Chapter X: Classification® "l

1. Basic idea

2. Decision trees

3. Naive Bayes classifier

4. Support vector machines
5. Ensemble methods

* Zaki & Meira: Ch. 24, 26, 28 & 29; Tan, Steinbach & Kumar: Ch. 4, 5.3-5.6
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X.3 Naive Bayes classifier "l

1. Basic idea
2. Computing the probabilities
3. Summary

Zaki & Meira, Ch. 26; Tan, Steinbach & Kumar, Ch. 5.3
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Basic 1dea

* Recall the Bayes theorem
Pr(X | Y] Pr|Y]

PriY | X] = PrTX

e In classification
— RV X = attribute set

—RYV Y = class variable
— Y depends on X 1n a non-deterministic way

* The dependency between X and Y 1s captured 1n
Pr[Y | X] and Pr| Y]

— Posterior and prior probability



Building the classifier

* Training phase

— Learn the posterior probabilities Pr[Y | X] for every
combination of X and Y based on training data

* Test phase

—For test record X, compute the class Y’ that maximizes the
posterior probability Pr[Y’ | X]
o V' =arg max;{Pr[c; | X']} = arg max;{Pr[X’| ¢;|Pr[c:]/Pr[X]}
= arg max;{Pr[X"’ | ¢/]Pr[ci]}
e So we need Pr[ X’ | ¢;] and Pr[c]

— Pr[c;] 1s the fraction of test records that belong to class c¢;
—Pr X ’ C‘i]?




Computing the probabilities

* Assume that the attributes are conditionally
independent given the class label

— Naivety of the classifier
—Pr[X | Y =ci] = [, PriXi | Y = ¢4
* X; 1s the attribute i

* Without independency there would be too many
variables to estimate

* With independency, it 1s enough to estimate Pr[.X; | Y]
—PrlY | X] = Pr[Y] H1  PriX; | Y]/ PriX]
— Pr[X] 1s fixed, so can be omitted

* But how to estimate the likelihood Pr[X;| Y]?




Categorical attributes

* If X; 1s categorical Pr[.X; = x; | Y = c] 1s the fraction of
training instances 1n class c that take value x; on the
i-th attribute

Home Marital Annual Defaulted

Tid Owner Status Income Borrower
Pr[HomeOwner = yes | No] = 3/7 1 Yes Single 125K MNo
Pr[MartialStatus = S | Yes] = 2/3 2 No Married | 100K No
3 MNo single 70K No
4 Yes Married | 120K No
5 No Divorced | 95K Yes
6 No Married | 60K No
7 Yes Divorced | 220K No
8 MNo Single 85K Yes
9 No Married | 75K No
10 | No Single 90K Yes
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Continuous attributes: discretization

e We can discretize continuous attributes to intervals

— These intervals act like ordinal attributes

* Problem 1s where to discretize

—Too many 1ntervals: too few training records per interval
= unrchable estimates

—Too few 1ntervals: intervals merge attributes from different
classes and don’t help distinguishing the classes



Continuous attributes continue

* Alternatively we can assume distribution for the
continuous variables

— Normally we assume normal distribution

* We need to estimate the distribution parameters

— For normal distribution we can use sample mean and
sample variance

— For estimation we consider the values of attribute X; that are
associated with class ¢; 1n the test data

* We hope that the parameters for distributions are
different for different classes of the same attribute

— Why?



Naive Bayes example

. Home
UL Owner

Yes
No
No
Yes
No
No
Yes
No
No
No

- O 0o~ O U WMN =

o

N ET{
Status

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married
Single

Annual Defaulted
Income Borrower
125K No

100K No

70K No

120K No

95K Yes

60K No

220K No

85K Yes

75K No

90K Yes

Annual Income:
Class = No
Sample mean = 110
Sample variance = 2975
Class = Yes
Sample mean = 90
Sample variance = 25

Test data: X = (HO = No, MS =M, Al = $120K)
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Naive Bayes example

. Home Marital Annual Defaulted Annual Income:

Tid

T os TSmge [izok (Mo | Class=No

2 |No |Mamied |100K [No Sample mean = 110

1 |No Single | 70K No Sample variance = 2975
4 |Yes |Married | 120K |No Class = Yes

5 |No Divorced | 95K | Yes Sample mean = 90

6 |No Married | 60K | No Sample variance = 25
7 Yes Divorced | 220K No

8 No Single 85K Yes

9 No Married | 75K No

10 | No Single 90K Yes

Test data: X = (HO = No, MS =M, Al = $120K)
Pr[Yes] = 0.3, Pr[No]| = 0.7
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Naive Bayes example

Home Marital Annual Defaulted Annual Income:

Tid Owner Status Income Borrower Class = No

1 Yes Single 125K No .

2 [No |Marmied | 100K |No Sample mean = 110

3 INo Single | 70K No Sample variance = 2975
4 |Yes |Married |120K |No Class = Yes

5 No Divorced | 95K Yes Samp]e mean = 90

6 |No Married | 60K | No Sample variance = 25
7 Yes Divorced | 220K No

8 No Single 85K Yes

9 No Married | 75K No

10 | No Single 90K Yes

Test data: X = (HO = No, MS =M, Al = $120K)

Pr[Yes] = 0.3, Pr[No]| = 0.7
Pr[X | No] = Pr[HO = No | No] x Pr[MS =M | No] x Pr[AI = $120K | No]
=4/7 x 4/7 x 0.0072 = 0.0024
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Naive Bayes example

Home Marital Annual Defaulted Annual Income:

Tid Owner Status Income Borrower Class = No

1 Yes Single 125K No .

2 [No |Marmied | 100K |No Sample mean = 110

3 INo Single | 70K No Sample variance = 2975
4 |Yes |Married |120K |No Class = Yes

5 No Divorced | 95K Yes Samp]e mean = 90

6 |No Married | 60K | No Sample variance = 25
7 Yes Divorced | 220K No

8 No Single 85K Yes

9 No Married | 75K No

10 | No Single 90K Yes

Test data: X = (HO = No, MS =M, Al = $120K)

Pr[Yes] = 0.3, Pr[No]| = 0.7
Pr[X | No] = Pr[HO = No | No] x Pr[MS =M | No] x Pr[AI = $120K | No]
=4/7 x 4/7 x 0.0072 = 0.0024

Pr[X | Yes] = Pr[HO = No | Yes] x Pr[MS =M | Yes] x Pr[Al = $120K | Yes]
=1 x0xg=0
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Naive Bayes example

Tid Home Marital Annual Defaulted Annual Income:
Owner Status Income Borrower Class = No

1 Yes Single 125K No .

2 |No  |Married | 100K |No Sample mean = 110

3 | No single | 70K No Sample variance = 2975
4 |Yes |Married |120K |No Class = Yes

5 |No Divorced | 95K | Yes Sample mean = 90

6 No Married | 60K No Sample variance = 25

7 Yes Divorced | 220K No

8 No Single 85K Yes

9 No Married | 75K No

10 | No Single 90K Yes

Test data: X = (HO = No, MS =M, Al = $120K)

Pr[Yes] = 0.3, Pr[No]| = 0.7
Pr[X | No] = Pr[HO = No | No] x Pr[MS =M | No] x Pr[AI = $120K | No]
=4/7 x 4/7 x 0.0072 = 0.0024

Pr[X | Yes] = Pr[HO = No | Yes] x Pr[MS =M | Yes] x Pr[Al = $120K | Yes]
=1 x0xg=0

Pr[No | X]=a x 0.7 x 0.0024 = 0.00160, o= 1/Pr[X]
= Pr[No | X] has higher posterior and X should be classified as non-defaulter
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Naive Bayes example

Tid Home Marital Annual Defaulted Annual Income:
Owner Status Income Borrower Class = No

1 Yes Single 125K No .

2 |No |Maried | 100K |No Sample mean = 110

3 |No Single | 70K No Sample variance = 2975

4 |Yes |Married | 120K |No Class = Yes

5 |No Divorced | 95K | Yes Sample mean = 90

6 |No Married | 60K No Sample variance = 25

7 Yes Divorced | 220K No

8 No Single 85K Yes 5 .

9 |No Married |75k  |No Thel’e S some‘l'h(“g
10 | No Single 90K Yes

fishy here...

Test data: X = (HO = No, MS =M, Al = $120K)

Pr[Yes] = 0.3, Pr[No]| = 0.7
Pr[X | No] = Pr[HO = No | No] x Pr[MS =M | No] x Pr[AI = $120K | No]
=4/7 x 4/7 x 0.0072 = 0.0024

Pr[X | Yes] = Pr[HO = No | Yes] x Pr[MS =M | Yes] x Pr[Al = $120K | Yes]
=1 x0xg=0

Pr[No | X] = a x 0.7 x 0.0024 = 0.00160, o= 1/Pr[X]

= Pr[No | X] has higher posterior and X should be classified as non-defaulter
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Continuous distributions at fixed point
 If X; 1s continuous, Pr[X;=x; | Y= c;] = 0!

— But we still need to estimate that number

* Self-cancelling trick:

e ! (x — 1ij)?
Pr[xi—€<X1<Xi+€|Y:cj]:J (27toy5) " 2 exp 5 2]

Xi—e€ 0

~ 2e f(xi; Wiy, 035

— But 2¢ cancels out 1n the normalization constant. ..



Zero likelihood

* We might have no samples with X; = x; and Y = ¢;
— Naturally only problem with categorical variables
—Pr[Xi =xi | Y= c¢j] = 0 = zero posterior probability

— It can be that all classes have zero posterior probability for
some validation data

* Answer 1s smoothing (m-estimate):

— PI’[Xi = Xi ‘ Y = Cj] — n&inntp

* n = # of training instances from class ¢;

* n; = # training 1nstances from c; that take value x;
* m = “equivalent sample size”
* p = user-set parameter



More on m-estimate

PI’[Xi = Xi ‘ Y = Cj] — n&innip
* The parameters are p and m

—If n =0, then likelihood 1s p

* p 1s ’prior” of observing x; in class ¢;

— Parameter m governs the trade-off between p and observed
probability n;/n

» Setting these parameters 1s again problematic. ..



More on m-estimate

PI’[Xi = Xi ‘ Y = Cj] — n&inntp
* The parameters are p and m

—If n =0, then likelihood 1s p

* p 1s ’prior” of observing x; in class ¢;

— Parameter m governs the trade-off between p and observed
probability n;/n

» Setting these parameters 1s again problematic. ..

* Alternatively, we can just add one pseudo-count to
cach class
—Pr{Xi=xi| Y=¢]=(@m+ 1)/ (n+ |dom(X;)|)
| dom(X;)| = # values attribute X; can take



Summary of naive Bayes

 Robust to 1solated noise

— Averaged out

* Can handle missing values

— Example 1s 1ignored when building the model and attribute 1s
1ignored when classifying new data

* Robust to irrelevant attributes
—Pr(X; | Y) 1s (almost) uniform for irrelevant .X;

 Can have 1ssues with correlated attributes



