
Presenter: Susu Sun

Graduate School of Computer Science
Saarland University

May 29 , 2015

Large–Scale Graph Machine Learning

&

1

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph- Parallel: GraphLab

 PowerLaw Vertex : GraphLab 2.1- PowerGraph

 Outline

2

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph- Parallel: GraphLab

 PowerLaw Vertex : GraphLab 2.1- PowerGraph

 Outline

3

Properties: Examples

Graphs are ubiquitous
Social media, science , advertising,web…

Graphs are big
billions of vertices and edges and rich
metadata

Dependency is important
Graphs encode relationships between
People, Facts , Products , Ideas, Interests

Vertices in natural graphs are Power-law

Characteristic of Graphs

Parallel Computation ----Big

MLDM(Machine learning and Data Mining) Algorithm
 Requires :

Graph Structured Computation ----Dependency

 Modeling dependencies between data

Asynchronous Iterative Computation ----Efficiency
 Asynchronous computation can accelerate convergence

Power-law Vertex ----Power-Law vertex
 Efficiently compute power-law degree vertex

5

 Run the computation in parallel

Big Learning

6

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph- Parallel: GraphLab

 PowerLaw Vertex : GraphLab 2.1- PowerGraph

 Outline

7

Data-Parallel

Map Reduce

Feature
Extraction Cross

Validation

Computing Sufficient
Statistics

Data Parallel ML: MapReduce

8

Data Parallel ML: MapReduce

CPU 1 CPU 2 CPU 3 CPU 4
1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

Map phrase：Image Features Extraction

9
cloud.berkeley.edu/data/graphlab

Data Parallel ML: MapReduce

CPU 1 CPU 2 CPU 3 CPU 4

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

Map phrase：Image Features Extraction

10
cloud.berkeley.edu/data/graphlab

CPU 1 CPU 2 CPU 3 CPU 4

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

Data Parallel ML: MapReduce

No Communication needed！

Map phrase： Embarrassingly Parallel independent computation

11
cloud.berkeley.edu/data/graphlab

Data Parallel ML: MapReduce

CPU 1 CPU 2

1
2
.
9

4
2
.
3

2
1
.
3

2
5
.
8

2
4
.
1

8
4
.
3

1
8
.
4

8
4
.
4

1
7
.
5

6
7
.
5

1
4
.
9

3
4
.
3

22
26
.

26

17
26
.

31

Image Features

Attractive Face
Statistics

Ugly Face
Statistics

Reduce phrase： Image classification

12
cloud.berkeley.edu/data/graphlab

Properties: Examples

Graphs are ubiquitous
Social media, science , advertising,web…

Graphs are big
billions of vertices and edges and rich
metadata

Dependency is important
Graphs encode relationships between
People, Facts , Products , Ideas, Interests

Vertices in natural graphs are Power-law

Characteristic of Graphs

MapReduce: Pros & Cons
Pros Cons

Simplicity of the model:
Programmers specifies few simple
methods that focuses on the functionality
not on the parallelism

Restricted programming constructs:
only map & reduce

Scalability:
Scales easily for large number of clusters
with thousands of machines

Does not scale well for dependent tasks:
for example Graph problems

Applicability:
Applicable to many different systems and
a wide variety of problems

Does not scale well for iterative algorithms:
iteration is very common in machine learning

14

ML Tasks Beyond Data-Parallelism

Data-Parallel Graph-Parallel

Map Reduce

Feature
Extraction Cross

Validation

Computing Sufficient
Statistics

Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

15

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph- Parallel: GraphLab

 PowerLaw Vertex: GraphLab 2.1- PowerGraph

 Outline

16

Graph-Parallel computation?

“Think like a vertex.”
-Malewicz et al. [SIGMOD’10]

17

A user-defined Vertex-Program runs on each vertex
Graph constrains interaction along edges

 Using messages (e.g. Pregel [PODC’09, SIGMOD’10])
 Through shared state (e.g., GraphLab [UAI’10, VLDB’12])

Parallelism: run multiple vertex programs simultaneously

The Graph-Parallel Abstraction

18

What’s the rank
of this user?

rank?

Depends on rank
of her followers

Depends on the
rank of their followers

PageRank

19

Page Rank Iteration

Iterate until convergence：
“My rank is weighted average of
my friends’ rank”

Rank of
user i

Weighted sum of
neighbors’ ranks

α
jiw

is the random reset probability
Is the prob. transitioning from j to i

20

Pregel Abstraction
Vertex-Programs interact by sending messages

i Pregel_PageRank(i, messages) :
 // Receive all the messages
 total = 0
 foreach(msg in messages) :
 total = total + msg

 // Update the rank of this vertex
 R[i] = 0.15 + total

 // Send new messages to neighbors
 foreach(j in out_neighbors[i]) :
 Send msg(R[i] * wij) to vertex j

21

Properties: Examples

Graphs are ubiquitous
Social media, science , advertising,web…

Graphs are big
billions of vertices and edges and rich
metadata

Dependency is important
Graphs encode relationships between
People, Facts , Products , Ideas, Interests

Vertices in natural graphs are Power-law

Characteristic of Graphs

Pregel: Bulk Synchronous Parallel(BSP) Model

B
arrier

Compute Communicate

Bulk synchronous computation can be highly inefficient

[Malewicz et al. ‘2010] http://graphlab.org/powergraph-presented-at-osdi/
23

Synchronous vs Asynchronous
Synchronous computation can be inefficient

Async vs Sync PageRank

Graph: 25M vertex,
355 edge
16 processors

24

Tradeoffs of the BSP Model

Pros
 Scales better than Map Reduce for Graphs
 Relatively easy to build

Cons
 Inefficient if different regions of the graph converge at different speed
 Runtime of each phase is determined by the slowest machine
 Synchronous computation can be inefficient!

25

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph-Parallel: GraphLab

 PowerLaw Vertex : GraphLab 2.1- PowerGraph

 Outline

26

Scheduler
Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

GraphLab Framework

27

Data Graph
Date Graph: a directed graph G=(V, E, D)
Data D refers to model parameters, algorithm states and other
related data.

Vertex Data:
•User profile text
• Current interests estimates

Edge Data:
• Similarity weights

Graph:
• Social Network

28

Data Graph
PageRank : G=(V, E, D)

• Each vertex (V) corresponds to
a webpage

• Each edge (U,V) corresponds
to a link from (U -> V)

•Vertex data Dv stores the rank of
the webpage R(V)

•Edge data DU->V stores the weight
of the link (U->V)

29

Update Functions
 update function : user defined program which when applied to
a vertex, transforms the data in the scopeof the vertex

pagerank(i, scope){
// Get Neighborhood data
 (R[i], Wij, R[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
 if R[i] changes then
reschedule_neighbors_of(i);
}

[]
[] (1) []ij

j N i
R i W R jα α

∈

← + − ×∑

30

Scheduling
The scheduler determines the order that vertices are updated.

 Only Requirement :All vertex in T are eventually executed

GraphLab Execution Model (i, messages) :

Input: Data Graph G=(V,E,D)
Input: Update Function
Input: Initial vertex set

While T is not Empty do
 (1)
 (2)
 (3)

Output: Modified Data Graph

{ }1 2, ,...v vΤ =

Re ()
(,) (,)v v

v moveNext T
T S f v S

T T T

←
′ ←

′← ∪

(), ,G V E D′=

f

31

Ensuring Race-Free Code
How much can computation overlap?

32

Consistency Models
Guarantee sequential consistency for all update functions

User –defined consistency models:
 Full consistency
 Vertex Consistency
 Edge Consistency

Vertex v

33

D1 D2 D3 D4 D5
D1↔2 D2↔3 D3↔4 D4↔5

1 2 3 4 5

D1 D2 D3 D4 D5
D1↔2 D2↔3 D3↔4 D4↔5

1 2 3 4 5

Read
Write

Read
Write

D1 D2 D3 D4 D5
D1↔2 D2↔3 D3↔4 D4↔5

1 2 3 4 5

Read
Write

Fu
ll

C
on

si
st

en
cy

M

od
el

E
dg

e
C

on
si

st
en

cy

M
od

el

Ve
rt

ex

C
on

si
st

en
cy

M

od
el

Consistency Model in GraphLab

34

Consistency vs Parallelism

Figure 2: Consistency and Parallelism

Fu
ll

C
on

si
st

en
cy

M

od
el

E
dg

e
C

on
si

st
en

cy

M
od

el

Ve
rt

ex

C
on

si
st

en
cy

M

od
el

35

GraphLab System Evaluation

36

Experiments---Netflix Movie Recommendation
Task: collaborative filtering
Recommend movies based on the ratings of
similar user.
Algorithm:
Alternating Least Squares Matrix
Factorization(ALS)

GraphLab Model:
R: bipartite graph connecting each user and
the moves they rated.
Edge: rating for a movie-user pair
Vertex: user and movie data corresponding
to row in U and column in V
Update Function: recompute the d length
vector for each each vertex by reading the d
length vectors on adjacent vertices and
predict the edge value

37

Experiments---Netflix Movie Recommendation

Netflix comparisions Dynamic Netflix
GraphLab outperforms Hadoop by
40~60 times and is comparable to
MPI implementation

Dynamic computation can converge to
equivalent test error in about half the
number of updates

38

Experiments---Video Co-segmentation(CoSeg)

Coseg Vedio Frame

Task: Joint co-segmentation
Identify and cluster spatio -temporal segments
with similar texture in video.
Algorithm:
Gaussian Misture Model (GMM)
Loopy Belief Propagation (LBP)

GraphLab Model:
Graph: a grid of 120*50 rectangular super-
pixels
Edge: indicating the neighboring super-pixel
Vertex: super-pixel, stores the color and
texture statistics for all the raw pixels in its
domain
Update Function: alternating GMM and LBP
to predict the best label for each super-pixel.
Schedule: adaptive update schedule

39

Experiments---Video Co-segmentation(CoSeg)

Coseg Weak Scaling

GraphLab provides nearly
optimal weak scaling

GraphLab can achieve
scalability and performance
on large vertex graph

Coseg Scalability

40

Summary of GraphLab

 An abstraction tailored to Machine Learning
 Targets Graph-Parallel Algorithms

 Naturally expresses
 Data/computational dependencies

 Dynamic iterative computation

 Simplifies parallel algorithm design

 Automatically ensures data consistency

 Achieves state-of-the-art parallel performance on a variety of problems

 But, GraphLab is not sufficient to handle Natural Graphs!

41

 Properties of Graph based machine learning

 Big : Data-parallel :Map Reduce

 Dependency: Graph-parallel: Pregel

 Efficiency: Asychronous Graph- Parallel: GraphLab

 PowerLaw Vertex: GraphLab 2.1- PowerGraph

 Outline

42

Natural Graph

Natural Graphs
Graphs derived from natural phenomena
Problems:
Existing distributed graph computation systems perform poorly
on Natural Graphs.

The Internet Human Brain LinkedIn Social Network

43

Natural Graph Properties

Power-Law Degree Distribution

More than 108 vertices
have one neighbor.

Top 1% of vertices are
adjacent to

50% of the edges!

High-Degree
Vertices

Power-law Degree Distribution

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

44

Natural Graph Properties

Power-Law Degree Distribution
“Star Like” Motif

President
Obama Followers

45
https://www.usenix.org/conference/osdi12

Natural Graph Properties

Power-Law Graphs are
Difficult to Partition

CPU 1 CPU 2

Power-Law graphs do not have low-cost balanced cuts [Leskovec et al. 08,
Lang 04]
Traditional graph-partitioning algorithms perform poorly on Power-Law
Graphs. [Abou-Rjeili et al. 06]

46

Asynchronous Execution
requires heavy locking (GraphLab)

Pregel and GraphLab for High-Degree Vertices

Touches a large
fraction of graph

(GraphLab)

Sequentially process
edges

Sends many
messages
(Pregel)

Edge meta-data
too large for single

machine

Synchronous Execution
prone to stragglers (Pregel)

47

Machine 1 Machine 2

Graph & Pregel: Random Partitioning

Both GraphLab and Pregel resort to random (hashed)
partitioning on natural graphs

10 Machines 90% of edges cut
100 Machines 99% of edges cut!

48
https://www.usenix.org/conference/osdi12

PowerGraph is Needed

GraphLab and Pregel are not well suited for natural graphs

 Challenges of high-degree vertices
 Low quality partitioning

49

PowerGraph

GAS Decomposition: distribute vertex-programs

 Parallelize high-degree vertices

Vertex Partitioning:

 Efficiently distribute large power-law graphs.

50

Y

+ … +

Y

Parallel
Sum

User Defined:
Gather() Σ Y

Σ1 + Σ2 Σ3

Y

Gather (Reduce)
Apply the accumulated
value to center vertex

Apply
Update adjacent edges

and vertices.

Scatter
Accumulate information

about neighborhood

Y

+

User Defined:
Apply(, Σ) Y

’ Y

Y

Σ Y
’

Update Edge Data &
Activate Neighbors

User Defined:
Scatter() Y’

Y’

GAS Decomposition

51 https://www.usenix.org/conference/osdi12

GAS for PageRank

GraphLab_PageRank (i)

 // Compute sum over neighbors
 total = 0
 foreach(j in in_neighbors(i)):
 total = total + R[j] * wji

 // Update the PageRank
 R[i] = 0.1 + total

 // Trigger neighbors to run again
 if R[i] not converged then
 foreach(j in out_neighbors(i))
 signal vertex-program on j

Gather：
gather information
about neighborhood

Apply:
update vertex

Scatter:
signal neighbors

52

Graph partition
 Rather than cut edges:

 PowerGraph cut vertices:

CPU 1 CPU 2

Y
Y Must synchronize

many edges

CPU 1 CPU 2

Y Y Must synchronize
a single vertex

Percolation theory suggests that power law graphs have good vertex cuts.
[Albert et al. 2000]

53

Constructing Vertex-Cut

Machine 2 Machine 1 Machine 3

Evenly assign edges to machines

Y Y Y Y Z Y Y Y Y Z Y Z

Vertex spans according to its adjacent edges

54
https://www.usenix.org/conference/osdi12

Vertex-Cut vs Edge-Cut

1

10

100

0 50 100 150

R
ed

uc
tio

n
in

C

om
m

. a
nd

 S
to

ra
ge

Number of Machines

Order of Magnitude
Improvement

Expected improvement from vertex-cuts:

 PowerGraph System Evaluation

56

PowerGraph vs GraphLab & Pregel
PageRank on Synthetic Power-Law Graphs:
α: Power-Law Constant，higher α imply lower density (majority of vertices are low degree)

PowerGraph is robust to high-degree vertices
Runtime Communication

57

High-degree vertices High-degree vertices

Properties: Examples

Graphs are ubiquitous
Social media, science , advertising,web…

Graphs are big
billions of vertices and edges and rich
metadata

Dependency is important
Graphs encode relationships between
People, Facts , Products , Ideas, Interests

Vertices in natural graphs are Power-law

Characteristic of Graphs

 Problem: Computation on Natural Graphs is challenging
 High-degree vertices
 Low-quality edge-cuts

 Solution: PowerGraph System

 GAS Decomposition: split vertex programs
 Vertex-partitioning: distribute natural graphs

 PowerGraph theoretically and experimentally outperforms existing

graph-parallel systems.

Summary of PowerGraph

59

Future work

60

 Time evolving graphs
 Support structural changes during computation

 Out-of-core storage (GraphChi)
 Support graphs that don’t fit in memory

Thank you!

Question?

	Presenter: Susu Sun��Graduate School of Computer Science�Saarland University��May 29 , 2015���
	幻灯片编号 2
	幻灯片编号 3
	Characteristic of Graphs�
	MLDM(Machine learning and Data Mining) Algorithm�
	�Big Learning �
	幻灯片编号 7
	Data Parallel ML: MapReduce
	Data Parallel ML: MapReduce
	Data Parallel ML: MapReduce
	Data Parallel ML: MapReduce
	Data Parallel ML: MapReduce
	Characteristic of Graphs�
	MapReduce: Pros & Cons
	ML Tasks Beyond Data-Parallelism
	幻灯片编号 16
	Graph-Parallel computation?��“Think like a vertex.”�-Malewicz et al. [SIGMOD’10]
	The Graph-Parallel Abstraction
	PageRank
	Page Rank Iteration
	Pregel Abstraction
	Characteristic of Graphs�
	Pregel: Bulk Synchronous Parallel(BSP) Model�
	Synchronous vs Asynchronous
	Tradeoffs of the BSP Model
	幻灯片编号 26
	GraphLab Framework
	Data Graph
	Data Graph
	Update Functions
	Scheduling
	Ensuring Race-Free Code
	Consistency Models
	Consistency Model in GraphLab
	Consistency vs Parallelism
	�GraphLab System Evaluation
	Experiments---Netflix Movie Recommendation
	Experiments---Netflix Movie Recommendation
	Experiments---Video Co-segmentation(CoSeg)
	Experiments---Video Co-segmentation(CoSeg)
	Summary of GraphLab
	幻灯片编号 42
	Natural Graph
	Natural Graph Properties
	Natural Graph Properties
	Natural Graph Properties
	Pregel and GraphLab for High-Degree Vertices
	Graph & Pregel: Random Partitioning
	PowerGraph is Needed
	PowerGraph
	GAS Decomposition
	GAS for PageRank
	Graph partition
	Constructing Vertex-Cut
	Vertex-Cut vs Edge-Cut
	� PowerGraph System Evaluation
	PowerGraph vs GraphLab & Pregel
	Characteristic of Graphs�
	Summary of PowerGraph
	Future work

