Seminar: Massive-Scale Graph Analysis,

Summer Semester 2015

Margarita Salyaeva
s8masaly@stud.uni-saarland.de

12 June 2015

| Google Linked m L

LJ

3“% @@L@hg

R3S o oo
(,. i,.'.:&“,%{:-':
EIRTER)

2

Big Data

{J

One of the systems to analyze
Big Graphs

GraphChi

" | Process Large-Scale Graphs
) on just a PC

©

=Introduction to the problem

=Challenges
=GraphChi
=Experiments
=Limitations
=Conclusion

% P
Lori. Randall _

Pal \
(W) ‘ | B Q)
S . \ /
— nicl ﬁoﬁ

mattermmi.

A “ﬂ 3 \ Joglallouz
y jenEdo’ |

< i‘ !
\ ivshar
josephmorin A °§:|.3! viegsma {‘;
2

@| ma ' bl

R ivi Afe

" tusedlogict- - “

. @ ~= birdphone A " u

= o G giganett/ S
a T JLR:“.EE. 3 anajoshi
@ — KatieFe Felten Rl
bnanh enbaum Ia
panca esdlife 7
[-s I¥

. e
[K am\uo dgg/Eache I E | toddcoleman
coli 1

KM_I_I;!Q.SV.H. - i ﬂ
> ' - [J
» ‘1; L s “zacharybk
a clickflickca JoeYevoli -
SamstngCarla H — " u |
enel

andymorris
Jack| B s!y -
N

‘ (1aevliO
annagpgtheweb - 3
2 A valterel

|
kimfollenshead

150 : E;; &
\ / A > ryapgraves
Sinm‘rr:ar ing - - e
’ nilz!

[

jam!ai !z

(53
Follgwlorge
nEaIme!a
adri.a‘l;\p)a:rsons ! { \ johnnygeods
I i}

7

8

= reecep checo

| nlll!das

Sep e R

a n ‘
0'35::@&. breiss

‘.'_."19.14

TouchGraph

Computational Model

Graph G = (V, E)
V-set of vertices, E - set of edges V = W
directed edges: e = (source, destination)

each edge and vertex associated with a value
Graph structure, vertex and edge values can be modified

Computational Model

Vertex - centric Model
def myFun(vertex):
modify vertex value

modify values of incident
edges

Challenges

=Large amount of memory
= Billions of edges and vertices

=Large-scale computation

= Processing evolving graphs
= How to support addition and removal of edges and vertices?

= Random data access

Dis

Random Access Problem

You can access in- or out-edges

sequentially,
but not both!

sequentially

Distributed systems.
Overheads

= Partitioning graphs
= Balanced graph cuts
= Minimize communication between nodes
=Managing clusters
= Fault tolerance
= Unpredictable performance
= Debugging is hard
= Optimizing algorithms is hard
= Infrastructure costs

Is it possible on Just a PC?

= Graph structure, edge values and vertex values don’t fit
into memory

= Edges and their values of any single vertex fit into memory

Advantages of single-machine
systems

= Programmer productivity
= Global state

= Debuggers
= [nexpensive to install, administer, less power

= Scalability

= Use cluster of single-machine systems to solve many tasks
in parallel

Possible Solutions

SSD as a memory-

extension Exploit Locality

Too many small Locality is limited

Optimizing is

objects
costly

Graph
Compression
Associated values
do not compress
well, and are
mutated

Caching Bulk-Synchronous Processing

Unpredictable High costs of synchronization
performance step

Cache policy Stores 2 versions of all values

GraphChi

Challenges

GraphChi's Solutions

Large amount of memory

Separate graph structure from edge values

Compress graph structure

Vertices are in Main Memory

Large-scale computation

Single-machine

Random Data Access

Organize edges to facilitate sequential scan

Divide edges into shards

Each shard can fit into Main Memory

Parallel Sliding Windows technique

Processing evolving graphs

Parallel Sliding Windows technique

GraphChi. Basic idea

Parallel Sliding Windows.
3 Steps

=Loading the Graph
=Parallel Updates
=Updating Graph to Disk

Parallel Sliding Windows.

Toy Example

6 "/

NP2

sorted by source_id

PSW. Loading

= 3 intervals: 1-2, 3-4, 5-6

Shard2

All edges with
destination in
interval 5-6

All edges with All edges with
destination in destination in

interval 1-2 interval 3-4

PSW. Loading

Shard 1 Shard 2 Shard 3

src | dst [value|| src | dst [value|| src | dst [value
1 2 10,3 1 3 104 2 5 | 0,6

3 2 10,21 2 3 10,3 3 5 | 0,9

4 1 [1,40|] 3 4 10,8 3 6 | 1,2

5 1 10,5 5 3 10,2(4 5 (0,3

5 2 10,61 6 4 11,9 5 6 | 1,1

6 2 10,8

PSW. Load and Update

= Interval 1-2

Shard 1 Shard 2 Shard 3
src | dst [value|| src | dst [value|| src | dst [value
3 2 10,2y 2 3 10,3 3 5 10,9
4 1 [1,40|] 3 4 10,8 3 6 | 1,2
5 1 10,5 5 3 10,21 4 5 10,3
5 2 10,6 6 4 11,9 5 6 | 1,1
6 2 0,8 Sliding shards

Memory shard

1

PSW. Load and Update

= Interval 1-2

Shard 1 Shard 2 Shard 3
src | dst [value|| src | dst [value|| src | dst [value
3 2 10,22y 2 3 10,273} 3 5 | 0,9
4 1 |1,54|] 3 4 10,8 3 6 | 1,2
5 1 10,55]f 5 3 10,2(4 5 10,3
5 2 |0,66|| 6 4 11,9 5 6 | 1,1
6 | 2 10,88 Sliding shards

Memory shard

1

PSW. Updating to Disk

Disk

6

Poi ntex

Pointer

5

PSW. Updating Graph to Disk

Load
blocks
from disk

mgvﬁ et>2c Create a
interval subgraph
Write .
blocks to <] l\é\l% cill?s/
disk

PSW. Load and Update

= Interval 3-4

Shard 1

Shard 2

Shard 3

Src

dst

value

Src

dst

value

value

3
4
5 1 10,55
5 2 |0,66
6 2 |0,88

Sliding shard

Memory shard Sliding shard

1

PSW. Load and Update

= Interval 5-6

Shard 1

Shard 2

Shard 3

src | dst

value

dst

value

dst

value

0,273

0,364

0,73

Sliding shard

1

PSW. Parallel Updates

= External determinism = each execution of PSW produces exactly the
same result

= Vertices that have edges with both end-points in the same interval are
flagged as critical, and are updated in sequential order.

= Non-critical edges can be updated in parallel

[

r--------------r--------------

Interval 1-2 :. Interval 3-4 :. Interval 5-6
Shard 1{|Shard 2||Shard 3 |: Shard 1||Shard 2||Shard 3 |: Shard 1||Shard 2||Shard 3
srcjdst] v [|src]dst] v ||src]dst] v :l srcldst| v [|src|dst] v ||src]dst] v :l srcjdst| v [|src|dst] v ||src]dst] v
| |

3 |] - I| 1|21 113} UHa2lsl. I| 1]21. 113f Il2151

3 L A A L EE 23 B
4 | 1 3] 4 3 | 6 || 4 | 1 3141 B3] |' , 3| 6
51 1 51 3 415 Il 51 1 51 3 415 || 511 51 3 415
512 6| 4 516 | 51 2 6 | 4 516 l512 6 | 4 [5161 |
612 |I 6]2 || :

PSW. Evolving Graphs
Shard 1 = After each iteration if

edge-buffer exceeds limit
src | dst |[value

=> write buffered edges
to disk

= Merge buffered edges
with edges on the disk

edge-buffer(1,2) = If merged shard doesn’t
fit in main memory =>
split it into 2 shards

edge-buffer(1,1)

edge-buffer(1,3)

edge-buffer(shard,interval) @

PSW. Evolving Graphs

Remove
edge

= Permanently delete when rewriting to disk

= Flag edge
= Ignore it

I/0 Cost Analysis

= Cost of an algorithm is #block_transfers from disk to main memory
= B - size of the block transfer

= Total data size - |E| edge objects (Vv edge is stored once)

= P - #intervals

2|E|/B <cost|B (E)<4|E/B + O(P}2)

|E/B - cost of read/write of all edges

P12 - PSW needs P random seeks to load from P-1 sliding shards per interval
If update edges in both directions - 2 writes, else 1

If edge is non-critical - 2 reads, else 1

Applications

= PageRank

= Graph Mining
= Connected components
= Community detection
= Triangle counting

= Collaborative filtering
= Probabilistic graphical model

Applications. PageRank

def update(vertex):
var sum«—0
for e in vertex.inEdges():
sum += e.weight * neighborRank(e)
vertex.setValue(0.15 + 0.85 * sum)
broadcast(vertex)

def neighborRank(edge):
return edge.weight*edge.neighbor_rank

def broadcast(vertex):
for e in vertex.outEdges():

e.neighbor_rank = vertex.getValue()

PageRank

Applications. PageRank’

float[] in_mem_vert g’/‘
8 s

def update(vertex):

var sum<—0

for e in vertex.inEdges():

sum += e.weight * neighborRank(e)
vertex.setValue(0.15 + 0.85 * sum) pageﬂanh °

def neighborRank(edge):
return edge.weight*in_mem_vert[edge.vertex_id]

/ /def broadcast(vertex):

Experiments. Setup

= Mac Mini (Apple Inc.)
=8 GB RAM

=256 GB SSD

= 1TB hard drive

= Intel Core i5, 2.5 GHz
» C++

live-journal
netflix

twitter-201
0

uk-2007-05
uk-union

yahoo-web

4.8M
0.5M
42M

106M
133M
1.4B

69M
99M
1.5B

3.7B
5.4B
6.6B

3
20
20

40
50
50

0.5 min
1 min

2 min

31 min
33 min

37 min

GraphChi vs. Distributed

Systems

PageRank

1800

1600

1400

«» 1200

; 1000

800

600

400

200
0 [
GraphLab (8CPUs) Spark (100 Cpu) Piccolo, 100 EC2 (200 PowerGraph (64x8

cores) cores)

3 5 1 1
domain twitter 2010 V=1B,E=18,5B twitter 2010
M Distributed System GraphChi

Time

GraphChi vs. Distributed
Systems

On a Mac Mini:
v'GraphChi can solve as big problems as

existing large-scale systems.

® Distributed System GraphChi

Scalability & Performance

v'GraphChi is 2 times slower with HDs
than with SSD

v'Performance can be improved by
using multiple hard drives

Scalability & Performance

2|E|/B <cost|B (E)<4|E/B +O(P}2)

v'"Number of blocks affect performance
of both SSD and HD

v'P (#intervals) in the order of dozens
causes little effect on performance

Bottlenecks

= Cost of constructing the sub-
graph in memory is almost as 2300
large as the |/0 cost on an
SSD

= Graph construction requires a 1500

lot of random access in RAM =
memory bandwidth becomes a 1000

bottleneck.
500

0

2000 -

® Disk I0 = Graph construction

Exec. updates

B
R |

1 thread

-

2 threads

4 threads

Connected Components on Mac Mini / SSD

©

In-memory VS. Disk

Application SSD | In-mem | Ratio
Connected components 45's 18s 2.5%
Community detection 110s 46 s 2.4x
Matrix fact. (D=3, 5 iter) 114 s 65s 1.8x
Matrix fact. (D=20, 5 iter.) | 560s 500s 1.1x

x 10

-
o

Static graph

Throughput (edges/sec)

N - [*2] oo)

Ingest gozilz 100K/s

\

Ingest goal: 200K/s

OO

2 4
Time (hours)

(a) Evolving Graph: Throughput

x 10°

N
)

—_

Ingest rate (edges/sec)
[®)) N

O
[3)

Target }200K/s)

Actual

Actual

Target &1 00K/s) |

oO

2 4
Time (hours)

(b) Ingest rate

Evolving Graphs

= Insert edges from twitter-2000. With rates 100K edges and
200 K edges per second

= PageRank simultaneously

= Throughput in evolving case ~ 50% compared to normal
execution

v'GraphChi can handle a very
quickly growing graph on just a PC

GraphChi is not good for

= Very large vertex state
= Traversals

= High diameter graphs, such as planar graphs
= Unless the computation itself has short-range interactions

= Very large number of iterations
= No support for implicit graph structure

X-Stream VS. GraphChi

X-Stream. Single-machine system.
But edge-centric using streaming partitions

, Create shards Run Algorithm
Graphchi Input Shards Answer

X-Stream

Run Algorithm
Input Answer

X-Stream VS. GraphChi

v’ X-stream outperforms GraphChi
v'Sorting and re-sorting takes too
| much time

| v'GraphChi doesn’t use SSD
streaming bandwidth fully

B Pre-sort Runtime Re-sort

Sequential Access Bandwidth

GraphChi X-stream
shards partitions
All vertices and edges Only vertices

must fit in memory

More shards than partitions

More random access for GraphChi

Disk Bandwidth

1Y X-stream’s bandwidth is higher
4+ X-stream alternates between a

burst of reads and a burst of writes
v'For GraphChi fragmented reads and
writes are distributed over many
shards

GraphChi’s drawbacks

= GraphChi has to sort
= graph in pre-processing phase for shard partitioning

= edges in the shard by destination after loading the shard into
memory

= Incomplete usage of available streaming bandwidth from the SSD
= Constrained to the computational model (vertex-centric)

X-stream’s drawbacks

= Trade-off: fewer random access to the edge list VS.
streaming a large number of unrelated edges

=X-stream can perform suboptimaly with some graphs
=X-stream is bad for graphs of high diameter

Conclusion. What is GraphChi?

= Vertex-centric model
= Asynchronous computation

= Parallel Sliding Windows - new method, which can process a graph
from disk, providing a small amount of random access

= Performs well on both SSDs and HDs

= GraphChi uses a novel out-of-core data structure
= Shards - partitions of the graph, which can fit in main memory

= GraphChi can efficiently solve large-scale graph problems on a
consumer PC

Thanks!

Questions?

©

