
MaxCover in MapReduce
Flavio Chierichetti, Ravi Kumar, Andrew Tomkins

Advisor

Klaus Berberich

Presented By:

Isha Khosla

•  Motivation
•  Introduction
•  Classical Approach: Greedy
•  Proposed Algorithm: MR Greedy
•  Possible extension
•  Experiments
•  Weaknesses
•  Conclusion

Outline

2

Motivation (1)

3

Where should a set of charity dropboxes be
placed to be available

 to as many people as possible?

Charity Boxes

Motivation (2)

Advertiser

AD-1

AD-2 …

Maximum
users by
selecting

popular hosts

4

WEB Interested in placing banner
ads at various points on web.
Advertiser pays fixed amount

for each ad.

Problem Setting

|S| = m sets

|X| =n elements

k sets ?

 S

•  Select k sets from a family of subsets of a universe.
•  Union is as large as possible.

Choose a subset of S such that they cover max number
of elements in X.

X= {1, 2,…,N} be a universe of n
elements and |S| be a family of non-
empty subsets of X

5

Advertiser

AD-1

AD-2

AD-n
… Maximum

users

Maximize the donors

Maximize the users

6

•  Motivation
•  Introduction
•  Classical Approach : Greedy
•  Proposed Algorithm: MR Greedy
•  Possible extension
•  Experiments
•  Weaknesses
•  Conclusion

Outline

7

Formal Definition of Max k cover

Given an integer k >0, S* S is a max k-cover if
|S*| = k and the coverage of S* is maximized over
all subsets of S of size k.

 Finding the optimal solution is NP-hard.
 So we focus on approximation algorithms !

S1={1,2,3,4}

S2={5,6,4}

S3={5,6,1,2}

S4={3,2,1,4}

 K=2

8

 X={1,2,3,4,5,6}

S1={1,2,3,4}

S3={5,6,1,2}

S1={1,2,3,4}

S2={5,6,4}

α Approximation Algorithm
•  Polynomial time, guaranteed to find “near optimal”

solutions for every input.
•  Suppose , I have a input set of 100 elements.

–  Optimal solution contains 80 elements
–  Let α =0.5
–  Approximate solution says…
–  Approx ≥ α .optimal
–  In this case, approx : more than 40 elements.

9

Use Greedy
algorithm !

α -Approximate k- Cover

For α > 0, a set S’ S, |S’|≤ k, is an α
approximate max k-cover if for any max
k-cover S*, cov(S’) ≥ α.cov(S*).

 Looking for a approximate algorithm to solve Max K cover problem

10

One approach to solve max k cover problem …

It achieves constant factor approximation to MAX K-COVER, 1-1/e ~ .63

•  Motivation
•  Introduction
•  Classical Approach : Greedy
•  Proposed Algorithm: MR Greedy
•  Possible extension
•  Experiments
•  Weaknesses
•  Conclusion

Outline

11

Greedy Algorithm
–  When we have a choice to make, make the one that

looks best right now.
–  Make a locally optimal choice in hope of getting a

globally optimal solution.

Require: S1; ……, Sm, and an integer k
1: while k > 0 do
2: Let S be a set of maximum cardinality
3: Output S
4: Remove S and all elements of S from other remaining
 sets
5: k = k - 1

12

Greedy Algorithm

 Step 1: Output the set which has maximum
 cardinality.

 Here S4, Solution Set C ={S4}

S1

S2

S3 S4

K=2

13

Greedy Algorithm

 Step 2: Remove S4 and all elements of S4 from other
remaining sets, So next set to be considered is S1,
 Solution set C= {S4, S1}

S1

S2

S3 S4

14

S1

S2

S3

Greedy Algorithm
•  Sequential, it satisfies prefix optimality property.
•  What is that?

•  Drawbacks

Greedy algorithm can be easily extended to output a total
ordering of the input sets S1, … Sm, with the guarantee that
the prefix of length k, for each k, of this ordering will be a
(1-1/e)-approximation to the corresponding Max-k-Cover.

15

•  Bookkeeping is expensive if value of k is very large .
•  For disk resident datasets, Greedy is not a scalable
approach.

Updates expensive!

•  Motivation
•  Introduction
•  Classical Approach : Greedy
•  Proposed Algorithm: MR Greedy
•  Possible extension
•  Experiments
•  Weaknesses
•  Conclusion

Outline

16

Map-Reduce Model
•  Computations are distributed across several processors.
•  Split as a sequence of map and reduce jobs.

•  map
–  maps an input (key,value) pair to a list of intermediate key-value
 pairs
–  map (k, v) -> list(k, v)

•  reduce
–  takes as input a key and a list of values for that key
–  maps the input to a list of values
–  reduce (k, list(v)) -> list(v)

17

Example
•  Transposing of an adjacency list ?
•  Key-element
•  Value-set
•  Input set
 1: S1,S2,S3,S4
 2: S2,S3
 3: S1,S4,S3
 4: S5,S6,S2

MAP

S1:1
S2:1
S3:1
S4:1
S2:2
S3:2
S1:3
S4:3
S3:3
S5:4
S6:4
S2:4

REDUCE

S1: 1,3
S2: 1,2,4
S3: 1,2,3
S4: 1,3
S5: 4
S6: 4

18

MRGreedy

•  No k sequential choices.

•  Idea is to add multiple sets to the solution in parallel.

•  It also satisfies prefix optimality property same as
Greedy.

•  Run on MapReduce Framework
–  No need to keep datasets in main memory
–  update element set memberships. (edges)

 19

P1
P2
.
.
.

Pn

T1
T2
.
.
.

Tm

MRGreedy Algorithm

20

Don’t get scared!
We will make it simple to

understand………

MRGreedy Algorithm

21

Key Idea: add multiple sets
to the solution set.

Figure out what sets can be
added in parallel

Consider i as set to some constant and
select a set known as Sw which has

cardinality more than some constant.

Learn Algorithm in Steps (1)
•  Step 1: Consider a empty list C,

–  We have a ground set X={1, 2…..n}, so total number
of sets possible 2x

22

Learn Algorithm in Steps (2)

•  Step 2:

∆ is maximum degree of an element, we get X’ elements
from set Sw which has degree more than some constant

23

Degree(x)?

Learn Algorithm in Steps (3)

•  Step 3:

 Start a while loop until X' is empty and check existence of a
set such that intersection of X' with S is again greater than
some constant value.

24

Interesting!

Learn Algorithm in Steps (4)

•  Step 4:

Choose random subset Sp with certain probability, and from them decide bad
and non bad sets and then append them to the list. 25

Realization in MapReduce
•  Some lines of the above algorithm can be realized in

MapReduce framework.

26

1.  Map
1.  ForEach ei
2.  Iterate through List (S)
3.  Emit (Sj, ei) where SjЄ S

2.  Reduce (Sj, List(e)) where e are elements
1.  If sizeof(List(e)) ≥ constant
2.  Emit (Sj)

Realization in MapReduce

27

 Input set
 1: S1,S2,S3,S4
 2: S2,S3

MAP

REDUCE S1: 1
S1:3

S2: 1
S2: 2,4 REDUCE

IF COUNT IS MORE THAN OR EQUAL TO 3

Output
S2

Some facts about MR Greedy
•  The approximation guarantee of MRGreedy is 1-1/e-O(ε).

•  Running time O(poly(ε) .log3nm)
–  n is number of elements
–  m is number of sets

•  Best of two worlds:

–  nearly matching the performance of Greedy (1-1/e).
–  Algorithm that can be implemented in the scalable Map-Reduce

framework.

28

•  Motivation
•  Introduction
•  Classical Approach : Greedy
•  Proposed Algorithm: MR Greedy
•  Experiments
•  Weaknesses
•  Conclusion

Outline

29

Experiments: Goal

30

1.

2.

3.

The coverage of MRGreedy is almost indistinguishable from Greedy
and it outperforms Naive for various values of k and for instances with
various characteristics.

Feasible to implement MRGreedy in practice.

Algorithm exploits and achieves parallelism in practice

Naive greedy
•  It simply sorts the sets by sizes and takes the prefix as

solution.
•  Suppose you have the following sets and k=3

–  S1={1,2,3,4,5}
–  S2={2,3,4,5}
–  S3={6,7,1}
–  S4={8,9}

Solution set ={S1,S2,S3}

31

Experiments: 5 Data Sets (1)

32

U1
U2
.
.
.

Un

H1
H2
.
.
.

Hm

m=5.64 M
n=2.96 M
E=72.8 M
∆=2115

w*(S)=1.19M

Q1
Q2
.
.
.

Qn

H1
H2
.
.
.

Hm

m=625 K
n=239 K
E=2.8 M
∆=10

w*(S)=164 K

User – Hosts
CP- k hosts visited by maximum users

Query – Hosts
CP- k hosts addresses maximum queries

Edges

1

2

Experiments: 5 Data Sets (2)

33

P1
P2
.
.
.

Pn

T1
T2
.
.
.

Tm

m=89 K
n=704 K
E=2.7 M
∆=145

w*(S)=54.3 K

m=321 K
n=357 K
E=9.1 M
∆=24825

w*(S)=164 K

m=14.2 M
n=100 K
E=72 M
∆=5369

w*(S)=21.4 K

Photo-Tags
CP- k tags used by maximum photos

Page-ads User-queries

3

4
5

Coverage of MRGreedy, Greedy, and
Naive on User hosts.

X axis specifies k

Y axis species the fraction of elements covered by prefix of
length k

The coverage of Greedy and MR.Greedy is
 indistiguishable

34

Relative Performances
User – Hosts (1)

Red line is very
close to blue line

Spikes shows book
keeping phases

35

Query-Hosts (2)

36

Getting worse

Photo-Tags (3)

37

Getting worse

m=89 K
n=704 K
E=2.7 M
∆=145

w*(S)=54.3 K

Page-Ads (4)

38

User Queries (5)

39

Effect of epsilon

Smaller value of
eps, higher run
time

40

•  Motivation
•  Introduction
•  Classical Approach : Greedy
•  Proposed Algorithm: MR Greedy
•  Experiments
•  Weaknesses
•  Conclusion

Outline

41

Weaknesses (1)
•  relative performance between Mr-Greedy and Naive.

Even in the worst dataset (Photos-Tags) the naïve
algorithm is less than 10% worse than MrGreedy.

42

Weaknesses (2)
•  Choice of Є as 0.75

•  Non sensical choice as large value of Є provides
no theoretical approx.

•  Discussion about other methods of approximating the

Max Cover problem, besides the greedy approach. For
example algorithms based on linear programming
relaxations.

43

Conclusion

44

Obtained an algorithm that provides almost the same
approximation as Greedy, and can be implemented in
the scalable and widely-used Map-Reduce framework.

45

Thanks
&

Questions

Weighed budgeted version

•  Replace x (in all the sets that contain it) with w(x) unweighted copies
of x.
•  It is not strongly polynomial and it requires each element weight to
be integral.
•  To overcome that, we will multiply it with some positive number.

46

Weighed budgeted version

•  Budgeted version of greedy provides an
approximation of (1-1/√e).

•  For MR Greedy, approximation will be
 (1-1/√e –O(ε)).
•  And parallel running time will be

polylogarithmic.

47

