

Improved Search for Socially Annotated Data

VLDB 2008

Nikos Sarkas, Gautam Das, Nick Koudas

Talk by Cheng Li

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Background

Social annotation:

 Users add to their personal collection a number of resources (e.g pics, videos, URLs) and assign a sequence of keywords to each resource, in order to facilitate searching and navigation.

The Twilight Saga: New Moon

annotated

Background

Social annotation:

 Users add to their personal collection a number of resources (e.g pics, videos, URLs) and assign a sequence of keywords to each resource, in order to facilitate searching and navigation.

Characteristics of Social annotation:

- Publicly available
- Concise and accurate summary of resource content
- Representative of non-textual resource
 - E.g. videos, pictures, music and etc.

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Resource retrieval based on SA

- New searching paradigm
 - Compute the similarity of a query to a tag assignment of each resource in collection
 - Retrieve top-1 resource from the descending ranked list

Query: The Twilight Saga: New Moon

annotated resources collection

Resource retrieval based on SA

- New searching paradigm
 - Compute the similarity of query to tags for a resource collections
 - Retrieval top-1 resource from the descending ranked list

Query: The Twilight Saga: New Moon

Descending list

Resource retrieval based on SA

Given:

- A keyword query: Q={t1,t2,...,tn}
- Collection of tagged resources: R={R1,R2,...,Rn}

• Ouestion?

how to rank R?

Solution:

- Compute probability: p(R is relevant | Q)
- Ranking items in descending order

- Introduction to Social annotation
- Motivation
- Ranking annotated data using Interpolated N-Grams (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Principled Ranking of annotated resources

Applying Bayes' rule:

$$p(R \text{ is relevant}|Q) = \frac{p(Q|R \text{ is relevant})p(R \text{ is relevant})}{p(Q)}$$

- p(R is relevant) is constant since it is indenpdent of query being posted
- p(Q) is constant for all resources

 $p(R \text{ is relevant}|Q) \propto p(Q|R \text{ is relevant})$

Properties of Social annotation

Observation:

- Distribution of tags converges to a heavy tailed distribution
 - Different users have a limited number of perspectives

p(Q/R is relevant) = p(Q is used to tag R)

The probability of a query containing the same keywords with R

The probability of a query being used to tag the resource R

- The tag sequence in assignments are not orderless
- Tags exhibiting strong tag co-occurrence patterns
 - i.e "mozilla browser" identifies "firefox"

Probabilistic foundations

Chain rule of probability

$$p(t_1,...,t_l) = p(t_1)p(t_2 | t_1) \cdots p(t_l | t_1,...,t_{l-1})$$

$$= \prod_{k=1}^{l} p(t_k | t_1,...,t_{k-1})$$

- The probability of a tag t_k appearing in the sequence depends on all of the preceding tags.
- Limitations of chain rule
 - Storage and computation overhead can not be addressed when the length of tag sequence increases.

Probabilistic foundations

N-gram Models

$$p(t_k \mid t_1,...,t_{k-1}) = p(t_k \mid t_{k-n+1},...,t_{k-1})$$

- The probability of a tag t_k appearing in the sequence depends on the preceding subsequence with only the last n-1 tags.
- 1- gram(unigram)

$$p(t_k | t_1, ..., t_{k-1}) = p(t_k)$$

2-gram(bigram)

$$p(t_k | t_1,...,t_{k-1}) = p(t_k | t_{k-1})$$

Question: How to estimate 2-gram probability $p(t_k | t_{k-1})$?

Estimation approach

Maximum Likelihood Estimation

 a popular statistical method used for providing estimates for the model's parameters.

bigram with MLE:

The probability of a bigram t1, t2 (t2 follows t1):

$$p(t_2 \mid t_1) = \frac{c(t_1, t_2)}{\sum_{t} c(t_1, t)}$$

 $c(t_1,t_2)$ The number of occurrences of the bigram in the history data

 $\sum_{t} c(t_1, t)$ The sum of the occurrences of all different bigrams involving t1 as the first tag

Example of Estimation

Assignments:

$$t_1t_2t_3$$
 $t_3t_1t_2$ t_2t_3 t_1t_4

Bigram:

$$t_1t_2$$
 t_2t_3 t_3t_1 t_1t_4

1-gram	$P(t_i)$
t1	3/4
t2	3/4
<i>t3</i>	3/4
<i>t4</i>	1/4

Bigram	$c(t_1,t_2)$	$\sum_t c(t_1, t)$	$p(t_2 \mid t_1)$
$t_1 t_2$	2	3	2/3

Interpolation

- Limitation of bigram model with MLE
 - Trainning data is limited
 - If t1 and t2 fail to appear in adjacent positions
 - Then p(t1,t2)=0
- Example

Query(Q):

Saarbrucken(t1) snow(t2)

Resource(R):

Saarbrucken

heavy snow

C(t1,t2) = 0

Contradiction: R is not relevant to Q!

Question: How to compensate for this limitation?

Compensation by JM linear interpolation

- Jelinek-Mercer linear interpolation
 - Smooth technique
 - Assign a non-zero value

$$p(t_{2} | t_{1}) = \lambda_{2} \hat{p}(t_{2} | t_{1}) + \lambda_{1} \hat{p}(t_{2})$$

$$0 \qquad 0 \qquad >0$$

$$>0 \qquad \lambda_{1} + \lambda_{2} = 1$$

 $\hat{p}(t_2)$ The probability of t2 appearing in the training data

Question: if $\hat{p}(t_2) = 0$?

Compensation by JM linear interpolation

- Jelinek-Mercer linear interpolation
 - Smooth technique
 - Assign a non-zero value

$$p(t_2 \mid t_1) = \lambda_2 \hat{p}(t_2 \mid t_1) + \lambda_1 \hat{p}(t_2) + (1 - \lambda_1 - \lambda_2) p_{bg}(t_2)$$

$$0 \le \lambda_1, \lambda_2 \le 1, \quad \lambda_1 + \lambda_2 \le 1$$

 $p_{bg}(t_2)$ The background probability of t2 appearing in random text

$$p(t_1,...,t_l) = \prod_{k=1}^l p(t_k \mid t_{k-1})$$

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Parameter optimization

Data set:

- M assignments: a₁,...,a_i,...,a_m
- Each assignment has k(i) tags: t_{i1},...,t_{ik(i)}
- All assignments comprised of *l* bigrams

Likelihood function

$$L(\lambda_1, \lambda_2) = \sum_{i=1}^{l} \log(\lambda_2 p_{i2} + \lambda_1 p_{i1} + p_{i0})$$

$$p(t_{i2} \mid t_{i1})$$

$$0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 \le 1$$

Maximize likelihood function

Likelihood function needs to be maximized:

$$L(\lambda_1, \lambda_2) = \sum_{i=1}^{l} \log(\lambda_2 p_{i2} + \lambda_1 p_{i1} + p_{i0})$$

$$0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 \le 1$$

Denote

$$\lambda^* = (\lambda_1^*, \lambda_2^*)$$
 Global maximum of $L(\lambda_1, \lambda_2)$
$$D^*: 0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 \le 1$$
 Constrained domain

$$D^*: 0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 \le 1$$
 Constrained domain

Maximize $L(\lambda_1, \lambda_2)$

Find $\lambda^*(\lambda_1^*, \lambda_2^*)$

Maximize likelihood function

Questions

Unbounded:λ* does not exist

$$\lim_{\lambda_2\to\infty}L(\lambda_1,\lambda_2)=\infty$$

$$\lim_{\lambda_1\to\infty}L(\lambda_1,\lambda_2)=\infty$$

Bounded: λ* exists but outside D*

$$\lambda^* \notin D^*$$

$$D^*: 0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 \le 1$$

Maximize likelihood function

Observation

• $L(\lambda_1, \lambda_2)$ is a concave function.

Property of concave function

If f is concave, any point that is a local maximum is also a global maximum.

$$\lambda^c = (\lambda_1^c, \lambda_2^c)$$
 Local maximum in \boldsymbol{D}^*

Maximize
$$L(\lambda_1, \lambda_2)$$
 Find $\lambda^*(\lambda_1^*, \lambda_2^*)$ Locate $\lambda^c(\lambda_1^c, \lambda_2^c)$ in D*

EM algorithm

Expectation-Maximization

- A good choice for optimizing the likelihood function and setting parameters
- Iterative computation to increase the value of likelihood function in constrained domain D*
- Finally, converges to a local maximum in D*

However

- Hundreds of millions of resources
- Large number of assignments
- Its convergence is very slow.

Optimization framework

How to locate the local maximum?

Solution

Unconstrained Optimization Methods for Constrained Optimization

Bounded likelihood function

λ* lies inside D*

- $\lambda^* = \lambda^c$
- Two dimensional numerical optimization algorithm(2D)
- Search inside D*

λ* lies outside D*

- One dimensional numerical optimization algorithm
- Search along the boundary

Bounded likelihood function (2)

λ* lies inside D*

- Two dimensional numerical optimization algorithm(2D)
- Search inside D*

λ* lies outside D*

- $\lambda^* <> \lambda^c$
 - One dimensional numerical optimization algorithm(1D)
 - Search along the boundary

Unbounded likelihood function

$$L(\lambda_{1}, \lambda_{2}) = \sum_{i=1}^{l} \log(\lambda_{2} p_{i2} + \lambda_{1} p_{i1} + p_{i0})$$

One dimensional numerical optimization

• If any
$$p_{i2} < 0, p_{i1} > 0 (\lambda_2, \lambda_1) = (0,1)$$

• If any
$$p_{i2} > 0, p_{i1} < 0 (\lambda_2, \lambda_1) = (1,0)$$

• If any
$$p_{i2} > 0, p_{i1} > 0 \lambda_2 + \lambda_1 = 1$$

RadING optimization framework

Protocol

- 1. If L(λ₁,λ₂) is unbounded, use 1D optimization to locate λ^c along the boundary of D*
- 2. If bounded, apply a 2D algorithm to identify the global maximum inside D*
- 3. If λ^* not inside D^* , search λ^c along the boundary of D^*

Incremental Maintenance

- Update when new assignments exceeds a threshold
- It is the same procedure as optimization

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Searching(1)

- Resources: {R1,R2,R3,R4}
- Tags:{<s>,t1,t2}
- S: a start assignment
- Query: Q=t1,t2
- Bigrams:
 - (t1|<s>), (t2|<s>), (t1|t2), (t2|t1)
 - The probability of a query t1, t2 used to tag R:

$$p(Q) = p(t_1, t_2 \mid < s >) = p(t_1 \mid < s >) p(t_2 \mid t_1)$$

Searching(2)

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Experimental Evaluation(1)

Data set from del.icio.us

User	Resource (URL)	Assignment
567,539	24,245,248	70,658,851

Efficiency

- Consider the training time
- EM algorithm vs RadING
- Effectiveness Ranking quality
 - Interpolated grams vs plain gram
 - RadING vs Tf/idf Ranking

Optimization efficiency

EM algorithm

- A standard method for optimizing and setting parameters
- An alternative of RadING

Experimental Evaluation(2)

Data set from del.icio.us

User	Resource (URL)	Assignment
567,539	24,245,248	70,658,851

Efficiency

- Consider the training time
- Comparison between EM algorithm and RadING
- Effectiveness Ranking quality
 - Interpolated grams vs non-interpolated (plain) gram
 - RadING vs Tf/idf Ranking

Ranking Effectiveness(1)

Precision@10 performance

How many items of the top-10 retrieved Better results

Query	I2g	I3g	19	3g
birthday gift ideas	7.4	7.4	3.6 (4)	1.0(1)
college blog	7.6	_ 7.6_	6.6 (10)	7.6 (10)
trigonometric formulas	7.9	7.9	0.9(1)	0.9(1)
stock market bubble	8.4	-8.4 -	-1.0(1)	$\theta.\theta(1)$
sea pictures	6.7	6.3	2.1 (3)	0.9(1)

• *12g: interpolated bigram*

• 13g: interpolated trigram

2g: non-interpolated bigram

3g: non-interpolated trigram

Ranking Effectiveness(2)

Better results

Query	I2g (RadING)	11/ICI	Tf/Idf+
birthday gift ideas	7.4	2.8	5.8
college blog	7.6	_5.9_	_ 4.9 _
trigonometric formulas	7.9	6.3	5.2
stock market bubble	8.4	5.1	- 6.1 -

Tf/Idf and Tf/Idf+: widely used ranking methods

- Introduction to Social annotation
- Motivation
- Ranking method (RadING)
- Parameter Optimization
- Search method
- Evaluation result
- Conclusion

Summary

- Ranking annotated data using Interpolated N-Grams
 - RadING
 - A search and resource ranking methodology
- Optimization Framework
 - Parameters setting
 - Incremental maintenance
- Evaluation results
 - Efficiency
 - Effectiveness

Weakness

- Scalability
 - RadING works well in bigram and trigram
 - Bad performance for high order n-gram
- Accuracy of Linear Interpolation
 - Result may get worse by Interpolation
 - It may not reflect the reality
- User perspective diversity
 - RadING finds the similar term to the query but fails to get relevant terms with different assignments
- Potential threat
 - Malicious annotation have a good opportunity to harm the search quality

Questions?

Parameter optimization

- Held-out data:
 - m assignments: a1,...,ai,...,am
 - Each assignment has k(i) tags: t_{i1},...,t_{ik(i)}
- Log likelihood of an assignment:

$$\log p(a_i) = \log \prod_{j=1}^{k(i)} p(t_{ij} \mid t_{i(j-1)}) = \sum_{j=1}^{k(i)} \log p(t_{ij} \mid t_{i(j-1)})$$

Log likelihood function of all assignments:

$$\log \prod_{i=1}^{m} p(a_i) = \sum_{i=1}^{m} \log p(a_i) = \sum_{i=1}^{m} \sum_{j=1}^{k(i)} \log p(t_{ij} \mid t_{i(j-1)})$$

Assignments are generated independently by different users.

Parameter optimization

- Ease annotation using bigram model
 - Assignments are comprised by l bigrams t_{i1}, t_{i2}

$$\log \prod_{i=1}^{m} p(a_i) = \sum_{i=1}^{l} \log p(t_{i2} \mid t_{i1})$$

$$p_{i2} = \hat{p}(t_{i2} | t_{i1}) - p_{bg}(t_{i2})$$

$$p_{i1} = \hat{p}(t_{i2}) - p_{bg}(t_{i2})$$

$$p(t_{i2} | t_{i1}) = \lambda_2 p_{i2} + \lambda_1 p_{i1} + p_{i0}$$

$$p_{i0} = p_{bg}(t_{i2})$$

RadING optimization framework

Related work on SA

- PageRanking algorithm
 - Not scalable
- Machine learning approach
 - Limited to web pages
 - Scalability and updates?
- Ranking in neighborhoods
- Analysis and modeling SA
 - The distribution of tags converges rapidly
 - Co-occurrence patterns