MaxCover in MapReduce

Flavio Chierichetti, Ravi Kumar, Andrew Tomkins

Advisor

Klaus Berberich

Presented By:

Isha Khosla

Outline

- Motivation
- Introduction
- Classical Approach: Greedy
- Proposed Algorithm: M_R Greedy
- Possible extension
- Experiments
- Weaknesses
- Conclusion

Motivation (1)

Motivation (2)

Problem Setting

- Select k sets from a family of subsets of a universe.
- Union is as large as possible.

Choose a subset of S such that they cover max number of elements in X.

Outline

- Motivation
- Introduction
- Classical Approach : Greedy
- Proposed Algorithm: M_R Greedy
- Possible extension
- Experiments
- Weaknesses
- Conclusion

Formal Definition of Max k cover

Given an integer k >0, $S^* \subseteq S$ is a max k-cover if $|S^*| = k$ and the coverage of S^* is maximized over all subsets of S of size k.

α Approximation Algorithm

- Polynomial time, guaranteed to find "near optimal" solutions for every input.
- Suppose, I have a input set of 100 elements.
 - Optimal solution contains 80 elements
 - Let α =0.5
 - Approximate solution says...
 - Approx $\geq \alpha$.optimal
 - In this case, approx : more than 40 elements.

α -Approximate k- Cover

For $\alpha > 0$, a set $S' \subseteq S$, $|S'| \le k$, is an α approximate max k-cover if for any max k-cover S^* , $cov(S') \ge \alpha.cov(S^*)$.

Looking for a approximate algorithm to solve Max K cover problem

It achieves constant factor approximation to MAX K-COVER, 1-1/e ~ .63

Outline

- Motivation
- Introduction
- Classical Approach : Greedy
- Proposed Algorithm: M_R Greedy
- Possible extension
- Experiments
- Weaknesses
- Conclusion

Greedy Algorithm

- When we have a choice to make, make the one that looks best *right now*.
- Make a locally optimal choice in hope of getting a globally optimal solution.

```
Require: S<sub>1</sub>; ....., S<sub>m</sub>, and an integer k
1: while k > 0 do
2: Let S be a set of maximum cardinality
3: Output S
4: Remove S and all elements of S from other remaining sets
5: k = k - 1
```


Greedy Algorithm

Greedy Algorithm

- Sequential, it satisfies prefix optimality property.
- What is that?

Greedy algorithm can be easily extended to output a total ordering of the input sets $S_1, \ldots S_m$, with the guarantee that the prefix of length k, for each k, of this ordering will be a (1-1/e)-approximation to the corresponding Max-k-Cover.

Outline

- Motivation
- Introduction
- Classical Approach : Greedy
- Proposed Algorithm: M_R Greedy
- Possible extension
- Experiments
- Weaknesses
- Conclusion

Map-Reduce Model

- Computations are distributed across several processors.
- Split as a sequence of map and reduce jobs.
- map
 - maps an input (key,value) pair to a **list** of intermediate key-value pairs
 - map (k, v) -> list(k, v)
- reduce
 - takes as input a key and a **list** of values for that key
 - maps the input to a **list** of values
 - reduce $(k, list(v)) \rightarrow list(v)$

Example

- Transposing of an adjacency list? \bullet
- **Key-element** ullet

MRGreedy

- No k sequential choices.
- Idea is to add multiple sets to the solution in parallel.
- It also satisfies prefix optimality property same as Greedy.
- Run on MapReduce Framework
 - No need to keep datasets in main memory
 - update element set memberships. (edges)

MRGreedy Algorithm

Algorithm 2 The MRGREEDY algorithm.

Require: A ground set X, a set system $\mathcal{S} \subseteq 2^X$. 1: Let \mathcal{C} be an empty list 2: for $i = \lceil \log_{1+\epsilon^2} |X| \rceil$ downto 1 do Let $\mathcal{S}_w = \{S \mid S \in \mathcal{S} \land |S| > (1 + \epsilon^2)^{i-1}\}$ 3: 4: for $j = \lceil \log_{1+\epsilon^2} \Delta \rceil$ downto 1 do Let $X' = \{x \mid x \in X \land \deg_{\mathcal{S}_w}(x) \ge (1 + \epsilon^2)^{j-1}\}$ 5:while $X' \neq \emptyset$ do 6: if there exists $S \in \mathcal{S}_w$ such that $|S \cap X'| \ge \frac{\epsilon^6}{1+\epsilon^2}$. 7: |X'| then Append S to the end of \mathcal{C} 8: else 9: 10:Let S_n $\mathbf{b}\mathbf{v}$ inclu Don't get scared! 0 We will make it simple to 11:understand..... 12:ontainea A set $S \in S_p$ is bad in it contains bad ele-13:ments of total weight more than $4\epsilon \cdot (1+\epsilon^2)^i$ Append all the sets of S_p that are not bad 14:to the end of \mathcal{C} in any order 15:Append the bad sets of S_p to the end of C in any order Remove all the sets in C from S16:17:Remove all the elements in $\bigcup_{S \in \mathcal{C}} S$ from X and from the sets in SLet $\mathcal{S}_w = \{S \mid S \in \mathcal{S} \land |S| \ge (1 + \epsilon^2)^{i-1}\}$ Let $X' = \{x \mid x \in X \land \deg_{\mathcal{S}_w}(x) \ge (1 + \epsilon^2)^{j-1}\}$ 18:20 19:20: Return the list C

MRGreedy Algorithm

Algorithm 2 The MRGREEDY algorithm.

Require: A ground set X, a set system $\mathcal{S} \subseteq 2^X$. 1: Let \mathcal{C} be an empty list 2: for $i = \lceil \log_{1+\epsilon^2} |X| \rceil$ downto 1 do Let $\mathcal{S}_w = \{S \mid S \in \mathcal{S} \land |S| > (1 + \epsilon^2)^{i-1}\}$ 3: 4: for $j = \lceil \log_{1+\epsilon^2} \Delta \rceil$ downto 1 do Let $X' = \{x \mid x \in X \land \deg_{\mathcal{S}_w}(x) \ge (1 + \epsilon^2)^{j-1}\}$ 5:6: while $X' \neq \emptyset$ do if there exists $S \in \mathcal{S}_w$ such that $|S \cap X'| \ge \frac{\epsilon^6}{1+\epsilon^2}$. 7: |X'| then 8: Appen 9: else Key Idea: add multiple sets 10:to the solution set. Figure out what sets can be added in parallel 11:12:con- S_n tained in A set $S \in S_p$ is bad in it contains bad ele-13:ments of total weight more than $4\epsilon \cdot (1+\epsilon^2)^i$ Append all the sets of S_p that are not bad 14:to the end of \mathcal{C} in any order 15:Append the bad sets of S_p to the end of C in any order 16:Remove all the sets in C from S17:Remove all the elements in $\bigcup_{S \in \mathcal{C}} S$ from X and from the sets in SLet $\mathcal{S}_w = \{S \mid S \in \mathcal{S} \land |S| \ge (1 + \epsilon^2)^{i-1}\}$ 18:Let $X' = \{x \mid x \in X \land \deg_{\mathcal{S}_w}(x) \ge (1 + \epsilon^2)^{j-1}\}$ 19:20: Return the list C

21

Learn Algorithm in Steps (1)

- Step 1: Consider a empty list C,
 - We have a ground set X={1, 2....n}, so total number of sets possible 2^x

Require: A ground set X, a set system $S \subseteq 2^X$. 1: Let C be an empty list 2: for $i = \lceil \log_{1+\epsilon^2} |X| \rceil$ downto 1 do 3: Let $S_w = \{S \mid S \in S \land |S| \ge (1 + \epsilon^2)^{i-1}\}$

Consider i as set to some constant and select a set known as S_w which has cardinality more than some constant.

Learn Algorithm in Steps (2)

• Step 2:

Learn Algorithm in Steps (3)

Learn Algorithm in Steps (4)

	6:	while $X' \neq \emptyset$ do
• Step 4:	7:	if there exists $S \in S_w$ such that $ S \cap X' \ge \frac{\epsilon^6}{1+\epsilon^2}$.
		X' then
	8:	Append S to the end of \mathcal{C}
	9:	else
	10:	Let \mathcal{S}_p be a random subset of \mathcal{S}_w chosen by
		including each set in \mathcal{S}_w independently with
		probability $p = \frac{\epsilon}{(1+\epsilon^2)^j}$
	11:	if $\left \bigcup_{S\in\mathcal{S}_p}S\right \geq \mathcal{S}_p \cdot(1+\epsilon^2)^i\cdot(1-8\epsilon^2)$ then
	12:	We say that an element x is bad if it is con-
		tained in more than one set of \mathcal{S}_p
	13:	A set $S \in S_p$ is bad if it contains bad ele-
		ments of total weight more than $4\epsilon \cdot (1+\epsilon^2)^i$
	14:	Append all the sets of S_p that are not bad
		to the end of \mathcal{C} in any order
	15:	Append the bad sets of S_p to the end of C in
		any order

Choose random subset S_p with certain probability, and from them decide bad and non bad sets and then append them to the list.

Realization in MapReduce

- Some lines of the above algorithm can be realized in MapReduce framework.
- 3: Let $\mathcal{S}_w = \{S \mid S \in \mathcal{S} \land |S| \ge (1 + \epsilon^2)^{i-1}\}$
 - 1. Map
 - 1. ForEach e_i
 - 2. Iterate through List (S)
 - 3. Emit (S_i, e_i) where $S_i \in S$
 - 2. Reduce $(S_i, List(e))$ where e are elements
 - 1. If sizeof(List(e)) ≥ constant
 - 2. Emit (S_j)

Realization in MapReduce

Some facts about MR Greedy

- The approximation guarantee of M_R Greedy is 1-1/e-O(ϵ).
- Running time O(poly(ε) .log³nm)
 - n is number of elements
 - m is number of sets
- Best of two worlds:
 - nearly matching the performance of Greedy (1-1/e).
 - Algorithm that can be implemented in the scalable Map-Reduce framework.

Outline

- Motivation
- Introduction
- Classical Approach : Greedy
- Proposed Algorithm: M_R Greedy
- Experiments
- Weaknesses
- Conclusion

Experiments: Goal

The coverage of M_R Greedy is almost indistinguishable from Greedy and it outperforms Naive for various values of k and for instances with various characteristics.

Algorithm exploits and achieves parallelism in practice

Feasible to implement M_RGreedy in practice.

Naive greedy

- It simply sorts the sets by sizes and takes the prefix as solution.
- Suppose you have the following sets and k=3
 - S1={1,2,3,4,5}

$$- S3 = \{6, 7, 1\}$$

 $- S4 = \{8, 9\}$

Solution set ={S1,S2,S3}

Experiments: 5 Data Sets (1)

Q₁ Q₂ H₁ H₂ H₂ H_m

2

Experiments: 5 Data Sets (2)

Coverage of MRGreedy, Greedy, and Naive on User hosts.

X axis specifies k

Y axis species the fraction of elements covered by prefix of length k

Relative Performances User – Hosts (1)

Relative performance on User-hosts

Query-Hosts (2)

Page-Ads (4)

Relative performance on Page--ads

1.09 1.08 1.07 1.06 1.05 %relative 1.04 1.03 1.02 1.01 1 -----0.99 1000 10000 10 100 1 k

User Queries (5)

Effect of epsilon

Outline

- Motivation
- Introduction
- Classical Approach : Greedy
- Proposed Algorithm: M_R Greedy
- Experiments
- Weaknesses
- Conclusion

Weaknesses (1)

 relative performance between Mr-Greedy and Naive. Even in the worst dataset (Photos-Tags) the naïve algorithm is less than 10% worse than MrGreedy.

Weaknesses (2)

- Choice of E as 0.75
 - Non sensical choice as large value of C provides no theoretical approx.
- Discussion about other methods of approximating the Max Cover problem, besides the greedy approach. For example algorithms based on linear programming relaxations.

Conclusion

Obtained an algorithm that provides almost the same approximation as Greedy, and can be implemented in the scalable and widely-used Map-Reduce framework.

Weighed budgeted version

Weighted, budgeted versions. In the weighted version of the problem, the universe is equipped with a *weight* function $w: X \to \mathbb{R}^+$. For $X' \subseteq X$, let $w(X') = \sum_{x \in X'} w(x)$. For $S' \subseteq S$, let

$$w(\mathcal{S}') = w(\bigcup_{S \in \mathcal{S}'} S) = \sum_{x \in \bigcup_{S \in \mathcal{S}'} S} w(x).$$

- Replace x (in all the sets that contain it) with w(x) unweighted copies of x.
- It is not strongly polynomial and it requires each element weight to be integral.
- To overcome that, we will multiply it with some positive number.

Weighed budgeted version

- Budgeted version of greedy provides an approximation of $(1-1/\sqrt{e})$.
- For M_R Greedy, approximation will be $(1-1/\sqrt{e} O(\epsilon))$.
- And parallel running time will be polylogarithmic.