
Margarita Salyaeva

s8masaly@stud.uni-saarland.de

12 June 2015

Seminar: Massive-Scale Graph Analysis,

Summer Semester 2015

2

3

! Introduction to the problem
! Challenges
! GraphChi
! Experiments
! Limitations
! Conclusion

4

Graph G = (V, E)

 V-set of vertices, E – set of edges

directed edges: e = (source, destination)
each edge and vertex associated with a value
Graph structure, vertex and edge values can be modified

5

V W

Vertex – centric Model
def myFun(vertex):

modify vertex value
modify values of incident
edges

6

A

C F

D

B

G

E

! Large amount of memory
! Billions of edges and vertices

! Large-scale computation

! Processing evolving graphs
! How to support addition and removal of edges and vertices?

! Random data access

7

8

Disk

V W

V: in-edges V: out-edges W: in-edges W: out-edges

RANDOM WRITE

RANDOM READ Processing
sequentially

! Partitioning graphs
! Balanced graph cuts
! Minimize communication between nodes

! Managing clusters
! Fault tolerance
! Unpredictable performance
! Debugging is hard
! Optimizing algorithms is hard
! Infrastructure costs
 9

! Graph structure, edge values and vertex values don’t fit
into memory

! Edges and their values of any single vertex fit into memory

10

! Programmer productivity
! Global state
! Debuggers

! Inexpensive to install, administer, less power
! Scalability
! Use cluster of single-machine systems to solve many tasks
in parallel

11

SSD as a memory-
extension

Graph
Compression

Exploit Locality

Caching

Too many small
objects

Associated values
do not compress
well, and are
mutated

Locality is limited
Optimizing is
costly

Unpredictable
performance
Cache policy

Bulk-Synchronous Processing

High costs of synchronization
step
Stores 2 versions of all values

12

13

Challenges GraphChi's Solutions

Large amount of memory
Separate graph structure from edge values

Compress graph structure
Vertices are in Main Memory

Large-scale computation Single-machine

Random Data Access

Organize edges to facilitate sequential scan

Divide edges into shards
Each shard can fit into Main Memory
Parallel Sliding Windows technique

Processing evolving graphs Parallel Sliding Windows technique

14

Main
Memory

Shard1

A

C F

D

B

G

E

A B C D

E F G

GE

Shard2 Shard3

GC

BA

DE

AG

FG

Disk

! Loading the Graph
! Parallel Updates
! Updating Graph to Disk

15

16

1

3 6

4

2

5

! 3 intervals: 1-2, 3-4, 5-6

17

Shard1

src dst value

All edges with
destination in
interval 1-2

1

3 6

4

2

5

Shard2

src dst value

All edges with
destination in
interval 3-4

Shard3

src dst value

All edges with
destination in
interval 5-6 so

rt
ed

 b
y

so
ur

ce
_i

d

1

3 6

4

2

5

18

Shard 1

src dst value

1 2 0,3

3 2 0,2

4 1 1,40

5 1 0,5

5 2 0,6

6 2 0,8

Shard 2

src dst value

1 3 0,4

2 3 0,3

3 4 0,8

5 3 0,2

6 4 1,9

Shard 3

src dst value

2 5 0,6

3 5 0,9

3 6 1,2

4 5 0,3

5 6 1,1

! Interval 1-2
Shard 1

src dst value

1 2 0,3

3 2 0,2

4 1 1,40

5 1 0,5

5 2 0,6

6 2 0,8

Shard 2

src dst value

1 3 0,4

2 3 0,3

3 4 0,8

5 3 0,2

6 4 1,9

Shard 3

src dst value

2 5 0,6

3 5 0,9

3 6 1,2

4 5 0,3

5 6 1,1

1

3 6

4

2

5

Memory shard

Sliding shards

19

! Interval 1-2
Shard 1

src dst value

1 2 0,273

3 2 0,22

4 1 1,54

5 1 0,55

5 2 0,66

6 2 0,88

Shard 2

src dst value

1 3 0,364

2 3 0,273

3 4 0,8

5 3 0,2

6 4 1,9

Shard 3

src dst value

2 5 0,55

3 5 0,9

3 6 1,2

4 5 0,3

5 6 1,1

1

3 6

4

2

5

Memory shard
20

Sliding shards

21

Main
Memory

Disk

Ca
ch

ed

Bl
oc

k1

Ca
ch

ed

Bl
oc

k2

Ca
ch

ed

Bl
oc

k3

1

3 6

4

2

5

Pointer

Pointer

22

Load
blocks

from disk

Create a
subgraph

Modify
blocks

Write
blocks to

disk

Move to
the next
interval

! Interval 3-4
Shard 1

src dst value

1 2 0,273

3 2 0,22

4 1 1,54

5 1 0,55

5 2 0,66

6 2 0,88

Shard 2

src dst value

1 3 0,364

2 3 0,273

3 4 0,8

5 3 0,2

6 4 1,9

Shard 3

src dst value

2 5 0,55

3 5 0,9

3 6 1,2

4 5 0,3

5 6 1,1

1

3 6

4

2

5

Memory shard Sliding shard
23

Sliding shard

! Interval 5-6
Shard 1

src dst value

1 2 0,273

3 2 0,32

4 1 1,4

5 1 0,55

5 2 0,66

6 2 0,88

Shard 2

src dst value

1 3 0,364

2 3 0,73

3 4 0,66

5 3 0,32

6 4 1,29

Shard 3

src dst value

2 5 0,55

3 5 0,8

3 6 1,22

4 5 0,53

5 6 1,1

1

3 6

4

2

5

Memory shard Sliding shard
24

Sliding shard

! External determinism = each execution of PSW produces exactly the
same result

! Vertices that have edges with both end-points in the same interval are
flagged as critical, and are updated in sequential order.

! Non-critical edges can be updated in parallel

25

Shard 1
src dst v

1 2 …
3 2
4 1
5 1
5 2
6 2

Shard 2
src dst v

1 3 …
2 3
3 4
5 3
6 4

Shard 3
src dst v

2 5 …
3 5
3 6
4 5
5 6

Shard 1
src dst v

1 2 …
3 2
4 1
5 1
5 2
6 2

Shard 2
src dst v

1 3 …
2 3
3 4
5 3
6 4

Shard 3
src dst v

2 5 …
3 5
3 6
4 5
5 6

Shard 1
src dst v

1 2 …
3 2
4 1
5 1
5 2
6 2

Shard 2
src dst v

1 3 …
2 3
3 4
5 3
6 4

Shard 3
src dst v

2 5 …
3 5
3 6
4 5
5 6

Interval 1-2 Interval 3-4 Interval 5-6

!  After each iteration if
edge-buffer exceeds limit
=> write buffered edges
to disk

!  Merge buffered edges
with edges on the disk

!  If merged shard doesn’t
fit in main memory =>
split it into 2 shards

26

edge-buffer(1,1)

Add edge Shard 1

src dst value

1 2 0,273

3 2 0,32

4 1 1,4

5 1 0,55

5 2 0,66

6 2 0,88

edge-buffer(1,2)

edge-buffer(1,3)

edge-buffer(shard,interval)

Interval 1

Interval 2

Interval 3

27

!  Flag edge

!  Ignore it

!  Permanently delete when rewriting to disk

Remove
edge

! Cost of an algorithm is #block_transfers from disk to main memory
! B – size of the block transfer
! Total data size - |E| edge objects (∀ edge is stored once)
! P - #intervals

​2|𝐸|/𝐵 ≤​𝑐𝑜𝑠𝑡↓𝐵 (𝐸)≤​4|𝐸|/𝐵 + Θ(​𝑃↑2 )

​|𝐸|/𝐵  - cost of read/write of all edges
​𝑃↑2  - PSW needs P random seeks to load from P-1 sliding shards per interval
If update edges in both directions – 2 writes, else 1
If edge is non-critical – 2 reads, else 1

28

! PageRank

! Graph Mining
! Connected components
! Community detection
! Triangle counting

! Collaborative filtering

! Probabilistic graphical model

29

def update(vertex):
var sum←0
for e in vertex.inEdges():

 sum += e.weight * neighborRank(e)
vertex.setValue(0.15 + 0.85 * sum)
broadcast(vertex)

def neighborRank(edge):
 return edge.weight*edge.neighbor_rank

def broadcast(vertex):
 for e in vertex.outEdges():
 e.neighbor_rank = vertex.getValue()

30

float[] in_mem_vert

def update(vertex):

 var sum←0

 for e in vertex.inEdges():

 sum += e.weight * neighborRank(e)

 vertex.setValue(0.15 + 0.85 * sum)

def neighborRank(edge):
 return edge.weight*in_mem_vert[edge.vertex_id]

//def broadcast(vertex):
 31

! Mac Mini (Apple Inc.)
! 8 GB RAM
! 256 GB SSD
! 1TB hard drive
!  Intel Core i5, 2.5 GHz
! C++

32

Graph Vertices Edges P (shards) Preprocessing

live-journal 4.8M 69M 3 0.5 min

netflix 0.5M 99M 20 1 min

twitter-201
0

42M 1.5B 20 2 min

uk-2007-05 106M 3.7B 40 31 min

uk-union 133M 5.4B 50 33 min

yahoo-web 1.4B 6.6B 50 37 min

33

0
200
400
600
800

1000
1200
1400
1600
1800

GraphLab (8CPUs) Spark (100 Cpu) Piccolo, 100 EC2 (200
cores)

PowerGraph (64x8
cores)

3 5 1 1

domain twitter 2010 V=1 B, E = 18,5 B twitter 2010

Ti
m

e,
 s

PageRank

Distributed System GraphChi

34

0

100

200

300

400

500

600

700

Pegasus (Hadoop),
100 machines

GraphLab Hadoop, 1636 nodes PowerGraph, 64*8
cores

Stanford GPS (60
virt.cores)

yahoo-web netflix-mm, D=20 twitter 2010 twitter 2010 V =105 M, E = 3,7B

Webgraph-BP ALS Triangle-count Triangle-count Pagerank

Ti
m

e,
 m

in

Distributed System GraphChi

On a Mac Mini:
" GraphChi can solve as big problems as
existing large-scale systems.

" Comparable performance.

35

" GraphChi is 2 times slower with HDs
than with SSD

" Performance can be improved by
using multiple hard drives

36

​2|𝐸|/𝐵 ≤​𝑐𝑜𝑠𝑡↓𝐵 (𝐸)≤​4|𝐸|/𝐵 + Θ(​𝑃↑2 )

" Number of blocks affect performance
of both SSD and HD

" P (#intervals) in the order of dozens
causes little effect on performance

! Cost of constructing the sub-
graph in memory is almost as
large as the I/O cost on an
SSD
! Graph construction requires a

lot of random access in RAM #
memory bandwidth becomes a
bottleneck.

37

0

500

1000

1500

2000

2500

1 thread 2 threads 4 threads

Disk IO Graph construction Exec. updates

Connected Components on Mac Mini / SSD

38

Application & Graph Iter. Comparative result GraphChi (Mac Mini) Ref
Pagerank & domain 3 GraphLab[31] on AMD server (8 CPUs) 87 s 132 s -
Pagerank & twitter-2010 5 Spark [48] with 50 nodes (100 CPUs): 486.6 s 790 s [42]
Pagerank & V=105M, E=3.7B 100 Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min approx. 581 min [41]
Pagerank & V=1.0B, E=18.5B 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [40]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [24]
ALS & netflix-mm, D=20 10 GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [31]
Triangle-count & twitter-2010 - Hadoop, 1636 nodes: 423 min 60 min [43]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158 s [21]
Triange-count & twitter- 2010 - PowerGraph, 64 x 8 cores: 1.5 min 60 min [21]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

the problems 30 to 45 times faster than GraphChi.
While acknowledging the caveats of system compar-

isons, this evaluation demonstrates that GraphChi provides
sufficient performance for many practical purposes. Re-
markably, GraphChi can solve as large problems as re-
ported for any of the distributed systems we reviewed, but
with fraction of the resources.

7.3 Scalability and Performance
Here, we demonstrate that GraphChi can handle large
graphs with robust performance. Figure 7 shows the nor-
malized performance of the system on three applications,
with all of our test graphs (Table 1). The x-axis shows
the number of edges of the graph. Performance is mea-
sured as throughput, the number of edges processed in
second. Throughput is impacted by the internal structure
of a graph (see Section 3.6), which explains why GraphChi
performs slower on the largest graph, yahoo-web, than on
the next largest graphs, uk-union and uk-2007-5, which
have been optimized for locality. Consistent with the I/O
bounds derived in Section 3.6, the ratio between the fastest
and slowest result is less than two. For the three algorithms,
GraphChi can process 5-20 million edges/sec on the Mac
Mini.

The performance curve for SSD and hard drive have
similar shape, but GraphChi performs twice as fast on an
SSD. This suggests that the performance even on a hard
drive is adequate for many purposes, and can be improved
by using multiple hard drives, as shown in Figure 8a. In
this test, we modified the I/O-layer of GraphChi to stripe
files across disks. We installed three 2TB disks into the
AMD server and used stripe-size of 10 MB. Our solution
is similar to the RAID level 0 [37]. At best, we could get a
total of 2x speedup with three drives.

Figure 8b shows the effect of block size on performance
of GraphChi on SSDs and HDs. With very small blocks, the
observed that OS overhead becomes large, affecting also

0%# 20%# 40%# 60%# 80%# 100%# 120%#

Matrix'factoriza,on'

(2'cpus)'

(4'cpus)'

Triangle'coun,ng'

(2'cpus)'

(4'cpus)'

Conn.'components'

(2'cpus)'

(4'cpus)'

Loading' Execute'Updates'(Computa,on)'

Figure 6: Relative runtime when varying the number of
threads used used by GraphChi. Experiment was done on
a MacBook Pro (mid-2012) with four cores.

the SSD. GraphChi on the SSD achieves peak performance
with blocks of about 1 MB. With hard drives, even bigger
block sizes can improve performance; however, the block
size is limited by the available memory. Figure 8c shows
how the choice of P affects performance. As the number
of non-sequential seeks is quadratic in P , if the P is in the
order of dozens, there is little real effect on performance.

Application SSD In-mem Ratio
Connected components 45 s 18 s 2.5x
Community detection 110 s 46 s 2.4x
Matrix fact. (D=5, 5 iter) 114 s 65 s 1.8x
Matrix fact. (D=20, 5 iter.) 560 s 500 s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.

12

!  Insert edges from twitter-2000. With rates 100K edges and

200 K edges per second

!  PageRank simultaneously

!  Throughput in evolving case ~ 50% compared to normal
execution

39

" GraphChi can handle a very
quickly growing graph on just a PC

! Very large vertex state

! Traversals

! High diameter graphs, such as planar graphs
! Unless the computation itself has short-range interactions

! Very large number of iterations

! No support for implicit graph structure

40

41

Input
Create shards

Shards
Run Algorithm

Answer

Input
Run Algorithm

Answer

Graphchi

X-Stream

X-Stream. Single-machine system.
But edge-centric using streaming partitions

42

0

1000

2000

3000

4000

5000

6000

7000

8000

X-Stream GraphChi X-Stream GraphChi X-Stream GraphChi X-Stream GraphChi

Twitter PageRank Netflix ALS RMAT27 WCC Twitter Belief Prop

Ti
m

e,
 s

GraphChi VS. X-Stream

Pre-sort Runtime Re-sort

" X-stream outperforms GraphChi
" Sorting and re-sorting takes too
much time

" GraphChi doesn’t use SSD
streaming bandwidth fully

43

GraphChi X-stream

shards partitions

All vertices and edges Only vertices

must fit in memory

More shards than partitions

More random access for GraphChi

44

" X-stream’s bandwidth is higher
" X-stream alternates between a
burst of reads and a burst of writes

" For GraphChi fragmented reads and
writes are distributed over many
shards

! GraphChi has to sort
! graph in pre-processing phase for shard partitioning
! edges in the shard by destination after loading the shard into

memory

!  Incomplete usage of available streaming bandwidth from the SSD

! Constrained to the computational model (vertex-centric)

45

! Trade-off: fewer random access to the edge list VS.
streaming a large number of unrelated edges

! X-stream can perform suboptimaly with some graphs
! X-stream is bad for graphs of high diameter

46

! Vertex-centric model

! Asynchronous computation

! Parallel Sliding Windows – new method, which can process a graph
from disk, providing a small amount of random access
! Performs well on both SSDs and HDs

! GraphChi uses a novel out-of-core data structure
! Shards - partitions of the graph, which can fit in main memory

! GraphChi can efficiently solve large-scale graph problems on a
consumer PC

47

48

