A Self-Organized, Fault-Tolerant

and Scalable Replication Scheme for
Cloud Storage

Author: Nicolas Bonvin, Thanasis G. Papaioannou and
Karl Aberer

Presenter: Haiyang Xu
4,Jan, 2011 - Cloud Computing Seminar



Agenda

Agenda

© N o U A~ W D

Introduction

Skute

Problem Definition

Individual Optimization
Equilibrium Analysis

Rational Strategies

Test Results

Conclusion and Future Work



Introduction

» Background

> Cloud storage is becoming a popular business
paradigm

Amazon S3 i
ElephantDrive . ociie
Gigaspaces O cica

> Small companies rent distributed storage and
pay per use



: Introduction

 Data availability can be affected in many
ways
> Hardware failures
> Geographic proximity
> Natural disasters
° Highly irregular query rates
> An application may become temporarily
unavailable®

* http://en.wikipedia.org/wiki/Slashdot_effect



: Introduction

e Therefore

° the support of service level agreements
(SLAs) with data availability guarantees in
cloud storage is very important

° In reality, different applications may have
different availability requirements

> Fault-tolerance is commonly dealt with by
replication



: Introduction

 Distributed key-value store
> Widely employed
aMaZon.CoOM. Linked[f]).
> Widely researched (by research communities)
Peer-to-peer

Scalable distributed data structures

Databases



: Introduction

* In this paper; the authors propose a
scattered key-value store (Skute),

o Skutes provides high and differentiated data
availability statistical guarantees to multiple
applications in a cost-efficient way in terms of
rent price and query response times



: Introduction

» Skute combines the following innovative
characteristics:
> Computational
o Differentiated availability statistical guarantees
o Distributed economic model

o Efficiently and fairly utilizing cloud resources

* A game-theoretic model is employed



Skute: Scattered Key-Value Store

11  Skute is designed to

> provide low response time on read and write
operations

o ensure replicas’ geographical dispersion in a
cost- efficient way

o offer differentiated availability guarantees per
data item to multiple applications



11

Skute: Scattered Key-Value Store

 Skute is divided into these parts
> Physical node
° Virtual node
° Virtual ring
> Routing



Skute: Scattered Key-Value Store

11 * Physical node

> A physical node (i.e.a server) belongs to a
rack, a room, a data center, a country and a
continent.

> A label of the form “continent-country-
datacenter-room- rack-server”

o A server located in a data center in Berlin
could be “EU-DE-BEI-C12-R07-S34”



11

Skute: Scattered Key-Value Store

* Virtual node
° ring topology
> consistent hashing

° Data is identified by a key
A one-way cryptographic hash function, e.g. MD5

> The key space is split into partitions




Skute: Scattered Key-Value Store

il * Virtual node (cont’d)

> A physical node (i.e. a server) gets assigned to
multiple points in the ring, called tokens

> A virtual node (alternatively a partition) holds
data for the range of keys in (previous token,
token]

° A virtual node may replicate or migrate its
data to another server, or suicide (i.e. delete
its data replica)

° A physical node hosts a varying amount of
virtual nodes depending on the query load



Skute: Scattered Key-Value Store

11 * Virtual ring

o Skute allows multiple applications to share the
same cloud infrastructure

o Each application uses its own virtual rings,
while one ring per availability level is needed,
as depicted in Figure |




Skute: Scattered Key-Value Store

I * Virtual ring
Availability
Level .
virtual
4 Virritnugal > [

Applications

Figure |:Three applications with different availability levels.



11

Skute: Scattered Key-Value Store

* Virtual ring
> Multiple data availability levels per application
> Geographical data placement per application



11

Skute: Scattered Key-Value Store

* Routing

o Skute is intended to be used with real-time
applications

> Routing has to be efficient

o Each virtual ring has its own routing entries,
resulting in potentially large routing tables

> The number of entries in the routing table is:

apps levels;

entries = Z Z partition(i, j) (1)

{ J



11

Skute: Scattered Key-Value Store

* Routing

> A physical node is responsible to manage the
routing table of all virtual rings hosted in it, in
order to minimize the update costs.

> The routing table is periodically updated using
a gossiping protocol



Problem Definition

* The data belonging to an application is
split into M partitions, where each
partition I has r; distributed replicas.We
assume that Nservers are present in the
data cloud

11

e Minimize -
Maximize data . Maximize
communica

availability b ol net benefit



Problem Definition

e Maximize data availability

> Placing replicas of a partition in a set of

111 ,
different servers

> Data availability generally increases with the
geographical diversity of the selected servers.
> The worst solution

Put all replicas at a server with equal or worse
probability of failure than others



Problem Definition

e Maximize data availability

UI ° Probability a partition i to be unavailable:

P.(i unavailable) = P, (F1 NF,N--N F|s-“ )

k
= 1_[ P.(F;)- P (Fk|Fk+1 N F|Sia|>
j=1

By (Fias
if Feyg N Fgyqy N F

(2)

)

Firp NN F|sid|) cw P, (F|S-d

L
|Sid| + 0




Problem Definition

e Minimize communication cost

> Save bandwidth during migration and

111 .
replication

> Reduce latency



Problem Definition

e Minimize communication cost

- o L% MXxN location matrix of application d

° L; = 0 if application 7 has a replica on server j



Problem Definition

e Minimize communication cost

. > Network cost ¢, can be given by:

—. — — T
cn (L) = sum(L? - NC - LY ) 3)

> NCis a strictly upper triangular NxN whose
element NC; is the communication cost
between servers jand k

o sum denotes the sum of matrix elements



Problem Definition

e Minimize communication cost

11

en (L7)

= sum [L‘ii1

d .
Lin

0

0

> Network cost (more clearly)

NCl,N—l NCl,N -

0 NCy-1n

0




Problem Definition

e Maximize net benefit

. > The data owner wants to

Maintaining a

Minimize his certain
expenses by minimum data
replacmg ) availability
expensive promised by

servers with SLAs to his

cheaper ones clients



Problem Definition

e Maximize net benefit

o Qverall, he seeks to maximize his net benefit
and the global optimization problem can be
formulated as follows:

11

max {u(popi, G)— EET + ¢, (E)} ,Vi,vd
s.t. (4)

d d d
1-P, (Fl’““ NE"n - FIL‘”) > thy



IV

Individual

Optimization

» Keep data availability above a certain
minimum level required by the application

* Minimizing the associated costs

e Time is sp
e The virtua

it into epochs
rent of each server is

announced

at a board and is updated at

the beginning of a new epoch.



IV

Individual Optimization

* A virtual node may replicate or migrate
its data to another server, or suicide at
each epoch and pay a virtual rent

* NO global coordination and each virtual
node behaves independently

(M

S



Individual Optimization

e Board

> At each epoch, the virtual nodes need to
know the virtual rent price of the servers

1% > One server in the network is elected to store
the current virtual rent per epoch of each
server

i) it assumes trustworthiness of the elected server

ii) the elected server may become a bottleneck.



IV

Individual Optimization

e Board
> Another approach

Each server maintains its own local board

Periodically updates the virtual prices of a ran- dom
subset (log(N)) of servers by contacting them
directly

Does not have the aforementioned problems
Decision may be based on outdated information

Verified with low communication overhead



I

Individual Optimization

e Board

> Confidence value
Stored at board(s) after new server added

Based on servers’ offered availability and
performance



I

Individual Optimization

e Physical node

o The virtual rent price c of a physical node for the
next epoch can be given by:

C=up- (Storageusage + queryload)» (5)

up is the marginal usage price of the server

The query load and the storage usage at the current epoch

are considered to be good approximations of the ones at the
next epoch

an expensive server tends to be also expensive in the virtual
economy



I

Individual Optimization

* Maintaining availability
1Sil 1Sl

avail; = Z Z conf; - conf; - diversity(s;, s;) (6)

i=0 j=i+1

> Where S,=(s,,...,5,) is the set of servers
hosting replicas of the virtual node i and
cont, cont;are the confidence levels of
servers I, J. The diversity function returns a
number calculated based on the geographical
distance among each server pairs



Individual Optimization

e Maintaining availability
> Distance representation

Cont Coun Data Room Rack serv

1 | | | 0 0 0

If the location parts are equivalent, the
corresponding bit is set to |, otherwise 0
Diversity value (binary “NOT”):

111000 = 000111 = 7(decimal)
* Diversity values of server pairs are sum up

* More replicas in distinct servers located in the same

location =¥ increased availability



IV

Individual Optimization

* Maintaining availability
> When the availability of a virtual node falls
below th, it replicates its data to a new server

o Specifically, a virtual node i with current
replica locations in ST maximizes:

max; ZLSSI gj - conf; - diversity(sy,s;) —¢;  (7)

¢;: virtual rent price of candidate of server |

g a weight related to the proximity of the server
location to the geographical distribution of query
clients for the partition of a virtual node



I

Individual Optimization

e Maintaining availability
g; is given by:

_ 219:
1+ 2,q, - diversity(l,s;)

gj (8)

Where g, is the number of queries for the partition
of the virtual node per client location 1.



I

Individual Optimization

e Virtual node decision tree

o balance (i.e. net benefit) b for a virtual node is
defined as follows:

b =u(pop, g) —c, %)

o balance b’for consecutive fepochs:
b' =u(pop,g) —c,—1.2-¢

where ¢, is a term representing the consistency (i.e.
network) cost

c’is the current virtual rent of the candidate server for
replication



I

Individual Optimization

e Virtual node decision tree

> Average bandwidth consumption

Win * q * g
bdw, = +

> Respective bandwidth per replica
Win x q * g
1S; |

> Where q is the average number of queries for
the last win epochs, g. is the average size of the
replies, |5} is the number of servers currently
hosting replicas of partition i and p, is the size of
the partition.

bdw =



I

Individual Optimization

= New epoch

Yes/lammy-ﬂh\ No

\‘Va'/

Yes

Replicate -~

without me:
availability > th

migration
conditions ?

Yes

h 4

Suicide Migrate to cheaper server

| |
h J

- Reset popularity [
]

40



Equilibrium Analysis

* Single round strategy payoffs at round ¢
+1 are given by:

[ t)

Migrate: EViyy = “iy — fi — fy-r)" —CITY
Replicate:

lf) (t) ) ) o , _ . .
BVr = "o — fi = fa(ri” +1) = 5 (0 + 08FY)

Suicide: EVp = ()
. (r> | |
Stay EV. g = ( (Ii ,“ Cvél+l)

l

C. (e=1), :price at round t + 1 of the cheapest server at round t
C. (e=1), :price at round t + 1 of the current hosting server at round t




Equilibrium Analysis

* If we assume probability of
> Migrate: x; Replicate: y; Suicide: z Stay: 1 - x -
y-z
o then we calculate c**, c/*** as follows:
CM =0 N+ (@ +y) T ] (11)
Cittl) = ('f‘“[l (z + z + ¢y)] (12)

0 <@ « 1::Recall that the total number of queries
for a partition is divided by the total number of
replicas of that partition and thus replication also
reduces the rent price of the current server.



Equilibrium Analysis

* The expected payoffs of these strategies
should be equal at equilibrium, as the
virtual node should be indifferent

between them:
EVy = EVs &

— — fr' - fvl r— (’((1 +z N,) = - fd r — C, (1 —T) &
r r

(--"'f_ (--"(' f '('
C. +C. N,

(13)



Equilibrium Analysis

* At equilibrium,

> Rent of the current server used by a virtual
node > rent of the cheapest server + cost of
migration for this virtual node

> The probability to migrate decrease with the
total number of replicas in the system

> The # of migration at equilibrium will be
almost 0



Rational Strategies

* The rational strategies that could be
employed by servers in an untrustworthy

environment
Eg. a server may overutilize its bandwidth resources by

advertising a lower virtual price

* The aforementioned rational strategies
could be tackled as:

The confidence value of a server could also reflect its
trustworthiness for reporting its utilization correctly

Application providers should divide ; by the confidence
cont,; of the server j in the maximization formula (7)



Test Results in Simulated and Real
Testbed

e Simulation Results

o Test environment

Queries per epoch

Poisson (A = 300)

Parameter Small scale Larse scale

Servers 5 200

Server storate 10 GB 10 GB

Server price 100$ 1008 (70%), 1258 (30%)
Total data 10 GB 100 GB

Averate size of an item |500 KB 500 KB

Partitions 50 10000

Poisson ( A = 3000)

Query key distribution |Pareto (1,50) Pareto (1,50)
%0 Storate soft limit 0.7 0.7

Win 20 100

Replication bandwidth |300 MB/epoch 300 MB/epoch

Mitration bandwidth 100 MB/epoch 100 MB/epoch




Vil

Virtual node

Test Results in Simulated and Real
Testbed

e Simulation Results — small scale

Amount of virtual node per server over time

50

H
o

w
o

N
o

= App A:

< App A:

}_D_D_Q_D_IJ_D_J_;J ~— App A:
o | | 7 App A:
* App A:

App B:

* App B:
ettt it d| " APPB:

f | —=— App B:

+ App B:

EU-CH-GVA-CO1-R11-81
EU-CH-ZUR-CO2-R22-S2
EU-FR-PAR-CO3-R33-S3
EU-DE-BER-CO4-R44-54
EU-IT-ROM-CO5-R55-S5

EU-CH-GVA-CO1-R11-81
EU-CH-ZUR-C0O2-R22-S2
EU-FR-PAR-CO3-R33-S3
EU-DE-BER-CO4-R44-54
EU-IT-ROM-CO5-R55-S5

108—

15

Epoch

Figure 3: Small-scale scenario: replication process at startup




Vil

Test Results in Simulated and Real
Testbed

» Simulation Results — large scale
x10" Total amount of virtual nodes over time

w 2

D

©

o

E 1.9- \/

©

2 l 1 :
s 195 ) 200 205 210 215
© X 10

8 21 vV
£

-

< 1.5}

1 L 1 L 1 L
0 50 100 150 200 250 300
Epoch

Figure 4: Large-scale scenario: robustness against upgrades and failures



Test Results in Simulated and Real
Testbed

e Adaptation to the query load

o Simulate a load peak similar to what it would
result with the “Slashdot effect”: in a short

Average amount of virtual nodes per server

W

(&)
T
|

. N
o
|

Number of virtual nodes
s
}_-_.
b
I
—_
} « |
"'l |
—
}
—
t
|
—_
},——
}
|

Vil

-
-
-
-

100 150 200 250 300 350 400 450 500
Epoch

o
($))
o

Figure 5: Large-scale scenario: total amount of virtual nodes in the system over time



Test Results in Simulated and Real

Testbed

e Adaptation to the query load

Average query load per server
200 servers (1/3: 125%, 2/3: 100$), max load = 183K requests/epoch
Virtual Ring 0 (1/3 of total load, 2 replicas)

1000 T T T T T T T T T
> M |
OC 1 i I | | | | i ]
0 50 100 150 200 250 300 350 400 450 500
1’(7,’ Virtual Ring 1 (1/3 of total load, 3 replicas)
g 1000 T T T T T T T T T
o
o
T M |
o)
'g OE | i | | | | | i 1
2 0 50 100 150 200 250 300 350 400 450 500
Virtual Ring 2 (1/3 of total load, 4 replicas)
1000 T T T T T T T T T
. I ﬁﬁm |
OC 1 ] 1 1 | ] ] I ]
0 50 100 150 200 250 300 350 400 450 500

Epoch

Figure 6: Large scale scenario: average query load per virtual
ring per server over time with queries evenly distributed



Test Results in Simulated and Real
Testbed

* Scalability of the approach

> The insert queries are distributed according to
Pareto(|, 50)

> Max. partition capacity of 256MB after which the
data of the partition is split into two new ones

=>»each virtual node is always responsible for up
to 256MB of data

> Fixed insert query rate = 2000 queries/epoch,
> Each query inserts 500KB of data

o Large-scale scenario parameters, but with 100
servers and 2 racks/room.

Vi > Initial number of partitions is M=200



Test Results in Simulated and Real

Testbed
* Scalability of the approach

Insert failures

100

oo
o
T

(o)}
o
T

N
o

Insert failures (in %)

20

. . . 1

0 20 40 60 80 100
Total cloud storage capacity used (in %)

Figure 8: Storage saturation: insert failures



Test Results in Simulated and Real

Testbed

e Scalability of the approach

> Now consider that the query rate is not
distributed according to Poisson

° |t increases with the rate of 200 queries/
epoch until reaching the total bandwidth
capacity

° |In this experiment, real rents of servers are
uniformly distributed in [I, 100]$

> Qur approach (referred as Economic)
Vil compared with other basic approaches:
Random and Greedy



Vil

Test Results in Simulated and Real

Testbed

* Scalability of the approach

Total failures (in %)

Increasing query rate until full cloud network capacity

15
101

EAN
o
T

N
o
T

o

o

€conomicC | . . .

10

20 3 40 50 60 70 80 90 100
Total cloud bandwidth used (in %)
Figure 9: Network saturation: query failures

110



11

Test Results in Simulated and Real

Testbed
e Real Testbed

o Servers are not synchronized

> No centralized component is required
> The epoch equals to 30 seconds

° Fully decentralized board

> Routing tables maintained using a gossiping
protocol for routing entries

° In case of migration, replication or suicide of a
virtual node, the hosting server broadcasts
the routing table update



11

Test Results in Simulated and Real

Testbed
e Real Testbed

o 40 Skute servers

> hosted by 8 machines
OS: Debian 5.0.3, Kernel: 2.6.26-2-amdé64
CPU: 8 core Intel Xeon CPU E5430 @ 2.66GHz
RAM: 16GB

° Sun Java 64-Bit VMs (build 1.6.0 _12-b04)

> 100 Mbps LAN



Test Results in Simulated and Real
Testbed

e Real Testbed Results

x 10* Control and Application Traffic
€ 15¢ |
©
o
8 10[ i
% replication Control
i St ——— Application -
©
: A

0 | |
1800 1900 2000 2100 2200 2300 2400 2500 2600
Time (sec)

Average Virtual Rent per Server
121 T T T

120.51 i

Virtual Rent

120 | | | | | | | |
1800 1900 2000 2100 2200 2300 2400 2500 2600

Time (sec)

Figure 10:Top: Application and control traffic in case of a load peak.
Bottom: Average virtual rent in case of a load peak.



Test Results in Simulated and Real
Testbed

e Real Testbed Results

x 10* Control and Application Traffic
8 ] W
& : — Control
()] 4 o . —
[ . . .
8 server crash -~ > Application
c“ .
D O | , | |
2600 2800 3000 3200 3400 3600
Time (sec)
Average Virtual Rent per Server
123 . g T . . .
€ <€— 40 servers: 39 servers —>
g 1221 : 7
g
£ 1211 7
>
120 ! I ! ! ! !
2600 2800 3000 3200 3400 3600

Time (sec)

Figure | |:Top: Application and control traffic in case of a server crash.
Bottom: Average virtual rent in case of a server crash.



Conclusion and Future Work

e Conclusion

o Skute - a robust, scalable and highly- available key-
value store
dynamically adapts to varying query load or disasters

determining the most cost-efficient locations of data
replicas with respect to their popularity and their client
locations
> Experimentally proved that our Skute converges
fast to equilibrium

> As predicted by a game-theoretical model no
migrations happen for steady system conditions
V111



Conclusion and Future Work

e Future Work

° Investigate the employment of Skute for more
complex data models

VI



Question




