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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



Parallel Computation   ----Big 

MLDM(Machine learning and Data Mining) Algorithm 
 Requires : 

Graph Structured Computation   ----Dependency 

 Modeling dependencies between data 

Asynchronous Iterative Computation   ----Efficiency 
 Asynchronous computation can accelerate convergence 

Power-law Vertex   ----Power-Law vertex 
 Efficiently compute power-law degree vertex 
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 Run the computation in parallel 



 
Big Learning  
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Data-Parallel 

Map Reduce  

Feature  
Extraction Cross 

Validation 

Computing Sufficient 
Statistics  

Data Parallel ML: MapReduce 
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Data Parallel ML: MapReduce 
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Map phrase：Image Features Extraction 
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Data Parallel ML: MapReduce 

No Communication needed！ 

Map phrase： Embarrassingly Parallel independent computation  
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Data Parallel ML: MapReduce 
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Image Features 

Attractive Face  
Statistics 

Ugly Face  
Statistics 

Reduce phrase： Image classification 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



MapReduce: Pros & Cons 
Pros Cons 

Simplicity of the model: 
Programmers specifies few simple 
methods that focuses on the functionality 
not on the parallelism 

Restricted programming constructs: 
only map & reduce 

Scalability: 
Scales easily for large number of clusters 
with thousands of machines 

Does not scale well for dependent tasks:  
for example Graph problems 
 
 
 
 
 
 
 

Applicability:  
Applicable to many different systems and 
a wide variety of problems 

Does not scale well for iterative algorithms: 
iteration is very common in machine learning 
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ML Tasks Beyond Data-Parallelism 

Data-Parallel                 Graph-Parallel 

Map Reduce  
 
 
 
 
 
 
 

Feature  
Extraction Cross 

Validation 

Computing Sufficient 
Statistics  

Belief 
Propagation 

Label Propagation 

Kernel 
Methods 

Deep Belief 
Networks 

Neural 
Networks 

Tensor  
Factorization 

PageRank 

Lasso 
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Graph-Parallel computation? 
 

“Think like a vertex.” 
-Malewicz et al. [SIGMOD’10] 
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A user-defined Vertex-Program runs on each vertex 
Graph constrains interaction along edges 

 Using messages  (e.g. Pregel [PODC’09, SIGMOD’10]) 
 Through shared state (e.g., GraphLab [UAI’10, VLDB’12]) 

Parallelism: run multiple vertex programs simultaneously 

The Graph-Parallel Abstraction  
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What’s the rank 
of this user? 

rank? 

Depends on rank 
of her followers 

Depends on the  
rank of  their followers 

PageRank 
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Page Rank Iteration 

Iterate until convergence： 
“My rank is weighted average of 
my friends’ rank” 

Rank of 
user i 

Weighted sum of 
neighbors’ ranks 

α
jiw

is the random reset probability 
Is the prob. transitioning from j to i 
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Pregel Abstraction 
Vertex-Programs interact by sending messages 

i Pregel_PageRank(i, messages) :  
  // Receive all the messages 
  total = 0 
  foreach( msg in messages) : 
    total = total + msg 
 
  // Update the rank of this vertex 
  R[i] = 0.15 + total 
 
  // Send new messages to neighbors 
  foreach(j in out_neighbors[i]) : 
    Send  msg(R[i] * wij) to vertex j 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



Pregel: Bulk Synchronous Parallel(BSP) Model 
 

B
arrier 

Compute Communicate 

Bulk synchronous computation can be highly inefficient 

[Malewicz et al. ‘2010]  http://graphlab.org/powergraph-presented-at-osdi/   
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Synchronous vs Asynchronous  
Synchronous computation can be inefficient 

Async vs Sync PageRank 

Graph: 25M vertex,                       
355 edge 
16 processors 
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Tradeoffs of  the BSP Model 

Pros 
 Scales better than Map Reduce for Graphs 
 Relatively easy to build  

Cons 
 Inefficient if different regions of the graph converge at different speed 
 Runtime of each phase is determined by the slowest machine 
 Synchronous computation can be inefficient!  
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Scheduler 
Consistency Model 

Graph Based 
Data Representation 

Update Functions 
User Computation 

GraphLab Framework 
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Data Graph 
Date Graph: a directed graph G=(V, E, D) 
Data D refers to model parameters, algorithm states and other    
related data. 

Vertex Data: 
•User profile text 
• Current interests estimates 

Edge Data: 
• Similarity weights  

Graph: 
• Social Network 
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Data Graph 
PageRank : G=(V, E, D) 
 
• Each vertex (V) corresponds to 
a webpage 
 

• Each edge (U,V ) corresponds 
to a link from (U -> V) 
 

•Vertex data Dv stores the rank of 
the webpage R(V) 
 

•Edge data DU->V stores the weight 
of the link  (U->V) 
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Update Functions 
 update function : user defined program which when applied to  
a vertex, transforms the data in the scopeof the vertex 

pagerank(i, scope){ 
// Get Neighborhood data 
  (R[i], Wij, R[j]) scope; 
 
// Update the vertex data 
 
 
 
// Reschedule Neighbors if needed 
 if R[i] changes then  
reschedule_neighbors_of(i);  
} 

[ ]
[ ] (1 ) [ ]ij

j N i
R i W R jα α

∈

← + − ×∑
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Scheduling 
The scheduler determines the order that vertices are updated. 

  Only Requirement :All vertex in T are eventually executed  

GraphLab Execution Model (i, messages) :  
   
Input: Data Graph G=(V,E,D) 
Input: Update Function  
Input: Initial vertex set   
 
While T is not Empty do        
 (1) 
 (2)  
 (3) 
 
Output: Modified Data Graph   

{ }1 2, ,...v vΤ =

Re ( )
( , ) ( , )v v

v moveNext T
T S f v S

T T T

←
′ ←

′← ∪

( ), ,G V E D′=

f
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Ensuring Race-Free Code 
How much can computation overlap? 
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Consistency Models 
Guarantee sequential consistency for all update functions 
 
User –defined consistency models: 
     Full consistency 
     Vertex Consistency 
     Edge Consistency 

Vertex v 
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D1 D2 D3 D4 D5 
D1↔2 D2↔3 D3↔4 D4↔5 

1 2 3 4 5 

D1 D2 D3 D4 D5 
D1↔2 D2↔3 D3↔4 D4↔5 

1 2 3 4 5 

Read 
Write 

Read 
Write 
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Consistency Model in GraphLab 
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Consistency vs Parallelism 

Figure 2: Consistency and Parallelism 
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GraphLab System Evaluation 
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Experiments---Netflix Movie Recommendation 
Task: collaborative filtering 
Recommend movies based on the ratings of 
similar user. 
Algorithm:  
Alternating Least Squares Matrix 
Factorization(ALS) 
  
GraphLab Model:  
R: bipartite graph connecting each user and 
the moves they rated. 
Edge: rating for a movie-user pair 
Vertex: user and movie data corresponding 
to row in  U and  column in V 
Update Function: recompute the  d length 
vector for each each vertex by reading the d 
length vectors on adjacent vertices and 
predict the edge value 
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Experiments---Netflix Movie Recommendation 

Netflix comparisions Dynamic Netflix 
GraphLab outperforms Hadoop by 
40~60 times  and is comparable to 
MPI implementation 

Dynamic computation can converge to 
equivalent test error in about half the 
number of updates 
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Experiments---Video Co-segmentation(CoSeg) 

Coseg Vedio Frame 

Task: Joint co-segmentation 
Identify and cluster spatio -temporal segments 
with similar texture in video. 
Algorithm:  
Gaussian Misture Model (GMM) 
Loopy Belief Propagation (LBP)  
 
GraphLab Model:  
Graph: a grid of 120*50 rectangular super-
pixels 
Edge: indicating the neighboring super-pixel 
Vertex: super-pixel, stores the color and 
texture statistics for all the raw pixels in its 
domain 
Update Function: alternating GMM and LBP 
to predict the best label for each super-pixel. 
Schedule: adaptive update schedule 
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Experiments---Video Co-segmentation(CoSeg) 

Coseg Weak Scaling 

GraphLab provides nearly 
optimal weak scaling 

GraphLab can achieve 
scalability and performance 
on large vertex graph 

Coseg Scalability 
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Summary of  GraphLab 

 An abstraction tailored to Machine Learning 
 Targets Graph-Parallel Algorithms 

  Naturally expresses 
 Data/computational dependencies 

 Dynamic iterative computation 

 Simplifies parallel algorithm design 

 Automatically ensures data consistency 

 Achieves state-of-the-art parallel performance on a variety of problems  

 But,  GraphLab is not sufficient to handle Natural Graphs! 
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Natural Graph 

Natural Graphs 
Graphs derived from natural phenomena 
Problems: 
Existing distributed graph computation systems perform poorly 
on Natural Graphs. 

The Internet Human Brain LinkedIn Social Network 
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Natural Graph Properties 

Power-Law Degree Distribution 

More than 108 vertices  
have one neighbor. 

Top 1% of vertices are 
adjacent to 

50% of the edges! 

High-Degree  
Vertices 

Power-law Degree Distribution 

AltaVista WebGraph 
1.4B Vertices, 6.6B Edges 
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Natural Graph Properties 

Power-Law Degree Distribution 
“Star Like” Motif 

President 
Obama Followers 
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Natural Graph Properties 

Power-Law Graphs are 
Difficult to Partition 

CPU 1 CPU 2 

Power-Law graphs do not have low-cost balanced cuts [Leskovec et al. 08, 
Lang 04] 
Traditional graph-partitioning algorithms perform poorly on Power-Law 
Graphs. [Abou-Rjeili et al. 06] 
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Asynchronous Execution 
requires heavy locking (GraphLab) 

Pregel and GraphLab for High-Degree Vertices 

Touches a large 
fraction of graph 

(GraphLab) 

Sequentially process 
edges 

Sends many 
messages 
(Pregel) 

Edge meta-data 
too large for single 

machine 

Synchronous Execution 
prone to stragglers (Pregel) 
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Machine 1 Machine 2 

Graph & Pregel: Random Partitioning 

Both GraphLab and Pregel resort to random (hashed) 
partitioning on natural graphs 

10 Machines  90% of edges cut 
100 Machines  99% of edges cut! 
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PowerGraph is Needed 

GraphLab and Pregel are not well suited for natural graphs 
 
         Challenges of high-degree vertices 
         Low quality partitioning 
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PowerGraph 

GAS Decomposition: distribute vertex-programs 

 Parallelize high-degree vertices 

Vertex Partitioning: 

 Efficiently distribute large power-law graphs. 
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Y 

+ … +        

Y 

Parallel 
Sum 

User Defined: 
Gather(             )  Σ Y 

Σ1  +  Σ2   Σ3 

Y 

Gather (Reduce) 
Apply the accumulated  
value to center vertex 

Apply 
Update adjacent edges 

and vertices. 

Scatter 
Accumulate information 

about neighborhood 

Y 

+  

User Defined: 
Apply(       , Σ)  Y

’ Y 

Y 

Σ Y
’ 

Update Edge Data & 
Activate Neighbors 

User Defined: 
Scatter(           )  Y’ 

Y’ 

GAS Decomposition 
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GAS for PageRank 

GraphLab_PageRank (i) 
  
  // Compute sum over neighbors 
  total = 0 
  foreach( j in in_neighbors(i)):  
    total = total + R[j] * wji 
 
  // Update the PageRank 
  R[i] = 0.1 + total  
 
  // Trigger neighbors to run again 
  if R[i] not converged then 
    foreach( j in out_neighbors(i))  
      signal vertex-program on j 

Gather： 
gather information  
about neighborhood 

Apply: 
update vertex  

Scatter: 
signal neighbors 
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Graph partition  
 Rather than cut edges: 

 
 
 

 PowerGraph cut vertices: 

CPU 1 CPU 2 

Y 
Y Must synchronize  

many edges 

CPU 1 CPU 2 

Y Y Must synchronize  
a single vertex 

Percolation theory suggests that power law graphs have good vertex cuts.  
[Albert et al. 2000] 
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Constructing Vertex-Cut 

Machine 2 Machine 1 Machine 3 

Evenly assign edges to machines 

Y Y Y Y Z Y Y Y Y Z Y Z 

Vertex spans according to its adjacent edges 
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Vertex-Cut vs Edge-Cut 
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     PowerGraph System Evaluation 
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PowerGraph vs GraphLab & Pregel 
PageRank on Synthetic Power-Law Graphs: 
α: Power-Law Constant，higher α imply lower density (majority of vertices are low degree) 
 

PowerGraph is robust to high-degree vertices 
Runtime  Communication  

57 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



 Problem: Computation on Natural Graphs is challenging 
 High-degree vertices 
 Low-quality edge-cuts 

 
 Solution: PowerGraph System 

 GAS Decomposition: split vertex programs 
 Vertex-partitioning: distribute natural graphs 

 
 PowerGraph theoretically and experimentally outperforms existing 

graph-parallel systems. 
 

Summary  of  PowerGraph 
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Future work 

60 

 Time evolving graphs 
 Support structural changes during computation 

 Out-of-core storage (GraphChi) 
 Support graphs that don’t fit in memory 

Thank you! 
 

Question? 
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