Diversification for Keyword Search over Structured Databases
Outline

• Introduction
• Related Background
• $DivQ$
• Evaluation metrics
• Experiment
• Conclusion
Introduction

• Keywords queries over structured database
 – an organized collection of data
 – Data may be stored in different tables
 – Computationally expensive if too much data need to be retrieved cross multiple tables
 – Not attract much attention

• Compared with unstructured document
 – keyword queries need to be interpreted in terms of the underlying database
 – take advantage of the structure of the database
Introduction

• Keyword queries over structured databases are notoriously ambiguous
 – Single interpretation of a keyword query is not enough
 – Multiple interpretation will yield to overlapping results

- Search “Tom 2011”
 – Tom: a director?
 – Tom: an actor?

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>War</td>
<td>Tom Hanks</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>War</td>
<td>Tom Billy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>War</td>
<td>2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>movie</td>
<td>actor</td>
</tr>
<tr>
<td>Item 1</td>
<td>War</td>
</tr>
<tr>
<td>Item 2</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>movie</td>
<td>director</td>
</tr>
<tr>
<td>Item 1</td>
<td>...</td>
</tr>
<tr>
<td>Item 2</td>
<td>War</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>movie</td>
<td>year</td>
</tr>
<tr>
<td>Item 1</td>
<td>...</td>
</tr>
<tr>
<td>Item 2</td>
<td>War</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>movie</td>
<td>year</td>
</tr>
<tr>
<td>Item 1</td>
<td>...</td>
</tr>
<tr>
<td>Item 2</td>
<td>2011</td>
</tr>
</tbody>
</table>
Introduction

• Diversification aims at minimizing user’s dissatisfaction
 – Provide users a quick glance of the major plausible interpretations, so that the users can simply choose.

<table>
<thead>
<tr>
<th>Tom</th>
<th>A director?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A movie name?</td>
</tr>
<tr>
<td></td>
<td>An Actor?</td>
</tr>
</tbody>
</table>
Introduction

- diversification should take advantage of the structure of the database
 - Query disambiguation before actual execution
 - Avoid computational overhead for retrieving and filtering actual result
 - executes only the top-ranked query interpretations at last
Introduction

• This scheme balances the relevance and novelty of keyword search results
 – A probabilistic model helps to rank the possible interpretations, to create semantic interpretations
 – a scheme to diversify the search results by re-ranking query interpretations, generating the top-k most relevant and diverse query interpretations
Related Background

• In document retrieval
 – Diversification performs as a post-processing or re-ranking step
 – first retrieve relevant results and then filter or re-order the result list to achieve diversification

• However in structured database
 – computationally expensive
 – obtained by joining multiple tables

• So in DivQ, take the advantage of rich structure
 – clear semantics in database before retrieving any results
 – Only the results of the top ranked interpretations are retrieved from the database
Related Background

- Diversification by classifying search results
 - based on similarity
 - understandable for end user
 - classes are usually pre-defined

- In DivQ -- a special kind of classes
 - Well-defined semantics
 - Query interpretations are generated based on users’ keyword
 - consider the similarity between query interpretations to avoid redundant search results
Related Background

• Some ideas from traditional IR - variance
 – to select top-n documents first
 – order them by balancing the overall relevance of the list against its variance
• Other complementation in $DivQ$
 – categorization, which takes into account user preferences
Major part -- DivQ
DivQ

- *DivQ* translates a keyword query to a set of structured queries, taking not only relevance but also diversification into consideration.

<table>
<thead>
<tr>
<th>Table 1. Structured Interpretations for a Keyword Query</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword query: CONSIDERATION CHRISTOPHER GUEST</td>
<td></td>
</tr>
<tr>
<td>Relevance</td>
<td>Top-3 interpretations ranking</td>
</tr>
<tr>
<td>0.9</td>
<td>A director CHRISTOPHER GUEST of a movie CONSIDERATION</td>
</tr>
<tr>
<td>0.5</td>
<td>A director CHRISTOPHER GUEST</td>
</tr>
<tr>
<td>0.8</td>
<td>An actor CHRISTOPHER GUEST in a movie CONSIDERATION</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
DivQ - Bringing Keywords into Structure

- translate a keyword query K to a structured query Q
 - a set of **keyword interpretations** $Ai:ki$, map each ki to Ai
 - Then joins the keyword interpretations using a predefined *query template* T
- For example
 - Search “CONSIDERATION CHRISTOPHER GUEST”
 - query interpretation: “A director X of a movie Y”
- “complete query interpretation”, “partial query interpretation”
\textbf{DivQ} - Estimating Query Relevance

- estimate relevance as the conditional probability, $P(Q|K)$
 - keyword query K
 - Q is the user’s intended interpretation of K
- probability $P(Q|K)$ can be expressed as $P(Q \mid K) = P(I,T \mid K)$.
 - query interpretation Q is composed of a query template T
 - I: a set of keyword interpretations

$I = \{ A_j : \{k_{j1}, k_{jn}\} \mid A_j \in T, \{k_{ji}, k_{jn}\} \subset K, \{k_{il}, k_{im}\} \mid \{k_{ji}, k_{jn}\} = \{ \} \text{ for } i \neq j \}$
DivQ - Estimating Query Relevance

• Two assumptions for simplifying the computation
 – each keyword has one particular interpretation intended by the user
 – The probability of a keyword interpretation is independent

• Based on these assumptions and Bayes’ rule

\[
P(Q|K) \propto \left(\prod_{A_j \in T} P(A_j : \{k_{j_1}, k_{j_n}\} | A_j) \right) \times \left(\prod_{k_u \in K \cap k_u \notin Q} P_u \right) \times P(T)
\]
DivQ - Estimating Query Relevance

\[
P(Q \mid K) \propto \left(\prod_{A_j \in T} P(A_j : \{k_{j1}, k_{jn}\} \mid A_j) \right) \times \left(\prod_{k_u \in K \cap k_u \notin Q} P_u \right) \times P(T)
\]

- \(P(A_j : \{k_{j1}, k_{jn}\} \mid A_j)\) represents the probability that \(A_j : \{k_{j1}, k_{jn}\}\) are a part of the query interpretation, estimated using attribute specific term frequency.
- Constant smoothing factor \(P_u\), the probability that keyword \(K_u\) does not match any available attribute in the database, smaller than the minimum probability of any existing keyword interpretation.
- \(P(T)\) is the prior probability that the template \(T\) is used to form a query interpretation, a frequency of the template’s occurrence in the database query log if available.
DivQ - Estimating Query Similarity

• The resulting query interpretations should be not only relevant but also as dissimilar to each other

\[\text{Sim}(Q_1, Q_2) = \frac{|I_1 \cap I_2|}{|I_1 \cup I_2|} \]

– \(Q_1 \) and \(Q_2 \) be two query interpretations of a keyword query \(K \)
– \(I_1 \) and \(I_2 \) be the sets of keyword interpretations contained by \(Q_1 \) and \(Q_2 \)
– resulting similarity value should always fall in \([0, 1]\), 1 means the highest possible similarity
DivQ - Combining Relevance and Similarity

- For generating the top-k query interpretations that are both relevant and diverse
 - First, select the most relevant interpretation as the top-1 interpretation
 - Then select the interpretation based on both its relevance and novelty

\[
Score(Q) = \lambda \cdot P(Q|K) - (1 - \lambda) \cdot \sum_{g \in QI} Sim(Q, q) |QI|
\]

- a query interpretation \(Q \)
- a set of query interpretations \(QI \) that are already presented to the user
- \(\lambda \) is a parameter to trade-off query interpretation relevance against novelty, \(\lambda = 1 \) only care about relevance, 0 otherwise
- The interpretation with highest score will be next interpretation
• For creating a set R of the most relevant and diverse query interpretations

 - starts with the most relevant query interpretation at the top of L

 - scan the remaining candidate elements in L, compare their scores according to the formula

```plaintext
Input: list $L[k]$ of top-k query interpretations ranked by relevance
Output: list $R[r]$ of the relevant and diverse query interpretations

Proc Select Diverse Query Interpretations:
$R[0]=L[0]; i=1;
//less than r elements selected
while (i<r) {
  //select the best candidate for $R[i]
  j=i; best\_score=0;
  //more candidates for $R[i]$ in $L
  while (L[i]!=null) {
    //check score upper bound
    if (best\_score $\geq$ $\lambda P(L[i]))$ break;
    if (score(L[i]) $>$ best\_score) {
      best\_score = score(L[i]);
      c = j;
    }
    j++;
  }
  //add the best candidate to $R$
  $R[i] = L[c];$
  Swap $L[i...c-1]$ and $L[c];$
  $i++;
}
End Proc;
```
DivQ - The Diversification Algorithm

- **Worst case**
 - Worst complexity is $O(l*r)$
 - maximal number of similarity computations is $(l^2-l)/2$
 - l is the number of query interpretations and r is the number of interpretations in the result list R
Evaluation
Evaluation metrics

• In document retrieval
 – α-NDCG (normalized Discounted Cumulative Gain)
 – S-recall

• In structured data
 – α-NDCG-W
 – Weighted S-Recall

• Differences
 – primary key -- notion of information nugget -- subtopic
 – α -NDCG and S-recall assume equal relevance of information nuggets and subtopics in a document. However, relevance of primary keys in a query result may vary a lot
Evaluation metrics - CG

• What is CG?
 – Cumulative Gain (CG) is the predecessor of DCG
 – The value: The gain \(G[k] \) at rank \(k \)
 – does not care the position of a result in result set.
 – The CG at a particular rank position \(p \) is defined as:

\[
CG_p = \sum_{i=1}^{p} rel_i
\]

\[
CG = 3 + 2 + 3 + 0 + 1 + 2
\]

<table>
<thead>
<tr>
<th>(D)</th>
<th>(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>3</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
</tr>
<tr>
<td>D6</td>
<td>2</td>
</tr>
</tbody>
</table>
Evaluation metrics - DCG

• What is DCG?
 – Discounted Cumulative Gain
 – Take position into consideration
 – Change the position, the value changes

\[DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i} \]

\[
DCG_6 = rel_1 + \sum_{i=2}^{6} \frac{rel_i}{\log_2 i} = 3 + (2 + 1.887 + 0 + 0.431 + 0.772) = 8.09
\]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>3</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
</tr>
<tr>
<td>D6</td>
<td>2</td>
</tr>
</tbody>
</table>
Evaluation metrics - nDCG

- What is nDCG
 - Normalized DCG Discounted Cumulative Gain
 - Sort the order first, then calculate

\[
\text{nDCG}_6 = \frac{\text{DCG}_6}{\text{IDCG}_6} = \frac{8.09}{8.693} = 0.9306
\]

- IDCG: ideal DCG

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>3</td>
</tr>
<tr>
<td>D3</td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>2</td>
</tr>
<tr>
<td>D6</td>
<td>2</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
</tbody>
</table>
Evaluation metrics - α -NDCG

- α -nDCG
 - $G[k]$ is extended with a parameter α,
 - a trade-off between relevance and novelty
 - α -nDCG views a document as the set of information nuggets
 - α is in the interval $[0, 1]$; 0 just care about the relevance, increasing α, novelty is rewarded with more credit
Evaluation metrics - α - NDCG-W

- α - NDCG-W
 - For reflecting the graded relevance assessment on the PK
 - Take overlapping and diversification into consideration

$$G[k] = relevance(Q_k) \cdot (1-\alpha)^r$$

- r expresses overlap in result list at ranks 1…$k-1$.
- Each pk is distinct with others in other interpretations
- for each primary key pk_i in the result of Q_k, count how many query interpretations with pk_i were seen before

$$r = \sum_{pk|Q_k} \sum_{j\in[1,k-1]} [pk_i \in Q_j]$$
Evaluation metrics — weighted S-Recall

- S-recall is the number of unique subtopics covered by the first k results, divided by the total number of subtopics
- In database keyword search
 - single primary key corresponds to a subtopic in S-recall
 - take the graded relevance of subtopics into account
 - WS-Recall is computed as the aggregated relevance of the subtopics divided by the maximum possible relevance

$$WS\text{-}recall@k = \frac{\sum_{pk \in Q_1} \text{relevance}(pk)}{\sum_{pk \in U} \text{relevance}(pk)}$$

- U is the set of relevant subtopics (primary keys)
- Same to S-recall, if only binary relevance assessments are available
Experiments — Dataset and Queries

- two real-world datasets
 - a crawl of the Internet Movie Database (IMDB)
 - seven tables
 - more than 10,000,000 records
 - a crawl of a lyrics database from the web
 - five tables
 - around 400,000 records
- No associated query log
 - extracted the keyword queries from logs of MSN and AOL
 - obtained thousands of queries for the IMDB and lyrics domains
Experiments — Dataset and Queries

• most popular keyword queries
 – first sorted the queries based on frequency in the log
 • each domain, select 200 most frequent queries with non-empty results exist in the database
 • single concept queries -- mostly either single keyword or single concept queries
 – manually selected for more complex queries
 • 100 queries for each dataset from the query log
 • multi-concept queries

• for each keyword query
 – ranked interpretations
 – entropy in the top-10 ranks of the resulting list -- ambiguity
 – selected 25 single concept and 25 multi-concept queries with the highest entropy for each dataset
Experiments — User Study

- at most the top-25 interpretations

average ratio of the probability of a query at rank i and the aggregated probabilities of queries at rank $j<i$

$$PR_i = P(Q_i|K) / \sum_{j<i} P(Q_j|K)$$
Experiments — User Study

• For each query
 – pruned all query interpretations Q_i whose probability constituted less than 0.1% of the aggregated probability
 – included at most five more interpretations with probability below the threshold
 – randomized the order when presented for user assessment

• In total
 – Each user -- 630 interpretations for IMDB, 517 for Lyrics
 – 10 persons - all tasks, 6 persons - 30% IMDB, 9% Lyrics
 – two-point Likert scale for each interpretation
 – Agreement in kappa statistics: 0.33 in IMDB; 0.28 in Lyrics
 • Such low agreement, additional indication of ambiguity of queries
Experiments — \(\alpha \)-nDCG-W

- For assessing quality of ranking and diversification
 - measure \(\alpha \)-NDCG-W by varying \(\alpha \) parameter
 - \(\alpha = 0 \), novelty of results is completely ignored = NDCG
 - \(\alpha = 0.5 \), novelty is given a certain credit
 - \(\alpha = 0.99 \) results without novelty are regarded as redundant
Experiments — α-nDCG-W

- Y-axis: α -NDCG-W value
- Rank: without diversification
- Div: with diversification
- When $\alpha = 0.99$ and $k > 3$
 - diversification on mc queries outperforms by about 7%

Figure 2a. α-NDCG-W, IMDB.
Experiments — α-nDCG-W

- Y-axis: α-NDCG-W value
- Rank: without diversification
- Div: with diversification
- When $\alpha = 0.99$ and $k > 3$
 - diversification on mc queries outperforms by about 7%

![Graphs showing comparisons of nDCG-W values with and without diversification for different values of α.](image)
Experiments — WS-recall

- Y-axis: WS-recall value
- Normalizing result sizes for WS-recall is future work
- No significant effect of diversification
Experiments — Balancing Relevance and Novelty

\[
\text{Score}(Q) = \lambda \cdot \mathcal{P}(Q | \mathcal{K}) - (1 - \lambda) \cdot \sum_{q \in Q_I} \frac{\text{Sim}(Q, q)}{|Q_I|}
\]

- \(\lambda \) is parameter to balance relevance against novelty

\[\begin{array}{c}
\text{Div} \\
\text{sc} \\
\text{Rank} \\
\text{sc} \\
\text{Rank} \\
\text{mc} \\
\text{Div} \\
\text{mc}
\end{array}\]

- \(\alpha \)-NDCG-W values decrease with increasing \(\lambda \), until \(\lambda = 1 \)
- The smaller \(\lambda \) is, the more visible is the impact of diversification
Conclusion

• Advantages
 – Take diversification into consideration
 – A good attempt for queries under structured database
 – Evaluation results demonstrate that the novelty of keyword search results improved
 – Better characterized than initial relevance ranking

• Drawbacks
 – No significant improvement according to the evaluation
 – Still need improvement
Thank you for your attention