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Background

 Social annotation: 
 Users add to their personal collection a number of resources 

(e.g pics, videos, URLs) and assign a sequence of keywords 
to each resource, in order to facilitate searching and 
navigation.
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Background

 Characteristics of Social annotation: 
 Publicly available
 Concise and accurate summary of resource content
 Representative of non-textual resource

 E.g. videos, pictures, music and etc.
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 Social annotation: 
 Users add to their personal collection a number of resources 

(e.g pics, videos, URLs) and assign a sequence of keywords 
to each resource, in order to facilitate searching and 
navigation.
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Resource retrieval based on SA

 New searching paradigm
 Compute the similarity of a query to a tag assignment  of each 

resource in collection
 Retrieve top-1 resource from the descending ranked list
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Resource retrieval based on SA
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Alice

Descending list

Query
Server

Ranking The Twilight Saga

The Twilight

New Moon
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Query: The Twilight Saga: New Moon

 New searching paradigm
 Compute the similarity of query to tags for a resource 

collections
 Retrieval top-1 resource from the descending ranked list
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Resource retrieval based on SA
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 Given:
 A keyword query: Q={t1,t2,…,tn}
 Collection of tagged resources: R={R1,R2,…,Rn}

 Question? 
 how to rank R ?

 Solution:
 Compute probability: p(R is relevant|Q)
 Ranking items in descending order



Cheng Li @ Social Network Seminar (Dec 9, 2009)

Outline

 Introduction to Social annotation
 Motivation
 Ranking annotated data using Interpolated N-

Grams (RadING)
 Parameter Optimization 
 Search method
 Evaluation result
 Conclusion

10



Cheng Li @ Social Network Seminar (Dec 9, 2009)

Principled Ranking of annotated resources
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 Applying Bayes‘ rule:

 p(R is relevant) is constant since it is indenpdent of query 
being posted

 p(Q) is constant for all resources

(  is relevant|Q)  p(Q|R is relevant)p R ∝

(Q|R is relevant) (R is relevant)(  is relevant|Q) = 
( )

p pp R
p Q
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Properties of Social annotation
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 Observation:
 Distribution of tags converges to a heavy tailed distribution

 Different users have a limited number of perspectives

 The tag sequence in assignments are not orderless
 Tags exhibiting strong tag co-occurrence patterns

 i.e “mozilla browser“ identifies “firefox“

p(Q|R is relevant) = p(Q is used to tag R)

The probability of a query 
containing the same 
keywords with R

The probability of a query 
being used to tag the 
resource R
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Probabilistic foundations

 Chain rule of probability
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 Limitations of chain rule
 Storage and computation overhead can not be addressed 

when the length of tag sequence increases.

1 1 2 1 1 1( ,..., ) ( ) ( | ) ( | ,..., )l l lp t t p t p t t p t t t −= 

1 1
1

( | ,..., )
l

k k
k

p t t t −
=

=∏
 The probability of a tag tk appearing in the sequence depends 

on all of the preceding tags.
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Probabilistic foundations
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 1- gram(unigram)

1 1( | ,..., ) ( )k k kp t t t p t− =

1 1 1( | ,..., ) ( | )k k k kp t t t p t t− −=

1 1 1 1( | ,..., ) ( | ,..., )k k k k n kp t t t p t t t− − + −=
 N-gram Models

Question: How to estimate 2-gram probability                     ?               1( | )k kp t t −

 2-gram(bigram)

 The probability of a tag tk appearing in the sequence depends 
on the preceding subsequence with only the last n-1 tags.
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Estimation approach
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The number of occurrences of the bigram in the history data

1 2
2 1

1

( , )( | )
( , )

t

c t tp t t
c t t

=
∑

1 2( , )c t t
1( , )

t
c t t∑

 bigram with MLE:
 The probability of a bigram t1, t2 (t2 follows t1):

The sum of the occurrences of all different bigrams involving 
t1 as the first tag

 Maximum Likelihood Estimation
 a popular statistical method used for providing estimates for 

the model's parameters.
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Example of Estimation
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 Assignments:

1 2 3t t t 3 1 2t t t 2 3t t
 Bigram:

1 2t t 2 3t t 3 1t t

1-gram P(ti)
t1 3/4
t2 3/4
t3 3/4
t4 1/4

2 1( | )p t t1 2( , )c t t 1( , )
t

c t t∑
2/332

Bigram

1 2t t

1 4t t

1 4t t
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Interpolation

 Limitation of bigram model with MLE
 Trainning data is limited
 If t1 and t2 fail to appear in adjacent positions

 Then p(t1,t2)=0
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 Example

Query(Q):

Saarbrucken(t1) 
snow(t2)

Resource(R):

Saarbrucken

heavy snow

C(t1,t2) = 0

P(t2|t1)=0

Contradiction: R is not relevant to Q!

Question: How to compensate for this limitation?

+
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Compensation by JM linear interpolation

 Jelinek-Mercer linear interpolation
 Smooth technique 
 Assign a non-zero value
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2 1( | )p t t =

2ˆ ( )p t The probability of t2 appearing in the training data

2λ + 1λ2 1ˆ ( | )p t t 2ˆ ( )p t

0 >00
>0

1 2 1λ λ+ =

Question: if                         ?2ˆ ( ) 0p t =
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Compensation by JM linear interpolation

 Jelinek-Mercer linear interpolation
 Smooth technique 
 Assign a non-zero value
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2 1( | )p t t =

2( )bgp t The background probability of t2 appearing in random text

1 2 1 20 , 1, 1λ λ λ λ≤ ≤ + ≤

2λ + 1λ + 1 2(1 )λ λ− − 2( )bgp t2 1ˆ ( | )p t t 2ˆ ( )p t

1 1
1

( ,..., ) ( | )
l

l k k
k

p t t p t t −
=

=∏
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Parameter optimization
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 Data set:
 M assignments: a1,…,ai,…,am

 Each assignment has k(i) tags: ti1,…,tik(i) 

 All assignments comprised of l bigrams

 Likelihood function

1 2 1 20 , 1, 1λ λ λ λ≤ ≤ + ≤

1 2 2 2 1 1 0
1

( , ) log( )
l

i i i
i

L p p pλ λ λ λ
=

= + +∑

2 1( | )i ip t t
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Maximize likelihood function
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 Denote 

* * *
1 2( , )λ λ λ= Global maximum of L(λ1 ,λ2)

Maximize L(λ1 ,λ2)

1 2 1 20 , 1, 1λ λ λ λ≤ ≤ + ≤

1 2 2 2 1 1 0
1

( , ) log( )
l

i i i
i

L p p pλ λ λ λ
=

= + +∑

 Likelihood function needs to be maximized:

*
1 2 1 2: 0 , 1, 1D λ λ λ λ≤ ≤ + ≤ Constrained domain

Find λ*(λ1
* ,λ2

*)
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Maximize likelihood function
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 Questions
 Unbounded:λ* does not exist

 Bounded:λ* exists but outside D*

1
1 2lim ( , )L

λ
λ λ

→∞
= ∞

2
1 2lim ( , )L

λ
λ λ

→∞
= ∞

* *Dλ ∉

*
1 2 1 2: 0 , 1, 1D λ λ λ λ≤ ≤ + ≤



Cheng Li @ Social Network Seminar (Dec 9, 2009)

Maximize likelihood function
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 Observation
 L(λ1 ,λ2) is a concave function.

1 2( , )c c cλ λ λ= Local maximum in *D

 Property of concave function
 If f is concave, any point that is a local maximum is also a 

global maximum.

Maximize L(λ1 ,λ2) Find λ*(λ1
* ,λ2

*)

Locate λc(λ1
c ,λ2

c) in D*
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EM algorithm
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 Expectation-Maximization
 A good choice for optimizing the likelihood function and 

setting parameters
 Iterative computation to increase the value of likelihood 

function in constrained domain D*
 Finally, converges to a local maximum in D*

 However
 Hundreds of millions of resources
 Large number of assignments
 Its convergence is very slow.
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Optimization framework
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How to locate the local maximum?

Unconstrained Optimization Methods for Constrained Optimization

Solution
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Bounded likelihood function
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 λ* = λc

 Two dimensional numerical 
optimization algorithm(2D)

 Search inside D*

 One dimensional numerical 
optimization algorithm

 Search along the boundary

λ* lies inside D*

λ* lies outside D*
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Bounded likelihood function (2)
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 Two dimensional numerical 
optimization algorithm(2D)

 Search inside D*

 λ* <> λc

 One dimensional numerical 
optimization algorithm(1D)

 Search along the boundary

λ* lies inside D*

λ* lies outside D*
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Unbounded likelihood function
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1 2 2 2 1 1 0
1

( , ) log( )
l

i i i
i

L p p pλ λ λ λ
=

= + +∑

 One dimensional numerical optimization 
 If any pi2 <0,pi1 >0 (λ2 , λ1 )=(0,1)
 If any pi2 >0,pi1 <0 (λ2 , λ1 )=(1,0)
 If any pi2 >0,pi1 >0 λ2 +λ1 =1
 ………



Cheng Li @ Social Network Seminar (Dec 9, 2009)

RadING optimization framework
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 Protocol 
 1. If L(λ1,λ2) is unbounded, use 1D 

optimization to locate λc along the boundary 
of D*

 2. If bounded, apply a 2D algorithm to 
identify the global maximum inside D*

 3. If λ* not inside D* , search λc along the 
boundary of D*

 Incremental Maintenance
 Update when new assignments exceeds a threshold
 It is the same procedure as optimization
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Searching(1)
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 Resources: {R1,R2,R3,R4}
 Tags:{<s>,t1,t2}
 S: a start assignment
 Query: Q=t1,t2

 Bigrams:
 (t1|<s>), (t2|<s>), (t1|t2), (t2|t1)
 The probability of a query t1, t2 used to tag R:

1 2 1 2 1( ) ( , | ) ( | ) ( | )p Q p t t s p t s p t t= < > = < >
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Searching(2)
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Social 

annotation
Bigram Ranking by 

RadING
Compute top-k 

relevant 
resources list 
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Experimental Evaluation(1)
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 Data set from del.icio.us

 Efficiency
 Consider the training time 
 EM algorithm vs RadING

 Effectiveness Ranking quality
 Interpolated grams vs plain gram
 RadING vs Tf/idf Ranking

User Resource (URL) Assignment

567,539 24,245,248 70,658,851
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Optimization efficiency

36

 EM algorithm
 A standard 

method for 
optimizing and 
setting 
parameters

 An alternative of 
RadING
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Experimental Evaluation(2)
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 Data set from del.icio.us

 Efficiency
 Consider the training time 
 Comparison between EM algorithm and RadING

 Effectiveness Ranking quality
 Interpolated grams vs non-interpolated (plain) gram
 RadING vs Tf/idf Ranking

User Resource (URL) Assignment

567,539 24,245,248 70,658,851
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Ranking Effectiveness(1)
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 Precision@10 performance
 How many items of the top-10 retrieved results are 

relevant?

 I2g: interpolated bigram
 I3g: interpolated trigram

 2g: non-interpolated bigram
 3g: non-interpolated trigram

Better results
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Ranking Effectiveness(2)
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 Tf/Idf and Tf/Idf+: widely used ranking methods

Better results
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Summary 

 Ranking annotated data using Interpolated N-
Grams
 RadING
 A search and resource ranking methodology

 Optimization Framework
 Parameters setting
 Incremental maintenance

 Evaluation results
 Efficiency
 Effectiveness
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Weakness
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 Scalability
 RadING works well in bigram and trigram
 Bad performance for high order n-gram

 Accuracy of Linear Interpolation
 Result may get worse by Interpolation
 It may not reflect the reality 

 User perspective diversity
 RadING finds the similar term to the query but fails to 

get relevant terms with different assignments

 Potential threat
 Malicious annotation have a good opportunity to harm 

the search quality
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Questions?
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Parameter optimization
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 Held-out data:
 m assignments: a1,…,ai,…,am
 Each assignment has k(i) tags: ti1,…,tik(i)

 Log likelihood of an assignment:

 Log likelihood function of all assignments:

( ) ( )

( 1) ( 1)
11

log ( ) log ( | ) log ( | )
k i k i

i ij i j ij i j
jj

p a p t t p t t− −
==

= =∑∏

( )

( 1)
1 1 11

log ( ) log ( ) log ( | )
k im m m

i i ij i j
i i ji

p a p a p t t −
= = ==

= =∑ ∑∑∏

Assignments are generated independently by different users.
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Parameter optimization
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2 1
11

log ( ) log ( | )
m l

i i i
ii

p a p t t
==

=∑∏

 Ease annotation using bigram model
 Assignments are comprised by l bigrams ti1, ti2

2 1 2 2 1 1 0( | )i i i i ip t t p p pλ λ= + +

2 2 1 2ˆ ( | ) ( )i i i bg ip p t t p t= −

1 2 2ˆ ( ) ( )i i bg ip p t p t= −

0 2( )i bg ip p t=
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RadING optimization framework
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Related work on SA 

 PageRanking algorithm
 Not scalable

 Machine learning approach
 Limited to web pages
 Scalability and updates?

 Ranking in neighborhoods
 Analysis and modeling SA

 The distribution of tags converges rapidly
 Co-occurrence patterns

47
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