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Motivation (1) 
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Where should a set of charity dropboxes be 
placed to be available 

 to as many people as possible? 

Charity Boxes 



Motivation (2) 

Advertiser 

AD-1 

AD-2 …

Maximum 
users by 
selecting 

popular hosts 
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WEB Interested in placing banner 
ads at various points on web. 
Advertiser pays fixed amount 

for each ad.  



Problem Setting 

|S| = m sets 

|X| =n elements 

k sets ? 

 

 S 

•   Select k sets from a family of subsets of a universe. 
•   Union is as large as possible. 

Choose a subset of S such that they cover max number 
of elements in X. 

X= {1, 2,…,N} be a universe of n 
elements and |S| be a family of non-
empty subsets of X 
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Advertiser 

AD-1 

AD-2 

AD-n 
… Maximum 

users 

Maximize the donors 

Maximize the users 
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Formal Definition of Max k cover 

Given an integer k >0, S*   S is a max k-cover if  
|S*| = k and the coverage of S* is maximized over  
all subsets of S of size k. 

          Finding the optimal solution is NP-hard. 
         So we focus on approximation algorithms ! 
             

S1={1,2,3,4} 

S2={5,6,4} 

S3={5,6,1,2} 

S4={3,2,1,4} 

 K=2 
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  X={1,2,3,4,5,6} 

S1={1,2,3,4} 

S3={5,6,1,2} 

 

S1={1,2,3,4} 

S2={5,6,4} 

 



α  Approximation Algorithm 
•  Polynomial time, guaranteed to find “near optimal” 

solutions for every input.  
•  Suppose , I have a input set of 100 elements. 

–  Optimal solution contains 80 elements 
–  Let α =0.5 
–   Approximate solution says… 
–  Approx  ≥ α .optimal 
–  In this case, approx : more than 40 elements. 
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Use Greedy 
algorithm ! 

α -Approximate k- Cover 

For α > 0, a set S’    S, |S’|≤ k, is an α  
approximate max k-cover if for any max  
k-cover S*, cov(S’) ≥ α.cov(S*). 

 Looking for a approximate algorithm to solve Max K cover problem 
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One approach to solve max k cover problem … 

It achieves constant factor approximation to MAX K-COVER, 1-1/e ~ .63 
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Greedy Algorithm 
–  When we have a choice to make, make the one that 

looks best right now. 
–  Make a locally optimal choice in hope of getting a 

globally optimal solution. 

Require: S1; ……, Sm, and an integer k 
1:  while k > 0 do 
2:  Let S be a set of maximum cardinality 
3: Output S 
4: Remove S and all elements of S from other remaining 
    sets 
5: k = k - 1 
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Greedy Algorithm 

   Step 1: Output the set which has maximum                    
       cardinality. 

     Here S4, Solution Set C ={S4} 

S1 

S2 

S3 S4 

K=2 
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Greedy Algorithm 

  Step 2: Remove S4 and all elements of S4 from other   
remaining sets, So next set to be considered is S1,  
              Solution set C= {S4, S1} 

S1 

S2 

S3 S4 
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S1 

S2 

S3 



Greedy Algorithm 
•  Sequential, it satisfies prefix optimality property. 
•  What is that? 

•  Drawbacks 

Greedy algorithm can be easily extended to output a  total  
ordering of the input sets S1, … Sm, with the guarantee that  
the prefix of length k, for each k, of this ordering will be a  
(1-1/e)-approximation to the corresponding Max-k-Cover. 
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•   Bookkeeping is expensive if value of k is very large . 
•   For disk resident datasets, Greedy is not a scalable               
approach. 

Updates expensive! 
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Map-Reduce Model 
•  Computations are distributed across several processors. 
•  Split as a sequence of map and reduce jobs. 

•  map 
–  maps an input (key,value) pair to a list of intermediate key-value 
    pairs 
–  map (k, v) -> list(k, v) 

•  reduce 
–  takes as input a key and a list of values for that key 
–  maps the input to a list of values 
–  reduce (k, list(v)) -> list(v) 
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Example 
•  Transposing of an adjacency list ? 
•  Key-element 
•  Value-set 
•  Input set 
     1: S1,S2,S3,S4 
     2: S2,S3 
     3: S1,S4,S3 
     4: S5,S6,S2 

MAP 

S1:1 
S2:1 
S3:1 
S4:1 
S2:2 
S3:2 
S1:3 
S4:3 
S3:3 
S5:4 
S6:4 
S2:4 

 

REDUCE 

S1: 1,3 
S2: 1,2,4 
S3: 1,2,3 
S4: 1,3 
S5:  4 
S6:  4 

18 



MRGreedy 
 

•  No k sequential choices. 

•  Idea is to add multiple sets to the solution in parallel. 

•  It also satisfies prefix optimality property same as 
Greedy. 

•  Run on MapReduce Framework 
–  No need to keep datasets in main memory 
–  update element set memberships. (edges) 
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P1 
P2 
. 
. 
. 

Pn 

T1 
T2 
. 
. 
. 

Tm 

 



MRGreedy Algorithm 
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Don’t get scared!  
We will make it simple to 

understand……… 



MRGreedy Algorithm 
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Key Idea: add multiple sets 
to the solution set. 

Figure out what sets can be 
added in parallel  



Consider i as set to some constant and 
select a set known as Sw which has 

cardinality more than some constant. 

Learn Algorithm in Steps (1) 
•  Step 1: Consider a empty list C, 

–  We have a ground set  X={1, 2…..n}, so total number 
of sets possible 2x 
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Learn Algorithm in Steps (2) 

•  Step 2:  

∆ is maximum degree of an element, we get X’ elements 
from set Sw which has degree more than some constant 
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Degree(x)? 



Learn Algorithm in Steps (3) 

•  Step 3:  

  Start a while loop until X' is empty and check existence of a 
set such that intersection of X' with S is again greater than 
some constant value.  
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Interesting! 



Learn Algorithm in Steps (4) 

•  Step 4:  

Choose random subset Sp with certain probability, and from them decide bad 
and non bad sets and then append them to the list. 25 



Realization in MapReduce 
•  Some lines of the above algorithm can be realized in 

MapReduce framework. 
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1.  Map 
1.  ForEach ei 
2.  Iterate through List (S) 
3.  Emit (Sj, ei) where SjЄ S 

2.  Reduce (Sj, List(e)) where e are elements 
1.  If sizeof(List(e)) ≥ constant 
2.  Emit (Sj) 



Realization in MapReduce 
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     Input set 
     1: S1,S2,S3,S4 
     2: S2,S3 

MAP 

REDUCE S1: 1 
S1:3 

S2: 1 
S2: 2,4 REDUCE 

IF COUNT IS MORE THAN OR EQUAL TO 3 

Output 
S2 



Some facts about MR Greedy 
•  The approximation guarantee of MRGreedy is 1-1/e-O(ε). 

•  Running time O(poly(ε) .log3nm) 
–  n is number of elements 
–  m is number of sets 

 
•  Best of two worlds:  

–  nearly matching the performance of Greedy ( 1-1/e).  
–  Algorithm that can be implemented in the scalable Map-Reduce 

framework. 
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Experiments: Goal 
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1. 

2. 

3. 

The coverage of MRGreedy is almost indistinguishable from Greedy 
and it outperforms Naive for various values of k and for instances with 
various characteristics. 

Feasible to implement MRGreedy in practice. 

Algorithm exploits and achieves parallelism in practice 



Naive greedy 
•  It simply sorts the sets by sizes and takes the prefix as 

solution. 
•  Suppose you have the following sets and k=3 

–  S1={1,2,3,4,5} 
–  S2={2,3,4,5} 
–  S3={6,7,1} 
–  S4={8,9} 

Solution set ={S1,S2,S3} 
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Experiments: 5 Data Sets (1) 
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U1 
U2 
. 
. 
. 

Un 

H1 
H2 
. 
. 
. 

Hm 
 

 
 
 

m=5.64 M 
n=2.96 M 
E=72.8 M 
∆=2115 

w*(S)=1.19M 
 
 
 

Q1 
Q2 
. 
. 
. 

Qn 

H1 
H2 
. 
. 
. 

Hm 
 

 
 
 

m=625 K 
n=239 K 
E=2.8 M 
∆=10 

w*(S)=164 K 
 
 
 

User – Hosts 
CP- k hosts visited by maximum users 

Query – Hosts 
CP- k hosts addresses maximum queries 
 

Edges 

1 

2



Experiments: 5 Data Sets (2) 
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P1 
P2 
. 
. 
. 

Pn 

T1 
T2 
. 
. 
. 

Tm 
 

 
 
 

m=89 K 
n=704 K 
E=2.7 M 
∆=145 

w*(S)=54.3 K 
 
 
 

m=321 K 
n=357 K 
E=9.1 M 
∆=24825 

w*(S)=164 K 

m=14.2 M 
n=100 K 
E=72 M 
∆=5369 

w*(S)=21.4 K 

Photo-Tags 
CP- k tags used by maximum photos 
 

Page-ads User-queries 

3

4
5



Coverage of MRGreedy, Greedy, and 
Naive on User hosts. 

X axis specifies k 

Y axis species the fraction of elements covered by prefix of 
length k 

The coverage of Greedy and MR.Greedy is 
 indistiguishable 
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Relative Performances 
User – Hosts (1) 

Red line is very 
close to blue line  

Spikes shows book 
keeping phases 
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Query-Hosts (2) 
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Getting worse 



Photo-Tags (3) 
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Getting worse 

 
 
 

m=89 K 
n=704 K 
E=2.7 M 
∆=145 

w*(S)=54.3 K 
 
 
 



Page-Ads (4) 
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User Queries (5) 
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Effect of epsilon 

Smaller value of 
eps, higher run 
time 
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Weaknesses (1) 
•  relative performance between Mr-Greedy and Naive. 

Even in the worst dataset (Photos-Tags) the naïve 
algorithm is less than 10% worse than MrGreedy. 
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Weaknesses (2) 
•  Choice of Є as 0.75 

•  Non sensical choice as large value of Є provides 
no theoretical approx. 

 
•  Discussion about other methods of approximating the 

Max Cover problem, besides the greedy approach. For 
example algorithms based on linear programming 
relaxations. 
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Conclusion 
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Obtained an algorithm that provides almost the same 
approximation as Greedy,  and can be implemented in 
the scalable and widely-used Map-Reduce framework. 
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Thanks 
& 

Questions 



Weighed budgeted version 

•  Replace x (in all the sets that contain it) with w(x) unweighted copies   
of x.  
•   It is not strongly polynomial and it requires each  element weight to  
be integral. 
•  To overcome that, we will multiply it with some positive number. 
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Weighed budgeted version 

•  Budgeted version of greedy provides an 
approximation of (1-1/√e).  

•  For MR Greedy, approximation will be 
   (1-1/√e –O(ε)). 
•  And parallel running time will be 

polylogarithmic. 
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