- type: oral
- when: September 11th
- time: individual
- where: E1.3 room 0.16
- what: all material discussed in the lectures, plus one assignment (your choice) per topic

The Re-Exam
- type: oral
- when: October 1st
- time: individual
- where: E1.3 room 001

If you know you can’t or just won’t attend, please let us know.
Evaluation: I did not like

“Slides are not detailed enough for revision”
Evaluation: Suggestions

“More ways for discussing assignment solution”
More ways for understanding the suggestion?

“Bit heavy course for 5 ECTS”
Yes.

“More details for practical stuff, like how and why”
Maybe. Maybe not here.

“More lectures with both lecturers”
Really?
Things to do

Master thesis projects
- in principle: yes!
- in practice: depending background, motivation, interests, and grades --- plus, on whether we have time
- interested? mail Pauli and/or Jilles

Student Research Assistant (HiWi) positions
- in principle: maybe!
- in practice: depends on background, grades, and in particular your motivation and interests
- interested? mail Jilles and/or Pauli, include CV and grades
Sample Topics – JV

Graphs
- characterising viruses
- realistic graph generators
- mining interesting sub graphs
- patterns in tweets

Causality
- did X cause Y?
- mining causal graphs
- what’s the cause of this?
- predicting the future

Useful Patterns
- the Difference & the Norm
- privacy & data generation
- pattern-based indexing
- noise reduction

Rich Data & Text
- pattern-based topic models
- grammar & compression
- rich MaxEnt modelling
- outliers in rich data
Sample Topics – PM

Matrices
- tropical algebras
- Boolean algebras
- efficient algorithms
- good applications

Tensors
- new decompositions
- efficient algorithms
- applications

Theory
- approximability
- computational complexity
- practical results
- DM motivated

Redescriptions
- new algorithms
- new applications
- new formulations
Good reads – PM

Understanding Complex Datasets
D. Skillicorn
(light reading on matrix and tensor decomp.)

Matrix Computations
G.H. Golub & C. Van Loan
(anything-but-light, reference book)

Mining of Massive Datasets
Rajaraman, Lescovec & Ullman
(work-in-progress textbook)
Good Reads – JV

- **Data Analysis: a Bayesian Tutorial**
 D.S. Sivia & J. Skilling
 (very good, but skip the MaxEnt stuff)

- **Elements of Information Theory**
 Thomas Cover & Joy Thomas
 (very good textbook)

- **The Information**
 James Gleick
 (great light reading)
Teach us More!

Well, ok... but, we are still thinking what/if to teach next semester.

Options include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Theory</td>
<td>(regular course – JV)</td>
</tr>
<tr>
<td>Mining and Using Patterns</td>
<td>(seminar/discussion – JV)</td>
</tr>
<tr>
<td>Causal Inference</td>
<td>(seminar/discussion – JV)</td>
</tr>
<tr>
<td>Tensor Methods</td>
<td>(seminar/discussion – PM)</td>
</tr>
<tr>
<td>Redescription Mining</td>
<td>(seminar/discussion – PM)</td>
</tr>
<tr>
<td>Fixing It (or, Reproducible Science)</td>
<td>(seminar/practical – PM&JV)</td>
</tr>
<tr>
<td>Data Mining Lab</td>
<td>(practical – PM&JV)</td>
</tr>
</tbody>
</table>
Algorithmic Data Analysis Group

...coming soon...

a joint-venture of the MPI groups on Data Mining and Exploratory Data Analysis.

ada.mpi-inf.mpg.de

We’ll include announcements of relevant talks and events, and cool new work by yours truly

(maybe even mailing list)
Question Time!

"They just keep on going answering questions, even those I didn’t ask!" – Nikolaj Tatti

the Answer to your Question

Jilles & Pauli
Privacy & Data Mining

“What is your opinion on privacy preserving data mining? Have you ever worked with it? Do you think it is useful, or does it somehow contradicts 'the spirit' of data mining?”
“Have you ever worked with text mining? Do you think considering grammar is necessary, or is mere statistics enough?”
Big Data

“Does Big Data exist?”

“How big is Big Data?”

“When is the data Big enough? Is more data always better?”
Mining Massive Data

Map Reduce, Hadoop, Big Table, Cassandra, Spark, Dremel, etc, etc

engineering or science?

Essentially tricks – not magic – that work well for certain specific problems

For KDD 2014, at least 25 out of 150 presentations will be specifically aimed at ‘large scale’ stuff
Mining the Cloud

“How about data analytics in the cloud?”
Social Network Analysis

Many, many, many papers about social network analysis

So far: lots of statistics, not much ‘mining’
That is, most are about how to model a graph probabilistically, how to fit a given distribution.

The Elephant in the Room: what is the ‘graph’ distribution?

Nobody knows. Yet.
Graph Mining

This is the part where Pauli and Jilles may or may not say something about graphs.
Your

Question

Here!

"They just keep on going answering questions, even those I didn’t ask!" – Nikolaj Tatti

Jilles & Pauli

the Answer to your Question
Conclusions

This concludes TADA’14. We hope you enjoyed the ride.
Thank you!

This concludes TADA’14.
We hope you enjoyed the ride.