

Large-Scale Graph Machine Learning

Presenter: Susu Sun

Graduate School of Computer Science Saarland University

May 29, 2015

Outline

- Properties of Graph based machine learning
- Big : Data-parallel :Map Reduce
- **Dependency**: Graph-parallel: Pregel
- *Efficiency*: Asychronous Graph- Parallel: GraphLab
- *PowerLaw Vertex* : GraphLab 2.1- PowerGraph

Outline

- **Properties** of Graph based machine learning
- Big : Data-parallel :Map Reduce
- **Dependency**: Graph-parallel: Pregel
- *Efficiency*: Asychronous Graph- Parallel: GraphLab
- *PowerLaw Vertex* : GraphLab 2.1- PowerGraph

Characteristic of Graphs

Properties:	Examples
Graphs are <i>ubiquitous</i> Social media, science , advertising, web	Social media Science Advertising Web Social media Science Advertising Web Social media Science Advertising Web
Graphs are <i>big</i> billions of vertices and edges and rich metadata	facebook28 Million28 MillionBillionWikipedia Pages1 BillionFacebook Users6 Billion72 Hours a MinuteYouTube
<i>Dependency</i> is important Graphs encode relationships between People, Facts, Products, Ideas, Interests	Popular Movies
Vertices in natural graphs are <i>Power-law</i>	

MLDM(Machine learning and Data Mining) Algorithm Requires :

Parallel Computation ----Big

Run the computation in parallel

Graph Structured Computation ----*Dependency*

Modeling dependencies between data

Asynchronous Iterative Computation ----*Efficiency*

□ Asynchronous computation can accelerate convergence

Power-law Vertex ----*Power-Law vertex*

• Efficiently compute power-law degree vertex

Big Learning

Outline

- Properties of Graph based machine learning
 - Big : Data-parallel : Map Reduce
- Dependency: Graph-parallel: Pregel
- *Efficiency*: Asychronous Graph- Parallel: GraphLab
- *PowerLaw Vertex* : GraphLab 2.1- PowerGraph

Data-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Map phrase: Image Features Extraction

Map phrase: Image Features Extraction

1	4	2	2	
2	2	1	5	
9	3	3	8	

Map phrase: Embarrassingly Parallel independent computation

No Communication needed !

Reduce phrase: Image classification

Attractive Face Statistics Ugly Face Statistics

Image Features

Characteristic of Graphs

Properties:	Examples
Graphs are <i>ubiquitous</i> Social media, science , advertising, web	Social media Science Advertising Web Constraints Science Advertising Web Constraints Science Advertising Web Constraints Science Sc
Graphs are <i>big</i> billions of vertices and edges are rich metadata	Image: Second systemFacebookImage: Second systemImage: Second systemImage: Second system28 Million1 Billion6 Billion6 Billion72 Hours a Minute28 MillionFacebook UsersFlickr Photos72 Hours a Minute
<i>Dependency</i> is important Graphs encode relationships between People, Facts, Products, Ideas, Interests	Popular Movies
Vertices in natural graphs are <i>Power-law</i>	

MapReduce: Pros & Cons

Pros	Cons
Simplicity of the model: Programmers specifies few simple methods that focuses on the functionality not on the parallelism	Restricted programming constructs: only map & reduce
Scalability: Scales easily for large number of clusters with thousands of machines	Does not scale well for dependent tasks: for example Graph problems
Applicability: Applicable to many different systems and a wide variety of problems	Does not scale well for iterative algorithms: iteration is very common in machine learning

ML Tasks Beyond Data-Parallelism

Outline

- Properties of Graph based machine learning
- Big : Data-parallel :Map Reduce

Dependency: Graph-parallel: Pregel

- *Efficiency*: Asychronous Graph- Parallel: GraphLab
- *PowerLaw Vertex*: GraphLab 2.1- PowerGraph

Graph-Parallel computation?

"Think like a vertex." -Malewicz et al. [SIGMOD'10]

The Graph-Parallel Abstraction

A user-defined **Vertex-Program** runs on each vertex **Graph** constrains **interaction** along edges

- □ Using messages (e.g. Pregel [PODC'09, SIGMOD'10])
- □ Through shared state (e.g., GraphLab [UAI'10, VLDB'12])

Parallelism: run multiple vertex programs simultaneously

Page Rank Iteration

 α is the random reset probability W_{ji} Is the prob. transitioning from j to i

Pregel Abstraction

Vertex-Programs interact by sending messages

```
Pregel_PageRank(i, messages) :

// Receive all the messages

total = 0

foreach( msg in messages) :

total = total + msg
```

```
// Update the rank of this vertex R[i] = 0.15 + total
```

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
 Send msg(R[i] * w_{ij}) to vertex j

Characteristic of Graphs

Properties:	Examples
Graphs are <i>ubiquitous</i> Social media, science , advertising, web	Social media Science Advertising Web Social media Science Advertising Web Social media Science Advertising Web Social media Science S
Graphs are <i>big</i> billions of vertices and edges are rich metadata	facebookfacebook28 Million1 BillionWikipedia Pages1 BillionFacebook Users6 Billion72 Hours a MinuteYouTube
<i>Dependency</i> is important Graphs encode relationships between People, Facts, Products, Idear, Interests	Popular Movies
Vertices in natural graphs are <i>Power-law</i>	

Pregel: Bulk Synchronous Parallel(BSP) Model

Bulk synchronous computation can be highly inefficient

[Malewicz et al. '2010] http://graphlab.org/powergraph-presented-at-osdi/

Synchronous vs Asynchronous

Synchronous computation can be inefficient

Graph: 25M vertex, 355 edge 16 processors

Tradeoffs of the BSP Model

Pros

- Scales better than Map Reduce for Graphs
- Relatively easy to build

Cons

- □ Inefficient if different regions of the graph converge at different speed
- **Runtime of each phase is determined by the slowest machine**
- Synchronous computation can be inefficient!

Outline

- Properties of Graph based machine learning
- Big : Data-parallel :Map Reduce
- **Dependency**: Graph-parallel: Pregel
- *Efficiency*: Asychronous Graph-Parallel: GraphLab
- *PowerLaw Vertex* : GraphLab 2.1- PowerGraph

GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Consistency Model

Data Graph

Date Graph: a directed graph G=(V, E, D)

Data D refers to model parameters, algorithm states and other related data.

Vertex Data:

- •User profile text
- Current interests estimates

Edge Data:

Similarity weights

Data Graph

PageRank : G=(V, E, D)

- Each vertex (V) corresponds to a webpage
- Each edge (*U*,*V*) corresponds to a link from (*U*-> *V*)
- •Vertex data D_v stores the rank of the webpage R(V)
- •Edge data $D_{U->V}$ stores the weight of the link (U->V)

Update Functions

update function : user defined program which when applied to a **vertex**, transforms the data in the **scope**of the vertex

pagerank(i, scope){ // Get Neighborhood data (R[i], W_{ij}, R[j]) ← scope;

// Update the vertex data $R[i] \leftarrow \alpha + (1 - \alpha) \sum_{j \in N[i]} W_{ij} \times R[j]$

// Reschedule Neighbors if needed
if R[i] changes then
reschedule_neighbors_of(i);

Scheduling

The scheduler determines the order that vertices are updated.

GraphLab Execution Model (i, messages) :

Input: Data Graph G=(V,E,D) Input: Update Function fInput: Initial vertex set $T = \{v_1, v_2, ...\}$

While T is not Empty do (1) $v \leftarrow \text{Re} \text{moveNext}(T)$ (2) $(T', S_v) \leftarrow f(v, S_v)$

$$^{(3)} T \leftarrow T \cup T'$$

Output: Modified Data Graph G = (V, E, D')

Only Requirement : All vertex in T are eventually executed

Ensuring Race-Free Code

How much can computation **overlap**?

Consistency Models

Guarantee sequential consistency for all update functions

User –defined consistency models:

Consistency Model in GraphLab

Consistency vs Parallelism

Figure 2: Consistency and Parallelism

GraphLab System Evaluation

Experiments---Netflix Movie Recommendation

Task: collaborative filtering

Recommend movies based on the ratings of similar user.

Algorithm:

Alternating Least Squares Matrix Factorization(**ALS**)

GraphLab Model:

R: bipartite graph connecting each user and the moves they rated.

Edge: rating for a movie-user pair **Vertex**: user and movie data corresponding to row in U and column in V

Update Function: recompute the d length vector for each each vertex by reading the d length vectors on adjacent vertices and predict the edge value

Experiments---Netflix Movie Recommendation

GraphLab outperforms Hadoop by 40~60 times and is comparable to MPI implementation Dynamic computation can converge to equivalent test error in about half the number of updates

Experiments---Video Co-segmentation(CoSeg)

Task: Joint co-segmentation

Identify and cluster spatio -temporal segments with similar texture in video.

Algorithm:

Gaussian Misture Model (GMM) Loopy Belief Propagation (LBP)

GraphLab Model:

Graph: a grid of 120*50 rectangular superpixels

Edge: indicating the neighboring super-pixel **Vertex**: super-pixel, stores the color and texture statistics for all the raw pixels in its domain

Update Function: alternating GMM and LBP to predict the best label for each super-pixel.

Schedule: adaptive update schedule

Experiments---Video Co-segmentation(CoSeg)

Exp.	#Verts	#Edges	Vertex Data	Edge Data	Update Complexity	Shape	Partition	Engine
CoSeg	10.5M	31M	392	80	$O\left(deg. ight)$	3D grid	frames	Locking

Summary of GraphLab

- An abstraction tailored to Machine Learning
 - Targets Graph-Parallel Algorithms
- Naturally expresses
 - Data/computational dependencies
 - Dynamic iterative computation
- Simplifies parallel algorithm design
- Automatically ensures data consistency
- Achieves state-of-the-art parallel performance on a variety of problems
- But, GraphLab is not sufficient to handle Natural Graphs!

Outline

- Properties of Graph based machine learning
- Big : Data-parallel :Map Reduce
- Dependency: Graph-parallel: Pregel
- *Efficiency*: Asychronous Graph- Parallel: GraphLab

• *PowerLaw Vertex*: GraphLab 2.1- PowerGraph

Natural Graph

The Internet

Human Brain

LinkedIn Social Network

Natural Graphs

Graphs derived from natural phenomena

Problems:

Existing *distributed* graph computation systems perform poorly on **Natural Graphs**.

Natural Graph Properties

Power-Law Degree Distribution

Natural Graph Properties

Power-Law Degree Distribution "Star Like" Motif

Natural Graph Properties

Power-Law Graphs are Difficult to Partition

Power-Law graphs do not have **low-cost** balanced cuts [Leskovec et al. 08, Lang 04]

Traditional graph-partitioning algorithms perform **poorly** on Power-Law Graphs. *[Abou-Rjeili et al. 06]*

Pregel and GraphLab for High-Degree Vertices

Sequentially process edges

Sends many messages (Pregel)

Touches a large fraction of graph (GraphLab)

Edge meta-data too large for single machine

Asynchronous Execution requires heavy locking (GraphLab)

Synchronous Execution prone to stragglers (Pregel)

Graph & Pregel: Random Partitioning

Both GraphLab and Pregel resort to **random** (hashed) partitioning on **natural graphs**

https://www.usenix.org/conference/osdi12

PowerGraph is Needed

GraphLab and Pregel are not well suited for natural graphs

Challenges of **high-degree vertices** Low quality **partitioning**

PowerGraph

GAS Decomposition: distribute vertex-programs

Parallelize high-degree vertices

Vertex Partitioning:

• Efficiently distribute large **power-law** graphs.

GAS Decomposition

Gather (Reduce) Accumulate information about neighborhood

► Gather \bigcirc) $\rightarrow \Sigma$

User Defined:

Parallel |

Sum

 $\Sigma_1 \bigoplus \Sigma_2 \rightarrow \Sigma_3$

+...+

Apply Apply the accumulated value to center vertex User Defined: ► Apply

Activate Neighbors

https://www.usenix.org/conference/osdi12

 $\rightarrow \sum$

GAS for PageRank

GraphLab_PageRank (i)

// Compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
 total = total + R[j] * w_{ii}

// Update the PageRank R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
foreach(j in out_neighbors(i))
signal vertex-program on j

Gather: gather information about neighborhood

Apply: update vertex

Scatter: signal neighbors

Graph partition

Rather than cut edges:

Must synchronize **many** edges

PowerGraph cut vertices:

Must synchronize a **single** vertex

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]

Evenly assign edges to machines

https://www.usenix.org/conference/osdi12

Vertex-Cut vs Edge-Cut

Expected improvement from vertex-cuts:

PowerGraph System Evaluation

PowerGraph vs GraphLab & Pregel

PageRank on Synthetic Power-Law Graphs:

α: Power-Law Constant, higher α imply lower density (majority of vertices are low degree)

Characteristic of Graphs

Properties:	Examples
Graphs are <i>ubiquitous</i> Social media, science , advertising, web	Social media Science Advertising Web
Graphs are <i>big</i> billions of vertices and edges are rich metadata	facebook28 Million28 Million1 BillionFacebook Users6 Billion72 Hours a MinuteFickr PhotosYouTube
Dependency is important Graphs encode relationships between People, Facts, Products, Idear, Interests	Popular Movies Netflix Movies
Vertices in natural graphs are <i>Power-law</i>	

Summary of PowerGraph

- *Problem*: Computation on **Natural Graphs** is challenging
 - High-degree vertices
 - Low-quality edge-cuts
- Solution: PowerGraph System
 - **GAS Decomposition**: split vertex programs
 - Vertex-partitioning: distribute natural graphs
- PowerGraph **theoretically** and **experimentally** outperforms existing graph-parallel systems.

Future work

Time evolving graphs

- Support structural changes during computation
- Out-of-core storage (GraphChi)
 - Support graphs that don't fit in memory

Thank you!

Question?