
Margarita Salyaeva 

s8masaly@stud.uni-saarland.de 

 

12 June 2015 

 

Seminar: Massive-Scale Graph Analysis, 

Summer Semester 2015 



2 



3 



! Introduction to the problem 
! Challenges  
! GraphChi 
! Experiments 
! Limitations 
! Conclusion 
 

4 



Graph G = (V, E)  

   V-set of vertices, E – set of edges 
 
directed edges: e = (source, destination) 
each edge and vertex associated with a value 
Graph structure, vertex and edge values can be modified 
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Vertex – centric Model 
def myFun(vertex): 
***  
modify vertex value 
modify values of incident 
edges 
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! Large amount of memory  
! Billions of edges and vertices 

! Large-scale computation 

! Processing evolving graphs 
! How to support addition and removal of edges and vertices? 

! Random data access 
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Disk 

V W

V: in-edges V: out-edges W: in-edges W: out-edges 

RANDOM WRITE 

RANDOM READ Processing 
sequentially 



! Partitioning graphs 
! Balanced graph cuts 
! Minimize communication between nodes 

! Managing clusters 
! Fault tolerance 
! Unpredictable performance 
! Debugging is hard 
! Optimizing algorithms is hard 
! Infrastructure costs 
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! Graph structure, edge values and vertex values don’t fit 
into memory 

! Edges and their values of any single vertex fit into memory 

10 



! Programmer productivity 
! Global state 
! Debuggers 

! Inexpensive to install, administer, less power 
! Scalability 
! Use cluster of single-machine systems to solve many tasks 
in parallel 
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SSD as a memory-
extension 

Graph 
Compression 

Exploit Locality 

Caching 

Too many small 
objects 

Associated values 
do not compress 
well, and are 
mutated 

Locality is limited 
Optimizing is 
costly 

Unpredictable 
performance  
Cache policy 

Bulk-Synchronous Processing 

High costs of synchronization 
step 
Stores 2 versions of all values 
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Challenges GraphChi's Solutions 

Large amount of memory 
Separate graph structure from edge values 

Compress graph structure 
Vertices are in Main Memory 

Large-scale computation Single-machine 

Random Data Access 

Organize edges to facilitate sequential scan 

Divide edges into shards 
Each shard can fit into Main Memory 
Parallel Sliding Windows technique 

Processing evolving graphs Parallel Sliding Windows technique 
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! Loading the Graph 
! Parallel Updates 
! Updating Graph to Disk 
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! 3 intervals: 1-2, 3-4, 5-6 
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Shard 1 

src dst value 

1 2 0,3 

3 2 0,2 

4 1 1,40 

5 1 0,5 

5 2 0,6 

6 2 0,8 

Shard 2 

src dst value 

1 3 0,4 

2 3 0,3 

3 4 0,8 

5 3 0,2 

6 4 1,9 

Shard 3 

src dst value 

2 5 0,6 

3 5 0,9 

3 6 1,2 

4 5 0,3 

5 6 1,1 



! Interval 1-2 
Shard 1 

src dst value 

1 2 0,3 

3 2 0,2 

4 1 1,40 

5 1 0,5 

5 2 0,6 

6 2 0,8 

Shard 2 

src dst value 

1 3 0,4 

2 3 0,3 

3 4 0,8 

5 3 0,2 

6 4 1,9 

Shard 3 

src dst value 

2 5 0,6 

3 5 0,9 

3 6 1,2 

4 5 0,3 

5 6 1,1 
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2 
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Memory shard 

Sliding shards 
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! Interval 1-2 
Shard 1 

src dst value 

1 2 0,273 

3 2 0,22 

4 1 1,54 

5 1 0,55 

5 2 0,66 

6 2 0,88 

Shard 2 

src dst value 

1 3 0,364 

2 3 0,273 

3 4 0,8 

5 3 0,2 

6 4 1,9 

Shard 3 

src dst value 

2 5 0,55 

3 5 0,9 

3 6 1,2 

4 5 0,3 

5 6 1,1 

1 

3 6 

4 

2 
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Memory shard 
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Sliding shards 
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Load 
blocks 

from disk 

Create a 
subgraph 

Modify 
blocks 

Write 
blocks to 

disk 

Move to 
the next 
interval 



! Interval 3-4 
Shard 1 

src dst value 

1 2 0,273 

3 2 0,22 

4 1 1,54 

5 1 0,55 

5 2 0,66 

6 2 0,88 

Shard 2 

src dst value 

1 3 0,364 

2 3 0,273 

3 4 0,8 

5 3 0,2 

6 4 1,9 

Shard 3 

src dst value 

2 5 0,55 

3 5 0,9 

3 6 1,2 

4 5 0,3 

5 6 1,1 
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Memory shard Sliding shard 
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Sliding shard 



! Interval 5-6 
Shard 1 

src dst value 

1 2 0,273 

3 2 0,32 

4 1 1,4 

5 1 0,55 

5 2 0,66 

6 2 0,88 

Shard 2 

src dst value 

1 3 0,364 

2 3 0,73 

3 4 0,66 

5 3 0,32 

6 4 1,29 

Shard 3 

src dst value 

2 5 0,55 

3 5 0,8 

3 6 1,22 

4 5 0,53 

5 6 1,1 
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3 6 

4 

2 

5 

Memory shard Sliding shard 
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Sliding shard 



! External determinism = each execution of PSW produces exactly the 
same result 

! Vertices that have edges with both end-points in the same interval are 
flagged as critical, and are updated in sequential order. 

! Non-critical edges can be updated in parallel 
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!  After each iteration if 
edge-buffer exceeds limit 
=> write buffered edges 
to disk 

!  Merge buffered edges 
with edges on the disk 

!  If merged shard doesn’t 
fit in main memory => 
split it into 2 shards 
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edge-buffer(1,1) 

Add  edge Shard 1 

src dst value 

1 2 0,273 

3 2 0,32 

4 1 1,4 

5 1 0,55 

5 2 0,66 

6 2 0,88 

edge-buffer(1,2) 

edge-buffer(1,3) 

edge-buffer(shard,interval) 

Interval 1 

Interval 2 

Interval 3 
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!  Flag edge 

!  Ignore it 

!  Permanently delete when rewriting to disk 

Remove 
edge 



! Cost of an algorithm is #block_transfers from disk to main memory 
! B – size of the block transfer 
! Total data size - |E| edge objects (∀ edge is stored once) 
! P - #intervals 

2|𝐸|/𝐵 ≤𝑐𝑜𝑠𝑡↓𝐵 (𝐸)≤4|𝐸|/𝐵 + Θ( 𝑃↑2 ) 
 
|𝐸|/𝐵  - cost of read/write of all edges 
𝑃↑2  - PSW needs P random seeks to load from P-1 sliding shards per interval 
If update edges in both directions – 2 writes, else 1 
If edge is non-critical – 2 reads, else 1 
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! PageRank 

! Graph Mining 
! Connected components 
! Community detection 
! Triangle counting 

! Collaborative filtering 

! Probabilistic graphical model 
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def update(vertex): 
var sum←0  
for e in vertex.inEdges(): 

 sum += e.weight * neighborRank(e) 
vertex.setValue(0.15 + 0.85 * sum) 
broadcast(vertex) 

def neighborRank(edge): 
 return edge.weight*edge.neighbor_rank 

def broadcast(vertex): 
 for e in vertex.outEdges(): 
  e.neighbor_rank = vertex.getValue() 
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float[] in_mem_vert 

def update(vertex): 

 var sum←0  

 for e in vertex.inEdges(): 

  sum += e.weight * neighborRank(e) 

 vertex.setValue(0.15 + 0.85 * sum) 

def neighborRank(edge): 
 return edge.weight*in_mem_vert[edge.vertex_id] 

//def broadcast(vertex): 
 31 



! Mac Mini (Apple Inc.) 
! 8 GB RAM 
! 256 GB SSD 
! 1TB hard drive 
!  Intel Core i5, 2.5 GHz 
! C++ 
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Graph Vertices Edges P (shards) Preprocessing 

live-journal 4.8M 69M 3 0.5 min 

netflix 0.5M 99M 20 1 min 

twitter-201
0 

42M 1.5B 20 2 min 

uk-2007-05 106M 3.7B 40 31 min 

uk-union 133M 5.4B 50 33 min 

yahoo-web 1.4B 6.6B 50 37 min 
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PageRank 

Distributed System GraphChi 
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Distributed System GraphChi 

On a Mac Mini: 
" GraphChi can solve as big problems as 
existing large-scale systems. 

" Comparable performance. 
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" GraphChi is 2 times slower with HDs 
than with SSD 

" Performance can be improved by 
using multiple hard drives 
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2|𝐸|/𝐵 ≤𝑐𝑜𝑠𝑡↓𝐵 (𝐸)≤4|𝐸|/𝐵 + Θ( 𝑃↑2 ) 

" Number of blocks affect performance 
of both SSD and HD 

" P (#intervals) in the order of dozens 
causes little effect on performance 



! Cost of constructing the sub-
graph in memory is almost as 
large as the I/O cost on an 
SSD 
! Graph construction requires a 

lot of random access in RAM # 
memory bandwidth becomes a 
bottleneck. 
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Application & Graph Iter. Comparative result GraphChi (Mac Mini) Ref
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132 s -
Pagerank & twitter-2010 5 Spark [48] with 50 nodes (100 CPUs): 486.6 s 790 s [42]
Pagerank & V=105M, E=3.7B 100 Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min approx. 581 min [41]
Pagerank & V=1.0B, E=18.5B 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [40]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [24]
ALS & netflix-mm, D=20 10 GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [31]
Triangle-count & twitter-2010 - Hadoop, 1636 nodes: 423 min 60 min [43]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158 s [21]
Triange-count & twitter- 2010 - PowerGraph, 64 x 8 cores: 1.5 min 60 min [21]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

the problems 30 to 45 times faster than GraphChi.
While acknowledging the caveats of system compar-

isons, this evaluation demonstrates that GraphChi provides
sufficient performance for many practical purposes. Re-
markably, GraphChi can solve as large problems as re-
ported for any of the distributed systems we reviewed, but
with fraction of the resources.

7.3 Scalability and Performance
Here, we demonstrate that GraphChi can handle large
graphs with robust performance. Figure 7 shows the nor-
malized performance of the system on three applications,
with all of our test graphs (Table 1). The x-axis shows
the number of edges of the graph. Performance is mea-
sured as throughput, the number of edges processed in
second. Throughput is impacted by the internal structure
of a graph (see Section 3.6), which explains why GraphChi
performs slower on the largest graph, yahoo-web, than on
the next largest graphs, uk-union and uk-2007-5, which
have been optimized for locality. Consistent with the I/O
bounds derived in Section 3.6, the ratio between the fastest
and slowest result is less than two. For the three algorithms,
GraphChi can process 5-20 million edges/sec on the Mac
Mini.

The performance curve for SSD and hard drive have
similar shape, but GraphChi performs twice as fast on an
SSD. This suggests that the performance even on a hard
drive is adequate for many purposes, and can be improved
by using multiple hard drives, as shown in Figure 8a. In
this test, we modified the I/O-layer of GraphChi to stripe
files across disks. We installed three 2TB disks into the
AMD server and used stripe-size of 10 MB. Our solution
is similar to the RAID level 0 [37]. At best, we could get a
total of 2x speedup with three drives.

Figure 8b shows the effect of block size on performance
of GraphChi on SSDs and HDs. With very small blocks, the
observed that OS overhead becomes large, affecting also

0%# 20%# 40%# 60%# 80%# 100%# 120%#

Matrix'factoriza,on'

(2'cpus)'

(4'cpus)'

Triangle'coun,ng'

(2'cpus)'

(4'cpus)'

Conn.'components'

(2'cpus)'

(4'cpus)'

Loading' Execute'Updates'(Computa,on)'

Figure 6: Relative runtime when varying the number of
threads used used by GraphChi. Experiment was done on
a MacBook Pro (mid-2012) with four cores.

the SSD. GraphChi on the SSD achieves peak performance
with blocks of about 1 MB. With hard drives, even bigger
block sizes can improve performance; however, the block
size is limited by the available memory. Figure 8c shows
how the choice of P affects performance. As the number
of non-sequential seeks is quadratic in P , if the P is in the
order of dozens, there is little real effect on performance.

Application SSD In-mem Ratio
Connected components 45 s 18 s 2.5x
Community detection 110 s 46 s 2.4x
Matrix fact. (D=5, 5 iter) 114 s 65 s 1.8x
Matrix fact. (D=20, 5 iter.) 560 s 500 s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.
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!  Insert edges from twitter-2000. With rates 100K edges and  

200 K edges per second 

!  PageRank simultaneously 

!  Throughput in evolving case ~ 50% compared to normal 
execution   
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" GraphChi can handle a very 
quickly growing graph on just a PC 



! Very large vertex state 

! Traversals 

! High diameter graphs, such as planar graphs 
! Unless the computation itself has short-range interactions 

! Very large number of iterations 

! No support for implicit graph structure 
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Input 
Create shards 

Shards 
Run Algorithm 

Answer 

Input 
Run Algorithm 

Answer 

Graphchi 

X-Stream 

X-Stream. Single-machine system.  
But edge-centric using streaming partitions 
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GraphChi VS. X-Stream 

Pre-sort Runtime Re-sort 

" X-stream outperforms GraphChi 
" Sorting and re-sorting takes too 
much time 

" GraphChi doesn’t use SSD 
streaming bandwidth fully 
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GraphChi X-stream 

shards partitions 

All vertices and edges Only vertices 

must fit in memory 

More shards than partitions 

More random access for GraphChi 
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" X-stream’s bandwidth is higher 
" X-stream alternates between a 
burst of reads and a burst of writes  

" For GraphChi fragmented reads and 
writes are distributed over many 
shards 



! GraphChi has to sort 
! graph in pre-processing phase for shard partitioning 
! edges in the shard by destination after loading the shard into 

memory 

!  Incomplete usage of available streaming bandwidth from the SSD 

! Constrained to the computational model (vertex-centric) 
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! Trade-off: fewer random access to the edge list VS. 
streaming a large number of unrelated edges 

! X-stream can perform suboptimaly with some graphs 
! X-stream is bad for graphs of high diameter 
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! Vertex-centric model 

! Asynchronous computation 

! Parallel Sliding Windows – new method, which can process a graph 
from disk, providing a small amount of random access  
! Performs well on both SSDs and HDs 

! GraphChi uses a novel out-of-core data structure 
! Shards - partitions of the graph, which can fit in main memory 

! GraphChi can efficiently solve large-scale graph problems on a 
consumer PC 
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