Chapter X: Classification*

- 1. Basic idea
- 2. Decision trees
- 3. Naïve Bayes classifier
- 4. Support vector machines
- 5. Ensemble methods

* Zaki & Meira: Ch. 24, 26, 28 & 29; Tan, Steinbach & Kumar: Ch. 4, 5.3–5.6

X.3 Naïve Bayes classifier

- 1. Basic idea
- 2. Computing the probabilities
- 3. Summary

Zaki & Meira, Ch. 26; Tan, Steinbach & Kumar, Ch. 5.3

Basic idea

Recall the Bayes theorem

$$Pr[Y \mid X] = \frac{Pr[X \mid Y] Pr[Y]}{Pr[X]}$$

- In classification
 - -RV X = attribute set
 - -RV Y = class variable
 - Y depends on X in a non-deterministic way
- The dependency between X and Y is captured in Pr[Y | X] and Pr[Y]
 - -Posterior and prior probability

Building the classifier

Training phase

- Learn the posterior probabilities Pr[Y|X] for every combination of X and Y based on training data

Test phase

- For test record X', compute the class Y' that maximizes the posterior probability Pr[Y'|X']
 - $Y' = \arg \max_i \{ \Pr[c_i \mid X'] \} = \arg \max_i \{ \Pr[X' \mid c_i] \Pr[c_i] / \Pr[X'] \}$ = $\arg \max_i \{ \Pr[X' \mid c_i] \Pr[c_i] \}$
- So we need $Pr[X' | c_i]$ and $Pr[c_i]$
 - $-\Pr[c_i]$ is the fraction of test records that belong to class c_i
 - $-\Pr[X' \mid c_i]$?

Computing the probabilities

- Assume that the attributes are conditionally independent given the class label
 - -Naïvety of the classifier

$$-\Pr[X \mid Y = c_i] = \prod_{i=1}^{d} \Pr[X_i \mid Y = c_i]$$

- X_i is the attribute i
- Without independency there would be too many variables to estimate
- With independency, it is enough to estimate $Pr[X_i \mid Y]$

$$-\Pr[Y \mid X] = \Pr[Y] \prod_{i=1}^{d} \Pr[X_i \mid Y] / \Pr[X]$$

- -Pr[X] is fixed, so can be omitted
- But how to estimate the *likelihood* $Pr[X_i | Y]$?

Categorical attributes

• If X_i is categorical $Pr[X_i = x_i \mid Y = c]$ is the fraction of training instances in class c that take value x_i on the i-th attribute

Pr[HomeOwner = yes | No] = 3/7Pr[MartialStatus = S | Yes] = 2/3

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous attributes: discretization

- We can discretize continuous attributes to intervals
 - These intervals act like ordinal attributes
- Problem is where to discretize
 - Too many intervals: too few training records per interval
 ⇒ unreliable estimates
 - Too few intervals: intervals merge attributes from different classes and don't help distinguishing the classes

Continuous attributes continue

- Alternatively we can assume distribution for the continuous variables
 - -Normally we assume normal distribution
- We need to estimate the distribution parameters
 - -For normal distribution we can use sample mean and sample variance
 - For estimation we consider the values of attribute X_i that are associated with class c_j in the test data
- We hope that the parameters for distributions are different for different classes of the same attribute
 - -Why?

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

```
Annual Income:

Class = No

Sample mean = 110

Sample variance = 2975

Class = Yes

Sample mean = 90
```

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income: Class = No Sample mean = 110

Sample variance = 2975

Class = Yes

Sample mean = 90

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

Pr[Yes] = 0.3, Pr[No] = 0.7

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income: Class = No

Sample mean = 110

Sample variance = 2975

Class = Yes

Sample mean = 90

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

Pr[Yes] = 0.3, Pr[No] = 0.7

 $Pr[X \mid No] = Pr[HO = No \mid No] \times Pr[MS = M \mid No] \times Pr[AI = $120K \mid No]$ = $4/7 \times 4/7 \times 0.0072 = 0.0024$

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income:

Class = No

Sample mean = 110

Sample variance = 2975

Class = Yes

Sample mean = 90

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

$$Pr[Yes] = 0.3, Pr[No] = 0.7$$

$$Pr[X \mid No] = Pr[HO = No \mid No] \times Pr[MS = M \mid No] \times Pr[AI = $120K \mid No]$$

= $4/7 \times 4/7 \times 0.0072 = 0.0024$

$$Pr[X \mid Yes] = Pr[HO = No \mid Yes] \times Pr[MS = M \mid Yes] \times Pr[AI = $120K \mid Yes]$$
$$= 1 \times 0 \times \varepsilon = 0$$

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income: Class = No

Sample mean = 110

Sample variance = 2975

Class = Yes

Sample mean = 90

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

Pr[Yes] = 0.3, Pr[No] = 0.7

$$Pr[X \mid No] = Pr[HO = No \mid No] \times Pr[MS = M \mid No] \times Pr[AI = $120K \mid No]$$

= $4/7 \times 4/7 \times 0.0072 = 0.0024$

$$Pr[X \mid Yes] = Pr[HO = No \mid Yes] \times Pr[MS = M \mid Yes] \times Pr[AI = $120K \mid Yes]$$
$$= 1 \times 0 \times \varepsilon = 0$$

$$Pr[No \mid X] = \alpha \times 0.7 \times 0.0024 = 0.0016\alpha, \ \alpha = 1/Pr[X]$$

 \Rightarrow Pr[No | X] has higher posterior and X should be classified as non-defaulter

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income:

$$Class = No$$

Sample mean = 110

Sample variance = 2975

$$Class = Yes$$

Sample mean = 90

Sample variance = 25

Test data: X = (HO = No, MS = M, AI = \$120K)

$$Pr[Yes] = 0.3, Pr[No] = 0.7$$

$$Pr[X \mid No] = Pr[HO = No \mid No] \times Pr[MS = M \mid No] \times Pr[AI = $120K \mid No]$$

= $4/7 \times 4/7 \times 0.0072 = 0.0024$

$$Pr[X \mid Yes] = Pr[HO = No \mid Yes] \times Pr[MS = M \mid Yes] \times Pr[AI = $120K \mid Yes]$$
$$= 1 \times 0 \times \varepsilon = 0$$

$$Pr[No \mid X] = \alpha \times 0.7 \times 0.0024 = 0.0016\alpha, \ \alpha = 1/Pr[X]$$

 \Rightarrow Pr[No | X] has higher posterior and X should be classified as non-defaulter

Continuous distributions at fixed point

- If X_i is continuous, $\Pr[X_i = x_i \mid Y = c_i] = 0!$
 - -But we still need to estimate that number
- Self-cancelling trick:

$$\begin{aligned} \Pr[\mathbf{x}_{i} - \epsilon \leqslant \mathbf{X}_{i} \leqslant \mathbf{x}_{i} + \epsilon \mid \mathbf{Y} = \mathbf{c}_{j}] &= \int_{\mathbf{x}_{i} - \epsilon}^{\mathbf{x}_{i} + \epsilon} (2\pi\sigma_{ij})^{-\frac{1}{2}} \exp\left(-\frac{(\mathbf{x} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}\right) \\ &\approx 2\epsilon \, f(\mathbf{x}_{i}; \mu_{ij}, \sigma_{ij}) \end{aligned}$$

– But 2ε cancels out in the normalization constant...

Zero likelihood

- We might have no samples with $X_i = x_i$ and $Y = c_j$
 - Naturally only problem with categorical variables
 - $-\Pr[X_i = x_i \mid Y = c_j] = 0 \Rightarrow \text{zero posterior probability}$
 - It can be that *all* classes have zero posterior probability for some validation data
- Answer is smoothing (*m-estimate*):
 - $-\Pr[X_i = x_i \mid Y = c_j] = \frac{n_i + mp}{n + m}$
 - n = # of training instances from class c_j
 - $n_i = \#$ training instances from c_j that take value x_i
 - *m* = "equivalent sample size"
 - p = user-set parameter

More on m-estimate

$$\Pr[X_i = x_i \mid Y = c_j] = \frac{n_i + mp}{n + m}$$

- The parameters are *p* and *m*
 - $-\operatorname{If} n = 0$, then likelihood is p
 - p is "prior" of observing x_i in class c_j
 - Parameter m governs the trade-off between p and observed probability n_i/n
- Setting these parameters is again problematic...

IR&DM, WS'11/12 31 January 2012 X.3-12

More on m-estimate

$$\Pr[X_i = x_i \mid Y = c_j] = \frac{n_i + mp}{n + m}$$

- The parameters are *p* and *m*
 - $-\operatorname{If} n = 0$, then likelihood is p
 - p is "prior" of observing x_i in class c_j
 - Parameter m governs the trade-off between p and observed probability n_i/n
- Setting these parameters is again problematic...
- Alternatively, we can just add one *pseudo-count* to each class
 - $-\Pr[X_i = x_i \mid Y = c_j] = (n_j + 1) / (n + |\text{dom}(X_i)|)$
 - $|dom(X_i)| = \#$ values attribute X_i can take

Summary of naïve Bayes

- Robust to isolated noise
 - Averaged out
- Can handle missing values
 - -Example is ignored when building the model and attribute is ignored when classifying new data
- Robust to irrelevant attributes
 - $-\Pr(X_i \mid Y)$ is (almost) uniform for irrelevant X_i
- Can have issues with correlated attributes