
Pregel 

Ali Shah 
s9alshah@stud.uni-saarland.de 



Outline 

• Introduction 
• Model of Computation 
• Fundamentals of Pregel Program 
• Implementation 
• Applications 
• Experiments 
• Issues with Pregel 

2 



Outline 

• Costs of Computation 
• Optimization Techniques and Algorithms 
• Experiments 
• Criticism 
• Conclusion 

3 



Introduction 

• Analyzing large graph is hard 
▫ Billions of edges 
▫ Trillions of vertices 
▫ Examples: Web graph, Social Networks, 

Transportation Networks 
 

• Graph algorithms 
▫ No scalable general-purpose system for implementing 

arbitrary graph algorithms 
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Pregel, to the Rescue 

• Framework for processing large graphs 
• Easy to program 
• Scalable 
• Fault Tolerant 
• Inspired by Bulk Synchronous Parallel Model 
• Can implement most of the graph algorithms 
• Vertex-centric system 
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Model of Computation 

• Sequence of iterations (supersteps) 
▫ Same function (user-defined) is executed for each 

vertex 
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Source: http://blog.acaro.org/entry/pregel-is-out-but-what-is-pregel 



Model of Computation 

 
 
 
 
 
 

• Algorithm terminates when all vertices are 
simultaneously inactive and there are no messages in 
transit 
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Vertex State Machine 

Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Model of Computation 

• Vertex 
▫ Receives messages sent in previous superstep 
▫ Executes the user defined compute function 
▫ Updates its or its outgoing edges’ values 
▫ Sends messages to other vertices 
▫ Update the graph structure 
▫ Votes to halt if done with the task 
 

• Communication is done through message passing 
• Concurrent computation and the messages need not be 

ordered 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Example: Maximum Value 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Example: Maximum Value 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Example: Maximum Value 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Example: Maximum Value 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Pregel vs. Map Reduce 

• Pregel keeps vertices and edges on the machine that 
performs computation 

• Pregel uses network transfer only for messages 
 

• Map Reduce passes the entire graph state from one state 
to the next 

• Map Reduce needs to coordinate chained steps 

13 



Fundamentals of Pregel Program 

• Vertex.compute() function 
• Combiners 
• Aggregators 

14 



Fundamentals of Pregel Program: 

Vertex.Compute function 

• Receive messages that were sent in previous superstep 
• Update vertex and edge values 
• Send messages 
• Update aggregators 
• Choose to vote to halt 
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Fundamentals of Pregel Program: 

Combiners 

• Example 
▫ Integer messages received 
▫ Only sum matters 

• Messages can be combined 
• Reduces the number of messages that must be 

transmitted 
• Should only be enabled for commutative and associative 

operations 
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Fundamentals of Pregel Program: 

Aggregators 

• Mechanism for global communication 
• Each vertex can provide value in superstep S 
• System combines these values using a reduction operator 
• Resulting value made available to all vertices in 

superstep S+1 
• Can be used for statistics 
• Example: 

▫ Total number of edges in graph – Sum aggregator on 
out-degree of each vertex 
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Implementation 

• Basic Architecture 
• Execution of Pregel Program 
• Fault Tolerance 
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Implementation: Basic Architecture 

• Graph is divided into partitions 
▫ Default partitioning function is hash(VertexId) 
▫ User can provide the custom partitioning function 

• Master Worker model 
▫ One master, multiple workers 
▫ Master’s tasks 

x Maintenance of workers 
x Fault recovery of workers 
x Web UI for status tracking 

▫ Workers’ tasks 
x Processing of assigned tasks 
x Communication with other workers (message passing) 
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Implementation: Execution of Pregel 

Program 

• Program begins executing on a cluster of machines 
• Master is responsible for coordinating worker activity 
• Master partitions the graph and assigns one or more 

partitions to each worker 
• All vertices are marked as active 
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Implementation: Execution of Pregel 

Program 

• Master instructs each worker to perform a superstep. 
• Worker 

▫ Calls Compute() function for each vertex 
▫ Receives messages that were sent in previous superstep 
▫ Sends the messages 
▫ Tells the master how many vertices will be active in the next 

superstep 
▫ Repeat while any vertices are active or any messages are in transit 

• After the computation halts, master may instruct each 
worker to save its portion of the graph 
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Implementation: Fault Tolerance 

• Checkpointing 
▫ Workers save their state of partition on persistent 

storage 
• Failure detection 

▫ Ping messages to workers 
• Recovery of workers 

▫ Assignment of graph partition to available worker 
▫ Workers reload state from the last checkpoint and 

continue execution 
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Applications 

• Shortest Paths 
• Bipartite Matching 
• Page Rank 
• Semi-Clustering 
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Application: Shortest Paths 

• Objective 
▫ Single source shortest paths: Finding shortest path 

between a single source vertex and every other vertex 
in the graph 

▫ s-t shortest path: Finding a single shortest path 
between given vertices s and t 
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Application: Single Source Shortest Paths 

• Each vertex stores a value denoting the distance from 
source vertex to this vertex 

• Value at each vertex is initialized to INF 
• In each superstep 

▫ Receives messages from its neighbors with updated 
potential minimum distances from source vertex 

▫ If minimum of these updated values is less than the current 
minimum distance of the vertex, value is updated and 
potential updates are sent to the neighbors (current value + 
outgoing edge weight) 

• In first superstep, only source vertex will update its value 
to zero and send update messages to its neighbors 

• Algorithm terminates when no more updates 
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Application: Single Source Shortest Paths 

• A is the source 
 
 
 
 
 

• Superstep = 1 
▫ A = 0 
▫ A sends messages 

x B = 0+5 = 5 
x C = 0+3 = 3 
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Application: Single Source Shortest Paths 

• A is the source 
 
 
 
 
 

• Superstep = 2 
▫ B = 5; C = 3 
▫ B sends messages  C sends messages 

x D = 5+2 = 7        B = 3+1 = 4 
          D = 3+5 = 8 
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Application: Single Source Shortest Paths 

• A is the source 
 
 
 
 
 

• Superstep = 3 
▫ B = 4; D = 7 
▫ B sends messages   

x D = 4+2 = 6 
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Application: Single Source Shortest Paths 

• A is the source 
 
 
 
 
 

• Superstep = 4 
▫ D = 6 

 
• Since there will be no incoming messages in next step, the 

algorithm will terminate 
• Values at vertices are the shortest distance from the source 
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Application: PageRank 

• Objective 
▫ Method to measure the importance of the vertices in 

graph 
▫ Importance of the vertex depends upon the count and 

quality of vertices pointing to it 
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Source: http://en.wikipedia.org/wiki/PageRank 



Application: PageRank 

• In superstep 0, the value of each vertex is 
1/NumVertices() 

• In each superstep 
▫ Each vertex sends along each outgoing edge its tentative 

PageRank divided by the number of outgoing edges 
▫ Each vertex sums up the values received in the messages 
▫ Tentative PageRank for the vertex is updated to 

0.15/NumVertices  +  0.85 x sum 
• Algorithm termitates on convergence 
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Application: PageRank 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 

Halts at superstep = 30 

Calculating sum using  
 incoming edges 

Tentative PageRank 

Sending messages to 
outgoing edges 



Experiments: Environment 

• 300 multicore commodity PCs 
• 50 to 800 pregel workers 
• Weights of all edges set to 1 
• Graph 

▫ Binary Tree 
▫ Random Graphs 
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Experiments 

• Single Source Shortest Paths – Binary tree with 1 billion 
vertices – Number of worker tasks vary 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Experiments 

• Single Source Shortest Paths – Binary tree – 800 
Worker tasks – Graph size vary 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Experiments 

• Single Source Shortest Paths – Log normal random graphs 
with 127 billion edges – 800 Worker tasks – Graph size 
vary 
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Source: https://kowshik.github.io/JPregel/pregel_paper.pdf 



Pregel in a Nutshell 

• Vertex centric approach 
• Concept of supersteps 
• Master.Compute function 
• Massage passing between vertices 
• Open source implementations present 

▫ Giraph 
▫ GPS 
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Issues with Pregel 

• Convergence is slow 
• High communication or computation cost 

▫ Graphs with skews in component sizes 
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Costs of Computation 

• Four different costs 
▫ Communication 
▫ Number of supersteps 
▫ Memory 
▫ Computation by each vertex in each superstep 
 

• Optimization techniques focus on the first two 
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Optimization Techniques 

• Finish Computations Serially 
• Storing Edges at Subvertices 
• Edge Cleaning on Demand 
• Single Pivot Optimization 
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Optimization: Finish Computations Serially 

• Motivation 
▫ Slow convergence in an algorithm or phase of an 

algorithm (Execution of large number of supersteps 
when working on very small fraction of input graph) 

▫ Communication cost degrades performance in such cases 
• Optimization 

▫ Avoids large number of small superstep executions by 
finishing computation on a small active-subgraph 
serially, inside master.compute() 

▫ Can be applied to algorithms in which size of active 
subgraph shrinks throughout the computation 
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Optimization: Finish Computations Serially 

• Implementation 
▫ Uses three global objects 

x Number of edges in active-subgraph 
x Active subgraph when serial computation is triggered 
x Results of the serial execution 

▫ The serial computation is performed inside 
master.compute() 
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Optimization: Finish Computations Serially 

• Cost Analysis 
▫ Avoid additional superstep executions 
▫ Overhead 

x Monitoring size of active-subgraph 
x Serial computation at the master 
x Communication cost of sending active-subgraph to the 

master and results back to the workers 
x One superstep for vertices to read the results 

• Optimization is expected to yield good benefits only 
when algorithm or the phase of algorithm converges 
very slowly 
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Optimization: Finish Computations 

Serially 
• Example: Graph Coloring 

▫ Objective 
x Assigning a color to each vertex such that no two adjacent 

vertices have the same color 
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Optimization: Finish Computations 

Serially 
• Example: Graph Coloring 

▫ Procedure 
x Each vertex sets its type to unknown (not yet decided) 
x Sends message to its neighbors for degree calculation 
x Vertex, with 1/(2 x degree(vertex)) probability, volunteers to be in 

maximal independent set 
x Sends messages to all its neighbors 

x Each vertex that had volunteered, checks the messages it has 
received. If its Id is minimum, becomes part of maximal set. Sends 
“neighbor-in-set” message to its neighbors 

x Vertices that receive this message update their type to NotInS, 
send “decrement degree” message to its neighbors, and becomes 
inactive 

x Vertices receiving this message update their degree count 
x If further unknown vertices left, process is repeated, otherwise 

maximal independent set has been generated and a color is 
assigned to it. 
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Optimization: Finish Computations 

Serially 
• Example: Graph Coloring 

▫ Optimization 
x Over the time, active-subgraph gets denser, as a result 

independent sets get smaller. 
x Can be left with a small clique producing as many independent 

sets as the vertices in clique 
x If active subgraphs become smaller than a threshold, task is 

executed serially by the master, saving some supersteps 
 

• Similar optimizations can be done on Strongly connected 
components algorithms in which strongly connected 
components are to be found from the graph 
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Optimization: Storing Edges at Subvertices 

• Motivation 
▫ Algorithms in which supervertices is formed (Eg. 

Minimum Spanning Forest) 
x Subvertices are merged to form supervertices 

▫ High cost for receiving and merging adjacency list of 
subvertices 

 
• Optimization 

▫ Store edges of supervertex in distributed fashion 
among all of its subvertices 
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Optimization: Storing Edges at Subvertices 

• Implementation and Example: Minimum Spanning 
Forest 
▫ Objective 

x Minimum Spanning Forest is a collection of Minimum 
Spanning Trees that connect the vertices of the graph together 
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Optimization: Storing Edges at Subvertices 

• Implementation and Example: Minimum Spanning Forest 
▫ Procedure 

x Each vertex selects its minimum weight edge 
x Each vertex sends a message to the vertex at other end of the 

selected edge. By this supervertex and cycle in the conjoined 
tree is identified. 

x Edge Cleaning and Relabeling 
x Each vertex sends its and its supervertex’s Id to all of its 

neighbors.  
x When messages are received in next super step, if vertices share 

same supervertex, the edge between them is deleted. Else, 
current vertex’s supervertex is updated to point at the updated 
supervertex (received in the message) 

x Supervertex Formation 
x Every subvertex sends its edge to its supervertex 
x Each supervertex merges and stores these edges 
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Optimization: Storing Edges at Subvertices 

• Implementation and Example: Minimum Spanning 
Forest 
▫ Optimization 

x Supervertex formation is a high cost operation as every 
subvertex sends its edges to supervertex and then 
supervertex merges these list from subvertices 

x Storing edges of supervertex in distributed fashion 
among all subvertices.  

x Subvertices send its ID to the supervertex 
x Supervertex sends messages back to its subvertices with 

new supervertex ID 
x Subvertices update their supervertices with the ID 

received 
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Optimization: Storing Edges at Subvertices 

• Cost Analysis 
▫ The computation and communication performed in the 

supervertex formation phase is avoided 
x Cost is proportional to the number of edges in the graph 

▫ Additional communication cost 
x Subvertex sends local minimum weight edges to 

supervertex 
x Subvertex sends its Id to supervertex 
x Supervertex sends messages to subvertex with updated 

supervertex Id 
• Overall increase or decrease in communication depends 

upon the sizes of active vertices and edges 
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Optimization: Edge Cleaning on Demand 

• Motivation 
▫ Edge Cleaning: Removing edges based on certain conditions 

(vertex values) 
▫ Implementation in Pregel: Vertices send messages to their 

neighbors in one superstep, and remove neighbors in another 
▫ Communication cost proportional to the number of edges 

• Optimization 
▫ Keep stale edges around instead of deleting them 
▫ Stale edge deleted only when vertex tries to use it as a part of 

computation 
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Optimization: Edge Cleaning on Demand 

• Implementation and Example: Minimum Spanning Forest 
▫ Procedure 

x Each vertex selects its minimum weight edge 
x Each vertex sends a message to the vertex at other end of the 

selected edge. By this supervertex and cycle in the conjoined 
tree is identified. 

x Edge Cleaning and Relabeling 
x Each vertex sends its and its supervertex’s Id to all of its 

neighbors.  
x When messages are received in next super step, if vertices share 

same supervertex, the edge between them is deleted. Else, 
current vertex’s supervertex is updated to point at the updated 
supervertex (received in the message) 

x Supervertex Formation 
x Every subvertex sends its edge to its supervertex 
x Each supervertex merges and stores these edges 

53 



Optimization: Edge Cleaning on Demand 

• Implementation and Example: Minimum Spanning Forest 
▫ Procedure 

x Each vertex selects its minimum weight edge 
x Each vertex sends a message to the vertex at other end of the 

selected edge. By this supervertex and cycle in the conjoined 
tree is identified. 

x Edge Cleaning and Relabeling 
x Each vertex sends its and its supervertex’s Id to all of its 

neighbors.  
x When messages are received in next super step, if vertices share 

same supervertex, the edge between them is deleted. Else, 
current vertex’s supervertex is updated to point at the updated 
supervertex (received in the message) 

x Supervertex Formation 
x Every subvertex sends its edge to its supervertex 
x Each supervertex merges and stores these edges 
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Optimization: Edge Cleaning on Demand 

• Optimization 
▫ Edge cleaning and relabeling phase is omitted completed 
▫ Now the vertices cannot discover their minimum edge as some of 

the edges may be stale 
▫ Additional phase – Stale-Edge-Discovery 

x Vertex v sends message to minimum-weight edge(v,u) with its ID 
and its supervertex ID. 

x If u belongs to different supervertex, it answers back with its 
supervertex ID. 

x If v receives an answer message, it picks u as its minimum-weight 
edge and updates its supervertex ID 

x If v does not receive an answer, it removes u 
• Similar optimization can be perfomed on Maximum Weight 

Maching Algorithm as well in which matchings in the graph is to 
be found for which the sum of the weights of the matched edges 
is as large as possible 
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Optimization: Edge Cleaning on Demand 

• Cost Analysis 
▫ Reduces the cost of communication and computation 

of sending messages for deleting some edges 
▫ May slow down the convergence of the algorithm, 

decreasing the number of vertices that match, which 
increases the number of iterations 
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Optimization: Single Pivot 

• Motivation 
▫ Skew in component sizes can yield unnecessarily high 

communication cost in component detection 
algorithms 

▫ Graphs with skewed component sizes typically exhibit 
a giant component containing a significant fraction of 
the vertices in the graph 

• Optimization 
▫ Designed to detect giant components efficiently by 

starting computation from a single vertex 

57 



Optimization: Single Pivot 

• Implementation 
▫ Picks a single vertex (pivot) randomly and finds the 

component that pivot belongs to by propagating its Id along 
its neighbors 

▫ Once component of pivot is found, original algorithm is 
used for remainder of the graph 

• Weakly Connected Components, Strongly Connected 
Components, and similar algorithms can be optimized 
using this technique 
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Optimization: Single Pivot 

• Cost Analysis 
▫ If pivot vertex is picked from the giant component, all 

unnecessary propagation messages and computation 
costs for detecting the giant component are avoided 

▫ If pivot is not picked from the giant component, 
parallelism of the algorithm is decreased as instead of 
multiple components, just pivot’s component was 
detected in the iteration 
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Experiments 

• Experimental Setup 
▫ Three clusters 

x Large-EC2 (four virtual cores, 7.5GB RAM) 
x Medium-EC2 (two virtual cores, 3.75GB RAM) 
x Local (32 cores, 64GB RAM) 

▫ OS: Red Hat Linux 
▫ Fault Tolerance: Off 
▫ Graph Partitioning: Random 
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Experiments 

• Strongly Connected Components 
▫ Finishing Computations Serially (FCS): 1.3x to 2.3x 

runtime reduction. 28% to 56% supersteps reduction 
on web graphs 

▫ Single Pivot (SP): 1.1x to 2.1x runtime reduction 
▫ FCS + SP: 1.45x to 3.7x runtime reduction 

61 



Experiments 

• Minimum Spanning Forest 
▫ Storing Edges at Subvertices (SEAS): 1.15x to 3x 

runtime reduction 
▫ SEAS + Edge Cleaning on Demand: 1.2x to 3.3 

additional run-time benefit. Increase in 
communication cost by 1.03x 
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Experiments 

• Graph Coloring 
▫ Finishing Computations Serially: 1.1x to 1.4x runtime 

reduction. 10% to 20% supersteps reduction 
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Experiments 

• Approximate Maximum Weight Matching 
▫ Edge Cleaning on Demand: 1.45x runtime 

reduction. 1.3x to 3.1x communication cost 
reduction. 1.7x to 2.2x increase in number of 
supersteps 
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Experiments 

• Weakly Connected Components 
▫ Single Pivot: 2.7x to 7.4x runtime reduction 
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Criticism 

• Any arbitrary graph algorithm can be implemented 
using Pregel – no proof has been provided 

• Master – single point of failure 
• What if master fails – no clear details mentioned 
• Maximum Weight Matching – Finishing 

Computations Serially can be applied – Authors also 
comment the same, yet results are not shown for this 
algorithms 
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Conclusion 

• Vertex-centric computation model – Think like a 
vertex 

• Message passing between vertices 
• Fault tolerance mechanism 
• Optimization techniques 

▫ Communication cost 
▫ Number of supersteps 
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Questions 


