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 Properties of Graph based machine learning 

 Big : Data-parallel :Map Reduce 

 Dependency: Graph-parallel: Pregel 

 Efficiency: Asychronous Graph- Parallel: GraphLab 

 PowerLaw Vertex :  GraphLab 2.1- PowerGraph 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



Parallel Computation   ----Big 

MLDM(Machine learning and Data Mining) Algorithm 
 Requires : 

Graph Structured Computation   ----Dependency 

 Modeling dependencies between data 

Asynchronous Iterative Computation   ----Efficiency 
 Asynchronous computation can accelerate convergence 

Power-law Vertex   ----Power-Law vertex 
 Efficiently compute power-law degree vertex 
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 Run the computation in parallel 



 
Big Learning  
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Data-Parallel 

Map Reduce  

Feature  
Extraction Cross 

Validation 

Computing Sufficient 
Statistics  

Data Parallel ML: MapReduce 
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Data Parallel ML: MapReduce 
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Map phrase：Image Features Extraction 
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Data Parallel ML: MapReduce 

No Communication needed！ 

Map phrase： Embarrassingly Parallel independent computation  
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Data Parallel ML: MapReduce 
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Image Features 

Attractive Face  
Statistics 

Ugly Face  
Statistics 

Reduce phrase： Image classification 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



MapReduce: Pros & Cons 
Pros Cons 

Simplicity of the model: 
Programmers specifies few simple 
methods that focuses on the functionality 
not on the parallelism 

Restricted programming constructs: 
only map & reduce 

Scalability: 
Scales easily for large number of clusters 
with thousands of machines 

Does not scale well for dependent tasks:  
for example Graph problems 
 
 
 
 
 
 
 

Applicability:  
Applicable to many different systems and 
a wide variety of problems 

Does not scale well for iterative algorithms: 
iteration is very common in machine learning 

14 



ML Tasks Beyond Data-Parallelism 

Data-Parallel                 Graph-Parallel 

Map Reduce  
 
 
 
 
 
 
 

Feature  
Extraction Cross 

Validation 

Computing Sufficient 
Statistics  

Belief 
Propagation 

Label Propagation 

Kernel 
Methods 

Deep Belief 
Networks 

Neural 
Networks 

Tensor  
Factorization 

PageRank 

Lasso 
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Graph-Parallel computation? 
 

“Think like a vertex.” 
-Malewicz et al. [SIGMOD’10] 
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A user-defined Vertex-Program runs on each vertex 
Graph constrains interaction along edges 

 Using messages  (e.g. Pregel [PODC’09, SIGMOD’10]) 
 Through shared state (e.g., GraphLab [UAI’10, VLDB’12]) 

Parallelism: run multiple vertex programs simultaneously 

The Graph-Parallel Abstraction  
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What’s the rank 
of this user? 

rank? 

Depends on rank 
of her followers 

Depends on the  
rank of  their followers 

PageRank 
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Page Rank Iteration 

Iterate until convergence： 
“My rank is weighted average of 
my friends’ rank” 

Rank of 
user i 

Weighted sum of 
neighbors’ ranks 

α
jiw

is the random reset probability 
Is the prob. transitioning from j to i 
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Pregel Abstraction 
Vertex-Programs interact by sending messages 

i Pregel_PageRank(i, messages) :  
  // Receive all the messages 
  total = 0 
  foreach( msg in messages) : 
    total = total + msg 
 
  // Update the rank of this vertex 
  R[i] = 0.15 + total 
 
  // Send new messages to neighbors 
  foreach(j in out_neighbors[i]) : 
    Send  msg(R[i] * wij) to vertex j 
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



Pregel: Bulk Synchronous Parallel(BSP) Model 
 

B
arrier 

Compute Communicate 

Bulk synchronous computation can be highly inefficient 

[Malewicz et al. ‘2010]  http://graphlab.org/powergraph-presented-at-osdi/   
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Synchronous vs Asynchronous  
Synchronous computation can be inefficient 

Async vs Sync PageRank 

Graph: 25M vertex,                       
355 edge 
16 processors 
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Tradeoffs of  the BSP Model 

Pros 
 Scales better than Map Reduce for Graphs 
 Relatively easy to build  

Cons 
 Inefficient if different regions of the graph converge at different speed 
 Runtime of each phase is determined by the slowest machine 
 Synchronous computation can be inefficient!  
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Scheduler 
Consistency Model 

Graph Based 
Data Representation 

Update Functions 
User Computation 

GraphLab Framework 
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Data Graph 
Date Graph: a directed graph G=(V, E, D) 
Data D refers to model parameters, algorithm states and other    
related data. 

Vertex Data: 
•User profile text 
• Current interests estimates 

Edge Data: 
• Similarity weights  

Graph: 
• Social Network 
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Data Graph 
PageRank : G=(V, E, D) 
 
• Each vertex (V) corresponds to 
a webpage 
 

• Each edge (U,V ) corresponds 
to a link from (U -> V) 
 

•Vertex data Dv stores the rank of 
the webpage R(V) 
 

•Edge data DU->V stores the weight 
of the link  (U->V) 
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Update Functions 
 update function : user defined program which when applied to  
a vertex, transforms the data in the scopeof the vertex 

pagerank(i, scope){ 
// Get Neighborhood data 
  (R[i], Wij, R[j]) scope; 
 
// Update the vertex data 
 
 
 
// Reschedule Neighbors if needed 
 if R[i] changes then  
reschedule_neighbors_of(i);  
} 

[ ]
[ ] (1 ) [ ]ij

j N i
R i W R jα α

∈

← + − ×∑
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Scheduling 
The scheduler determines the order that vertices are updated. 

  Only Requirement :All vertex in T are eventually executed  

GraphLab Execution Model (i, messages) :  
   
Input: Data Graph G=(V,E,D) 
Input: Update Function  
Input: Initial vertex set   
 
While T is not Empty do        
 (1) 
 (2)  
 (3) 
 
Output: Modified Data Graph   

{ }1 2, ,...v vΤ =

Re ( )
( , ) ( , )v v

v moveNext T
T S f v S

T T T

←
′ ←

′← ∪

( ), ,G V E D′=

f
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Ensuring Race-Free Code 
How much can computation overlap? 
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Consistency Models 
Guarantee sequential consistency for all update functions 
 
User –defined consistency models: 
     Full consistency 
     Vertex Consistency 
     Edge Consistency 

Vertex v 
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D1 D2 D3 D4 D5 
D1↔2 D2↔3 D3↔4 D4↔5 

1 2 3 4 5 

D1 D2 D3 D4 D5 
D1↔2 D2↔3 D3↔4 D4↔5 

1 2 3 4 5 

Read 
Write 

Read 
Write 

D1 D2 D3 D4 D5 
D1↔2 D2↔3 D3↔4 D4↔5 
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Consistency Model in GraphLab 
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Consistency vs Parallelism 

Figure 2: Consistency and Parallelism 
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GraphLab System Evaluation 
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Experiments---Netflix Movie Recommendation 
Task: collaborative filtering 
Recommend movies based on the ratings of 
similar user. 
Algorithm:  
Alternating Least Squares Matrix 
Factorization(ALS) 
  
GraphLab Model:  
R: bipartite graph connecting each user and 
the moves they rated. 
Edge: rating for a movie-user pair 
Vertex: user and movie data corresponding 
to row in  U and  column in V 
Update Function: recompute the  d length 
vector for each each vertex by reading the d 
length vectors on adjacent vertices and 
predict the edge value 
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Experiments---Netflix Movie Recommendation 

Netflix comparisions Dynamic Netflix 
GraphLab outperforms Hadoop by 
40~60 times  and is comparable to 
MPI implementation 

Dynamic computation can converge to 
equivalent test error in about half the 
number of updates 
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Experiments---Video Co-segmentation(CoSeg) 

Coseg Vedio Frame 

Task: Joint co-segmentation 
Identify and cluster spatio -temporal segments 
with similar texture in video. 
Algorithm:  
Gaussian Misture Model (GMM) 
Loopy Belief Propagation (LBP)  
 
GraphLab Model:  
Graph: a grid of 120*50 rectangular super-
pixels 
Edge: indicating the neighboring super-pixel 
Vertex: super-pixel, stores the color and 
texture statistics for all the raw pixels in its 
domain 
Update Function: alternating GMM and LBP 
to predict the best label for each super-pixel. 
Schedule: adaptive update schedule 
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Experiments---Video Co-segmentation(CoSeg) 

Coseg Weak Scaling 

GraphLab provides nearly 
optimal weak scaling 

GraphLab can achieve 
scalability and performance 
on large vertex graph 

Coseg Scalability 
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Summary of  GraphLab 

 An abstraction tailored to Machine Learning 
 Targets Graph-Parallel Algorithms 

  Naturally expresses 
 Data/computational dependencies 

 Dynamic iterative computation 

 Simplifies parallel algorithm design 

 Automatically ensures data consistency 

 Achieves state-of-the-art parallel performance on a variety of problems  

 But,  GraphLab is not sufficient to handle Natural Graphs! 
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Natural Graph 

Natural Graphs 
Graphs derived from natural phenomena 
Problems: 
Existing distributed graph computation systems perform poorly 
on Natural Graphs. 

The Internet Human Brain LinkedIn Social Network 
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Natural Graph Properties 

Power-Law Degree Distribution 

More than 108 vertices  
have one neighbor. 

Top 1% of vertices are 
adjacent to 

50% of the edges! 

High-Degree  
Vertices 

Power-law Degree Distribution 

AltaVista WebGraph 
1.4B Vertices, 6.6B Edges 
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Natural Graph Properties 

Power-Law Degree Distribution 
“Star Like” Motif 

President 
Obama Followers 
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Natural Graph Properties 

Power-Law Graphs are 
Difficult to Partition 

CPU 1 CPU 2 

Power-Law graphs do not have low-cost balanced cuts [Leskovec et al. 08, 
Lang 04] 
Traditional graph-partitioning algorithms perform poorly on Power-Law 
Graphs. [Abou-Rjeili et al. 06] 
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Asynchronous Execution 
requires heavy locking (GraphLab) 

Pregel and GraphLab for High-Degree Vertices 

Touches a large 
fraction of graph 

(GraphLab) 

Sequentially process 
edges 

Sends many 
messages 
(Pregel) 

Edge meta-data 
too large for single 

machine 

Synchronous Execution 
prone to stragglers (Pregel) 
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Machine 1 Machine 2 

Graph & Pregel: Random Partitioning 

Both GraphLab and Pregel resort to random (hashed) 
partitioning on natural graphs 

10 Machines  90% of edges cut 
100 Machines  99% of edges cut! 
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PowerGraph is Needed 

GraphLab and Pregel are not well suited for natural graphs 
 
         Challenges of high-degree vertices 
         Low quality partitioning 
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PowerGraph 

GAS Decomposition: distribute vertex-programs 

 Parallelize high-degree vertices 

Vertex Partitioning: 

 Efficiently distribute large power-law graphs. 
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Y 

+ … +        

Y 

Parallel 
Sum 

User Defined: 
Gather(             )  Σ Y 

Σ1  +  Σ2   Σ3 

Y 

Gather (Reduce) 
Apply the accumulated  
value to center vertex 

Apply 
Update adjacent edges 

and vertices. 

Scatter 
Accumulate information 

about neighborhood 

Y 

+  

User Defined: 
Apply(       , Σ)  Y

’ Y 

Y 

Σ Y
’ 

Update Edge Data & 
Activate Neighbors 

User Defined: 
Scatter(           )  Y’ 

Y’ 

GAS Decomposition 
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GAS for PageRank 

GraphLab_PageRank (i) 
  
  // Compute sum over neighbors 
  total = 0 
  foreach( j in in_neighbors(i)):  
    total = total + R[j] * wji 
 
  // Update the PageRank 
  R[i] = 0.1 + total  
 
  // Trigger neighbors to run again 
  if R[i] not converged then 
    foreach( j in out_neighbors(i))  
      signal vertex-program on j 

Gather： 
gather information  
about neighborhood 

Apply: 
update vertex  

Scatter: 
signal neighbors 
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Graph partition  
 Rather than cut edges: 

 
 
 

 PowerGraph cut vertices: 

CPU 1 CPU 2 

Y 
Y Must synchronize  

many edges 

CPU 1 CPU 2 

Y Y Must synchronize  
a single vertex 

Percolation theory suggests that power law graphs have good vertex cuts.  
[Albert et al. 2000] 
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Constructing Vertex-Cut 

Machine 2 Machine 1 Machine 3 

Evenly assign edges to machines 

Y Y Y Y Z Y Y Y Y Z Y Z 

Vertex spans according to its adjacent edges 
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Vertex-Cut vs Edge-Cut 
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Expected improvement from vertex-cuts: 



 
     PowerGraph System Evaluation 
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PowerGraph vs GraphLab & Pregel 
PageRank on Synthetic Power-Law Graphs: 
α: Power-Law Constant，higher α imply lower density (majority of vertices are low degree) 
 

PowerGraph is robust to high-degree vertices 
Runtime  Communication  
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Properties: Examples 

Graphs are ubiquitous 
Social media, science , advertising,web… 
 
Graphs are big 
billions of vertices and edges and rich 
metadata 

Dependency is important 
Graphs encode relationships between 
People,  Facts , Products , Ideas, Interests  

Vertices in natural graphs are Power-law 
 

Characteristic of  Graphs 
 



 Problem: Computation on Natural Graphs is challenging 
 High-degree vertices 
 Low-quality edge-cuts 

 
 Solution: PowerGraph System 

 GAS Decomposition: split vertex programs 
 Vertex-partitioning: distribute natural graphs 

 
 PowerGraph theoretically and experimentally outperforms existing 

graph-parallel systems. 
 

Summary  of  PowerGraph 
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Future work 
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 Time evolving graphs 
 Support structural changes during computation 

 Out-of-core storage (GraphChi) 
 Support graphs that don’t fit in memory 

Thank you! 
 

Question? 
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