

Motivation

- How does Google sort its results?
- Given a document and a query, which sorting is most useful?
- Ranking is based on **features**, such as
 - Term occurrence
 - Term proximity
 - Linguistic Features
 - Etc...

Motivation

- But, which features should we choose?
- What trade-off between cost and quality of results is optimal?
- Can we complete Ranking in a certain time?
- Common Approach:
 - 1. Hope
 - 2. Dilligence

Ranking Under Temporal Constraints

Seminar on Information Retrieval Andreas Frische, UdS

Outline

Constrained Linear Ranking

- Linear Ranking Functions
- Constrained Linear Ranking
- Algorithm: Indept
- Feature Weight
- Feature Cost
- Joint Prediction Model
- Algorithm: Joint Ranking
- Open Questions

Experiments

- Experimental Setup
- MAP vs. time
- Satisfying Time Constraints
- Wrap Up

Linear Ranking Functions

- Many widely used Ranking Models use Linear Ranking
- Simple, yet effective class of ranking functions
- Given
 - 1. Query q
 - 2. Document d
 - 3. Features $F = f_1 \dots f_N$ with
 - 4. Model Parameters $\Lambda = \lambda_1 \dots \lambda_N$

$$Score(q, d) = \sum_{i} \lambda_{i} f_{i}(q, d)$$

Linear Ranking Functions

- Problem: Computational Cost is query dependent
- Example:
 - Feature Set: { (Phrase, λ_P), (TF, λ_T)
 - Q1: White House
 - Q2: White House, Rose Garden

	Phrase	TF
Cost Q1	1 bigram	2 unigrams
Cost Q2	3 bigrams	4 unigrams

Constrained Linear Ranking

- Basic Idea: Fill as much features into a "sack"/threshold as possible » Knapsack Problem
- To instantiate a model we need to
 - 1. Define the Cost of Features
 - 2. Determine the Weight of Features
 - 3. Select subset of features for each [class of] queries
- For now, assume we have 1 and 2 done

Algorithm: Indept

Features are selected independently from each other

In: Time Constraint T(q), Feature Set FS(q), Feature Weights $\Lambda(q)$, Feature Cost C(q)

Out: Constrained Ranking Function R(q)

```
R = \emptyset, totalcost = 0
```

```
Compute Feature Profit Density \forall_i p_i \coloneqq \frac{\lambda_i(q)}{C(f_i)}

Queue F := Features sorted by profit density

While (F not empty) Do

Let f be the Head of F

Remove it

If (totalcost + Cost(f) < T(q))

Add (f with \lambda_f) to R(q)

totalcost = totalcost + Cost(f))

Fi

Od
```

Feature Weight

- Feature Weights should depend on the query
 - Chocolate Milk vs Johannes Brahms
- Given
 - 1. Meta Features G
 - 2. Meta Feature Weights W

$$\lambda_i(q)\coloneqq \sum_j w_j g_j(q)$$

 Example meta feature #times q occurs in a collection, such as Wikipedia Titles

Feature Cost

- Heuristic: features with more ~Operations get a higher cost
- Weak part of the paper
- But works surprisingly well

Joint Prediction Model

- In a large Feature Set, some features may be redundant
- Solution:

After adding a feature, *penalize* features with a similar concept

Algorithm: Joint Ranking

In: Time Constraint T(q), Feature Set FS(q), Meta-Features G, Meta-Feature Weights W(q), Feature Cost C(q), Out: Constrained Ranking Function R(q) $R = \emptyset$, totalcost = 0 Compute Feature Weights: $\lambda_i(q) \coloneqq \sum_j w_j g_j(q)$ Compute Feature Profit Density $\forall_i p_i \coloneqq \frac{\lambda_i(q)}{C(f_i)}$ Queue F1 := Features sorted by profit density, F2 := empty Queue Group features by concept: $G_{e} \coloneqq features$ of concept e While (F1 or F2 not empty) Do Let f be max(head F1, head F2) Remove it If (totalcost + Cost(f) < T(q))Add (f with λ_f) to R(q) totalcost = totalcost + Cost(f)If (concept of f not covered AND $\lambda_{\rho} < \alpha$) Reduce weight of e by Redundancy Penalty Move Features with same concept as f to F2 Mark concept covered Fi Fi; Od

December 2, 2010

Open Questions

- Where do the meta-feature weights come from?
- Where does the Redundancy Penalty come from?
- Where does α come from?

Outline

Constrained Linear Ranking

- Linear Ranking Functions
- Constrained Linear Ranking
- -Algorithm: Indept
- Feature Weight
- Feature Cost
- -Joint Prediction Model
- Algorithm: Joint Ranking

Experiments

- Experimental Setup
- quality vs. time
- Satisfying Time Constraints
- Wrap Up

Experimental Setup

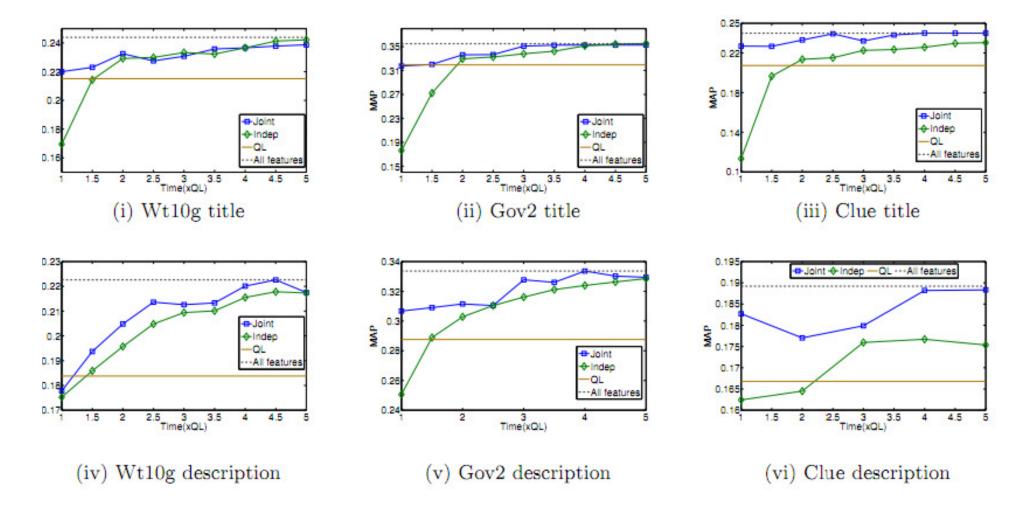
We operate on the following test collections

	Wt10g	Gov2	Clue
Topics	451-550	701-850	1-50
# docs	1,692,096	25,205,179	50,220,423
#docs / Topics	~3400	~33000	~2000000
avg qlen (title)	2.50	2.96	1.88
Avg qlen(desc)	6.08	5.90	5.88

Experimental Setup

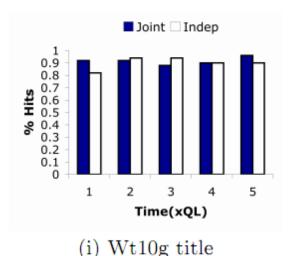
- And test these Algorithms
 - ALL (features) acts as a upper bound
 - QL (Query Likelihood) Baseline Algorithm
 - Indept
 - Joint
- X-axis denotes time, measured in QL time cost
- Thus we become hardware independent
- Y-axis denotes quality of results
- (MAP := Mean Average Precision)

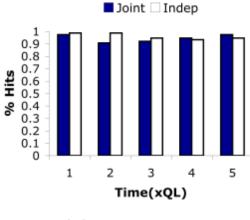
MAP vs. time



Satisfying Time Constraints

5





(ii) Gov2 title

2

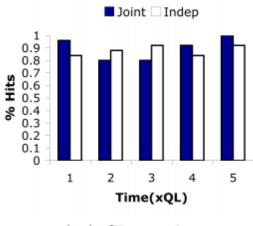
1

Joint 🗌 Indep

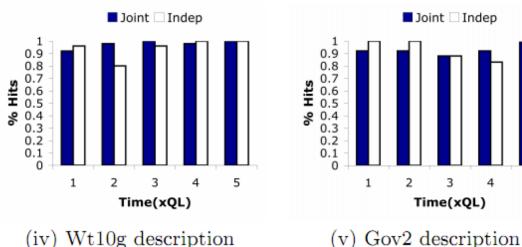
3

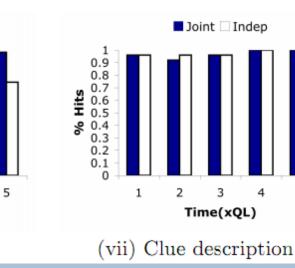
Time(xQL)

4



(iii) Clue title





(iv) Wt10g description

December 2, 2010

Wrap Up

- Ranking is vital for returning useful results to a query
- Time constraints may apply
- Constraint Linear Ranking allows to construct a Ranking Function for a query and time constraint
- More time leads to better results (mostly)

Thank You

Questions?

