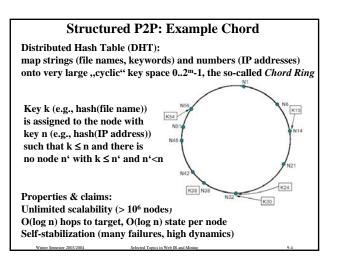
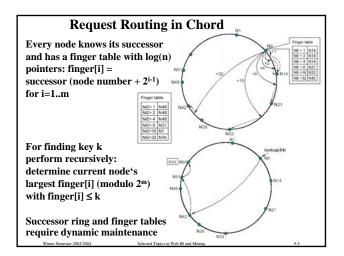
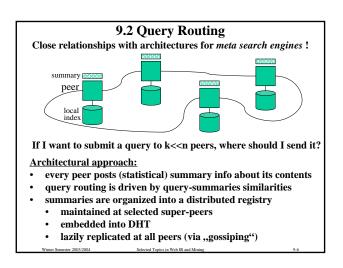
9 IR in Peer-to-Peer Systems

- 9.1 Peer-to-Peer (P2P) Architectures
- 9.2 Query Routing
- 9.3 Distributed Query Execution
- 9.4 Result Reconciliation

9.1 Peer-to-Peer (P2P) Architectures

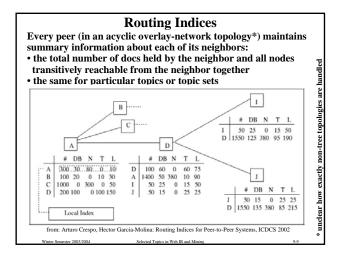

Decentralized, self-organizing, highly dynamic loose coupling of many autonomous computers

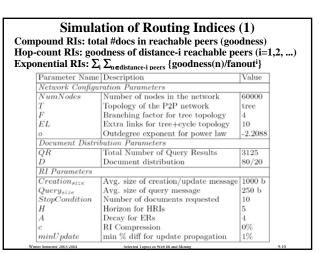

Applications:

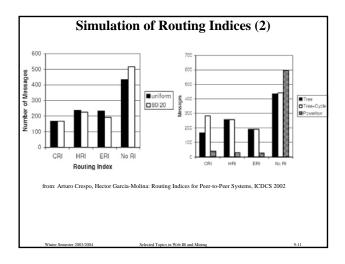

- Large-scale distributed computation (SETI, PrimeNumbers, etc.)
- File sharing (Napster, Gnutella, KaZaA, etc.)
- Publish-Subscribe Information Sharing (Marketplaces, etc.)
- Collaborative Work (Games, etc.)
 Collaborative Data Mining
- (Collaborative) Web Search

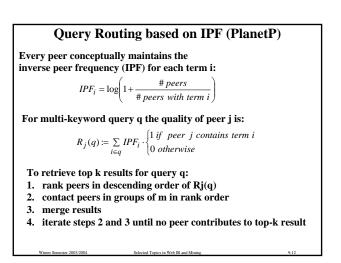
Goals:

- make systems ultra-scalable and completely self-organizing
- make complex systems manageable and less susceptible to attacks
- break information monopolies, exploit small-world phenomenon




1


Differences between Meta and P2P Search Engines


Meta Search Engine	P2P Search Engine
small # sites (e.g., digital libraries) rich statistics about site contents static federation of servers	huge # sites poor/limited/stale summaries highly dynamic system
each query fully executed at each site	single query may need content from multiple peers
interconnection topology largely irrelevant	highly dependent on overlay network structure

Random Query Routing (RAPIER)Peer selection for given query driven by(query-independent) "possession rules",e.g., each peer has partial information about a conceptuallyglobal term-peer matrix $D_{m\times n}$ with $D_{ij} = 1$ iff peer j has non-empty index list for term iRAPIER (Random Possesion Rule):• peers forward queries along unstructured P2P network• choose random item i with non-zero entry in local D• randomly choose k peers with non-zero entriesof ith row of local D,possibly biased with probabilities ~ $||D_{*j}||_1$ Alternative:view each row of local D as a ,,shopping basket"peer w

PlanetP Implementation

Each peer posts its summary in the form of a *Bloom-filter signature*:

- bit vector S[1..s] of fixed length s, initially all bits zero
- if peer j has term i it sets bit h(i) to one using a hash function h
- other peers can test if peer j holds term set {q1, ..., qk} by looking up S[h(q1)], ..., S[h(qk)] or by computing a bit vector Q[1..s] for {q1, ..., qk} and ANDing S with Q, both with the risk of *,,false positives*"

Summaries are sent to other peers by asynchronous *gossiping* in a combined push/pull mode: • *push*: periodically send updates of global registry (small Δs)

- as "rumors" to randomly chosen neighbors; stop doing so when n consecutive peers already know the update
- (anti-entropy) *pull*: periodically ask randomly chosen neighbor to send an updated summary of the global registry;
- alternatively ask push-sender for recent rumors
 Winter Seneuter 2003/2004 Selected Topics in Web IR and Mining

Query Routing based on Similarity Measures

For query q select peers p with highest value of sim(q, p), e.g., cosine(q, p) where p is represented by its centroid

Use statistical language model for similarity:

 $KL(q \parallel p) = \sum_{t \in q} P[t \mid q] \log \frac{P[t \mid q]}{\lambda P[t \mid C_p] + (1 - \lambda)P[t \mid G]}$

where P[t|q], P[t|Cp], P[t|G] are the (estimated) probabilities that term t is generated by the language models for the query q, the corpus C_p of peer p, and the general vocabulary, and λ is a smoothing parameter between 0 and 1

The Kullback-Leibler divergence (aka. relative entropy) is a measure for the distance between two probability distributions: $KL(f \| g) \coloneqq \sum_{x} f(x) \log \frac{f(x)}{g(x)}$

Query Routing based on Goodness (GlOSS)

 $\begin{array}{l} Goodness \ (q, s, l) = \sum \left\{ sim(q, d) \mid d \in result(q, s) \land lsim(q, d) {>} l \right\} \\ for \ query \ q, \ source \ s, \ and \ score \ threshold \ l \end{array}$

GlOSS (Glossary Of Servers Server) aims to rank sources by goodness

Approximate goodness by using for source s:

• df_i(s): number of docs in s that contain term i

• $\mathbf{w}_{i}(s)$: $\sum \{tf_{i}(d)*idf_{i} \mid d \in s\}$ (total weight of term i in s)

High-correlation assumption: $df_i(s) \le df_i(s) \Rightarrow$ every doc in s that contains i also contains j

Uniformity assumption: w_i(s) is distributed uniformly over all docs in s that contain i

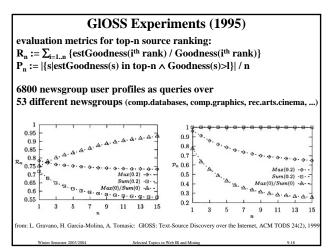
Goodness with High-correlation Assumption

For fixed source s and query $q = t_1 \dots t_n$ with $df_i \le df_{i+1}$ for i=1..n-1 consider subqueries $q_p = t_p \dots t_n$ (p=1..n). Every doc d in s that contains $t_p \dots t_n$ has query similarity

$$sim_p(q,d) = \sum_{j=p..n} t_j \frac{w_i(s)}{dt_i(s)}$$

Find smallest p such that $sim_p(q,d) > l$ and $sim_{p+1}(q,d) \le l$

 $EstGoodness(q,s,l) = \sum_{j=1..p} (df_j(s) - df_{j-1}(s)) * sim_j$


Goodness with Disjointness Assumption

Disjointness assumption: $\{d \in s | d \text{ contains term } i\} \cap \{d \in s | d \text{ contains term } j\} = \emptyset$ for all $i, j \in q$

Uniformity assumption:

w_i(s) is distributed uniformly over all docs in s that contain i

 $sim(q,d) = \sum_{j=1..n} t_j \frac{w_i(s)}{df_i(s)}$ EstGoodness(q,s,l) = $\sum_{j=1..n \land sim > l} df_i(s) \cdot t_j \frac{w_i(s)}{df_i(s)}$ = $\sum_{j=1..n \land sim > l} t_j w_i(s)$

Usefulness Estimation Based on MaxSim

<u>Def.:</u> A set S of sources is *optimally ranked* for query q in the order s1, s2, ..., sm if for every n>0 there exists k, 0<k≤m, such that s1, ..., sk contain the n best matches to q and each of s1, ..., sk contains at least one of these n matches

<u>Thm.:</u> Let MaxSim(q,s) = max{sim(q,d)|q∈s}. s1, ..., sm are optimally ranked for query q if and only if MaxSim(q,s1) > MaxSim(q,s2) > ... > MaxSim(q,sm).

 $\begin{array}{l} \label{eq:product} Practical approach (,,Fast-Similarity method"):\\ Capture, for each s, dfi(s), avgw_i(s), maxw_i(s) as source summary.\\ Estimate for query q = t1 ... tk\\ MaxSim(q,s) := max _{i=1.k} \{t_i * maxw_i(s) + \sum_{\textbf{v} \neq i} t_{\textbf{v}} * avgw_{\textbf{v}}(s)\} \end{array}$

estimation time linear in query size, space for statistical summaries linear in #sources * #terms

9.3 Distributed Query Execution Issues

Algorithm:

- · Determine the number of results to be retrieved from each source
- a priori based on the source's content quality vs.
- Run distributed version of Fagin's TA

Dynamic adaptation:

- Plan query execution only once before initiating it vs.
- Dynamic plan adjustment based on sources' result quality and responsiveness (incl. failures)

Parallelism:

- Start querying all selected sources in parallel vs.
- Consider (initial) results from one source
- when querying the next sources

9.4 Result Reconciliation

- Case 1: all peers use the same scoring function, e.g. cosine similarities based on tf*idf weights
- Case 2: peers may use different scoring functions that are publicly known
- Case 3: peers may use different & unknown scoring functions but provide scored results
- Case 4: peers provide only result rankings, no scores

Techniques for Result Reconciliation (1) for case 1: local sim is $lsim(\vec{q}, \vec{d}) = \sum_{i} \frac{q_{i} \cdot tf_{i}(\vec{d}) \cdot lidf_{i}}{\sqrt{\sum_{i} q_{i}^{2}} \cdot \sqrt{\sum_{i} tf_{i}(\vec{d})^{2} \cdot lidf_{i}^{2}}}$ global sim is $sim(\vec{q}, \vec{d}) = \sum_{i} \frac{q_{i} \cdot tf_{i}(\vec{d}) \cdot gidf_{i}}{\sqrt{\sum_{i} q_{i}^{2}} \cdot \sqrt{\sum_{i} tf_{i}(\vec{d})^{2} \cdot gidf_{i}^{2}}}$ submit additional single-term queries (one for each query term) such that each result d to the original query q is retrieved: $lsim(q_{i}, \vec{d}) = \frac{q_{i} \cdot tf_{i}(\vec{d}) \cdot lidf_{i}}{q_{i} \cdot \sqrt{\sum_{j} tf_{j}(\vec{d})^{2} \cdot lidf_{j}^{2}}} = \frac{tf_{i}(\vec{d}) \cdot lidf_{i}}{\sqrt{\sum_{j} tf_{j}(\vec{d})^{2} \cdot lidf_{j}^{2}}}$ $\Rightarrow \frac{lidf_{i}}{\sqrt{\sum_{j} tf_{j}(\vec{d})^{2} \cdot lidf_{j}^{2}}} = \frac{lsim(q_{i}, \vec{d})}{tf_{i}(\vec{d})}$

Techniques for Result Reconciliation (2) for case 4:

set global score of doc j retrieved from source i to

 $g(d_j) := 1 - (\eta_{ocal}(d_j) - 1) \cdot \frac{r_{\min}}{m \cdot r_i}$ where

- r_{local}(dj) is the local rank of d_i,
- r_i is the score of source i among the queried sources,
- r_{min} is the lowest such score, and
- m is the number of desired global results

Intuition:

- initially local ranks are linearly mapped to scores • the factor $r_{min} / (m r_i)$ is the score difference for
- consecutive ranks from source i

Literature (1)

- Communications of the ACM, Vol 46, No. 2, Special Section on Peer-to-Peer Computing, February 2003. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, Hari Balakrishnan: Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications, To Appear in IEEE/ACM Transactions on Networking. F.M. Cuenca-Acuna, C. Peery, R.P. Martin, T.D. Nguyen: PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Communities, IEEE Symp. on High Performance Distributed Computing, 2003 Jie Lu, Jamie Callan: Content-Based Retrieval in Hybrid Peer-to-Peer Networks, CIKM Conference, 2003.
- Edith Cohen, Amos Fiat, Haim Kaplan; Associative Search in Peer to Peer Networks: Harnessing Latent Semantics, INFOCOM, 2003
- Mayank Bawa, Roberto J. Bayardo Jr., Sridhar Rajagopalan, Eugene Shekita: Make it Fresh, Make it Quick Searching a Networks of Personal Webservers, WWW Conference, 2003.

Literature (2)

- Arturo Crespo, Hector Garcia-Molina: Routing Indices for Peer-to-Peer Systems, ICDCS Conf. 2002
 Luis Gravano, Hector Garcia-Molina, Anthony Tomasic: GIOSS: Text-Source Discovery over the Internet, ACM TODS Vol.24 No.2, 1999
 Weiyi Meng, Clement Yu, King-Lup Liu: Building Efficient and
- Effective Metasearch Engines, ACM Computing Surveys Vol.34 No.1, 2002
- Clement Yu, King-Lup Liu, Weiyi Meng, Zonghuan Wu, Naphtali Rishe: A Methodology to Retrieve Text Documents from Multiple Databases, IEEE TKDE Vol.14 No.6, 2002
- Norbert Fuhr: A Decision-Theoretic Approach to Database Selection in Networked IR, ACM TOIS Vol.27 No.3, 1999
- Henrik Nottelmann, Norbert Fuhr: Evaluating Different Methods of Estimating Retrieval Quality for Resource Selection, SIGIR 2003