Chapter 11I:
Ranking Principles

Information Retrieval & Data Mining

Universitiat des Saarlandes, Saarbriicken
Winter Semester 2011/12

II.1-1

Chapter 111: Ranking

I111.1 Document Processing & Boolean Retrieval

Tokenization, Stemming, Lemmatization, Boolean Retrieval Models

I11.2 Basic Ranking & Evaluation Measures
TF*IDF & Vector Space Model, Precision/Recall, F-Measure, MAP, etc.

I11.3 Probabilistic Retrieval Models
Binary/Multivariate Models, 2-Poisson Model, BM25, Relevance Feedback

I11.4 Statistical Language Models (LLMs)
Basic LMs, Smoothing, Extended LMs, Cross-Lingual IR

I111.5 Advanced Query Types

Query Expansion, Proximity Ranking, Fuzzy Retrieval, XML-IR

“Mostly following Manning/Raghavan/Schiitze, with additions from other sources

[IR&DM, WS'11/12 3 November 2011 III.1-2

Chapter 1
processin

1. First Example

2. Boolean retrieval model
2.1. Basic and extended Boolean retrieval
2.2. Boolean ranking

3. Document processing
3.1. Basic ideas and tokenization
3.2. Stemming & lemmatization

4. Edit distances and spelling correction

Based on Manning/Raghavan/Schiitze, Chapters 1.1, 1.4, 2.1, 2.2, 3.3, and 6.1

[R&DM, WS'11/12 3 November 2011 III.1-3

First example: Shakespeare

* Which plays of Shakespeare contain words Brutus
and Caesar but do not contain the word Calpurnia®?

* Get each play of Shakespeare from Project Gutenberg
in plain text

» Use Unix utility grep to go thru the plays and select

the ones that mach to Brutus AND Caesar AND
NOT Calpurnia
— grep --files-with-matches ‘Brutus’ * | \

xargs grep --files-with-matches ‘Caesar’ | \
xargs grep --files-without-match ‘Calpurnia’

http://www.gutenberg.org/ebooks/search.html/?default_prefix=author_id&sort_order=downloads&query=65
http://www.gutenberg.org/ebooks/search.html/?default_prefix=author_id&sort_order=downloads&query=65

Definition of Information Retrieval
* Per Manning/Raghavan/Schiutze:

Information retrieval (IR) i1s finding material (usually
documents) of an unstructured nature (usually text)
that satisfies an information need from within large
collections (usually stored on computers).

— Unstructured data: data without clear and easy-for-
computer structure

°c.g. text
— Structured data: data with such structure

e ¢.g. relational database

— Large collection: the web
* But also your computer: e-mails, documents, programs, etc.

Boolean Retrieval Model

* We want to find Shakespeare’s
plays with words Caesar and
Brutus, but not Calpurnia

—Boolean query
Caesar AND Brutus AND NOT Calpurnia

— Answer 1s all the plays that satisty
the query

* We can construct arbitrarily
complex queries

* Result 1s an unordered set of
plays with that satisty the query

[IR&DM, WS'11/12 3 November 2011 II1.1-6

Incidence matrix

* Binary terms-by-documents matrix

— Each column 1s a binary vector describing which terms
appear 1n the corresponding documents

— Each row 1s a binary vector describing which documents
have the corresponding term

—To answer to the Boolean query, we take the rows
corresponding to the query terms and apply the Boolean

operators element-wise

Antony Julius The Hamlet Othello Macbeth ...

and Caesar Tempest

Cleopatra
Antony 1
Brutus
Caesar
Calpurnia
Cleopatra
mercy
worser

_ == O R

O OO R M)
—_—_0 O O O O
—_—_ O O RO
__ O O = O O
O FRrRP OO kRO

Extended Boolean queries

* Boolean queries used to be the standard

— St1ll common with e.g. library systems

* Plain Boolean queries are too restricted

— Queries look terms anywhere 1n the document
—Terms have to be exact

* Extensions to plain Boolean queries

— Proximity operator requires two terms to appear close to
each other

* Distance 1s usually defined using either words appearing between
the terms or structural units such as sentences

— Wildcards avoid the need for stemming/lemmatization

Boolean ranking

* Many documents have zones
— Author, title, body, abstract, etc.

* A query can be satisfied by many zones

* Results can be ranked based on how many zones the
article satisfies

— Fields are given weights (that sum to 1)

— The score 1s the sum of weights of those fields that satisty the
query

— Example: query Shakespeare 1n author, title, and body
* Author weight = 0.2, title = 0.3, and body = 0.5

* Article with Shakespeare 1n title and body but not in author would
obtain score 0.8

Document processing

* From natural language documents to easy-for-
computer format

* Query term can be misspelled or be in wrong form

—plural, past tense, adverbial form, etc.

* Before we can do IR, we must define how we handle
these 1ssues

— ‘Correct’ handling 1s very much language-dependent

What 1s a document?

* If data are not in some linear plain-text format
(ASCII, UTF-8, etc.), 1t needs to be converted

— Escape sequences (e.g. &); compressed files; PDFs, etc.

e Data has to be divided into documents

— A document 1s a basic unit of answer

» Should Complete Works of Shakespeare be considered as a single
document? Or should each act of each play be a document?

* Unix mbox-format stored each e-mail into one file, should they
be separated?

» Should one-page-per-section HTML-pages be concatenated into
one document?

Tokenization

* Tokenization splits text into tokens

Friends, Romans, Countrymen, lend me your ears;

Friends||Romans||Countrymen lend“me “your ears

* A type 1s a class of all tokens with same character
sequence

* A term 1s a (possibly normalized) type that 1s
included into IR system’s dictionary

* Basic tokenization
— Split at white space

— Throw away punctuation

Issues with tokenization

» Language- and content-dependent

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de

— co-ordinates vs. a good-looking man

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t
— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man
— straight forward, white space, Los Angeles

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t
— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man
— straight forward, white space, Los Angeles

— ['ensemble and un ensemble

Issues with tokenization

» Language- and content-dependent
—Boys’ = Boys vs. can’t = can t
— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man
— straight forward, white space, Los Angeles
— [’ensemble and un ensemble

— Compound nouns

Issues with tokenization

» Language- and content-dependent
—Boys’ = Boys vs. can’t = can t
— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man
— straight forward, white space, Los Angeles
— [’ensemble and un ensemble

— Compound nouns

» Lebensversicherungsgesellschaftsangestelliter

http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter
http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man

— straight forward, white space, Los Angeles

— ['ensemble and un ensemble

— Compound nouns

» Lebensversicherungsgesellschaftsangestelliter

— Noun cases

http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter
http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man

— straight forward, white space, Los Angeles

— ['ensemble and un ensemble

— Compound nouns
» Lebensversicherungsgesellschaftsangestelliter

— Noun cases

* Talo (a house) vs. talossa (1n a house), lammas (a sheep) vs.
lampaan (sheep’s)

http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter
http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter

Issues with tokenization

» Language- and content-dependent
—Boys” = Boys vs.can’t = can t

— http://www.mpi-inf.mpg.de and pauli.miettinen@mpi-inf.mpg.de
— co-ordinates vs. a good-looking man

— straight forward, white space, Los Angeles

— ['ensemble and un ensemble

— Compound nouns
» Lebensversicherungsgesellschaftsangestelliter

— Noun cases

* Talo (a house) vs. talossa (1n a house), lammas (a sheep) vs.
lampaan (sheep’s)

— No spaces at all (major East Asian languages)

http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter
http://translate.google.com/%23de%7Cen%7CLebensversicherungsgesellschaftsangestellter

Stop words

* Stop words are extremely common words that are
excluded from the system’s vocabulary

—a, an, and, are, as, at, be, by, for, from, has, he, in, is, ...
* Do not seem to help and removing saves space

* Removing can cause problems

— President of the United States vs. President United States
— Let it be; to be or not to be, etc.

e Current trend towards shorter or no stop word lists

http://scholar.google.com/scholar?q=let+it+be&hl=en&btnG=Search&as_sdt=1%252C5&as_sdtp=on
http://scholar.google.com/scholar?q=let+it+be&hl=en&btnG=Search&as_sdt=1%252C5&as_sdtp=on

Stemming

* Variations of words could be grouped together
—E.g. plurals, adverbial forms, verb tenses

e A crude heuristic to cut the ends of the words
— ponies = poni; individual = individu

* Exact stem does not need to be a proper word
—variations of same word should have unique stem

* Most popular one 1n English 1s Porter Stemmer
— http://tartarus.org/martin/PorterStemmer/

http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/

Example of stemming

Original: Such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can lead to
a picture of expression that 1s more biologically transparent and
accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not
easil1 visibl from the variat in the individu gene and can lead to a
pictur of express that 1s more biolog transpar and access to
interpret

[_.emmatization

* A lemmatizer produces full morphological analysis of
the word to 1dentify the lemma of the word

— Lemma 1s the dictionary form of the word
* With input saw stemmer might return either s or saw,

whereas lemmatizer tries to define if the word 1s noun
(return saw) or verb (return see)

* With English lemmatizers do not produce
considerable improvements over stemmers

— But stemmers do not help that much, either

Other 1deas

* Diacritic removal
—Remove diacritics, e.g. i=u,a=2a,0 =0
—Many queries do not include diacritics
— Sometimes diacritics are typed using multiple characters

e fir = fuer

* n-grams are sequences of n characters (inter- or intra-
word)

— Very useful with Asian languages without clear word spaces

* Lower-casing words
— Truecasing tries to use the correct capitalization
— But users rarely use correct capitalization

Does any of this help?

* Depends on language, but not much with English

* Some results with 8 European languages (Hollink et al.
2004)

— Diacritic removal helps with Finnish, French, and Swedish

— Stemming helps with Finnish (30% improvement)
* With English gains 0-5%, even poorer with lemmatizer

— Compound splitting improved Swedish (25%) and German
(5%)

— Intra-word 4-grams helped Finnish (32%), Swedish (27%), and
German (20%)

* In summary, morphologically rich languages benefit
most

Edit distances and spelling correction

* [T user types term that 1s not in our vocabulary, it 1s
possibly misspelled

* We can try to recover from that by mapping the query
term to the most similar term in our vocabulary

 But to do that we need to define a distance between
terms

* We can consider basic types of spelling errors
—adding extra characters (hoouse vs. house)

—omitting some characters (huse)
—using wrong character (hiuse)

Hamming edit distance

* All distances should admit triangle inequality
—d(x,y) <d(x,z) + d(z,y) for strings x, y, and z and distance d
 Hamming 1s the simplest distance

Hamming distance of strings x and y 1s the number of
positions where x and y are different.

* Normally x and y must be of same length

— We can pad the shorter one with null characters

* Corresponds to only using wrong characters
* Example:

—Hamming distance between car and bar 1s 1, and between
house and hoosse 3

Longest common subsequence

* Correspond to case when we have only dropped (or
added) characters

* A subsequence of two strings x and y 1s a string s such
that all characters of s appear 1n x and y 1n the same
order as 1n s but not necessarily contiguously

— Set of all subsequences of x and y 1s denoted S(x,y)

Longest common subsequence (LCS) distance of strings x
and y (of n and m characters, respectively) 1s

max(mn, m) — max |
seS(x,y)

* Example: LCS of banana and atana 1s aana and LCS
distance 1s 2

[evenshtein edit distance

 All three types of errors are allowed

(Levenshtein) edit distance of strings x and y 1s the number
of additions, deletions, or substitutions of single characters
of x required to make x equal to y.

* Example: distance between houses and trousers 1s 3:
houses — rouses — trouses — trousers

* We can also add weights for edit operations

— Different weights to substituting different characters
* Based on how close the characters are on a keyboard

— With proper weights, can be very etfective

Computing the edit distance

* Dynamic-programming algorithm
— Takes time O(|x| x |y|)

int LevenshteinDistance(char s[1..mm], char t[1..n])

{

declare int d[0..m, O..n]

forifrom O tom

d[i, O] :=1i// the distance of any first string to an empty second string
for jfrom O ton

d[O, j] :=j// the distance of any second string to an empty first string

for jfrom 1 ton

{

forifrom 1 tom
{
if s[i] = t[j] then
d[i, j] :=d[i-1, j-1] // no operation required
else
d[i, j] := minimum
(d[i-1,j]+ 1, // adeletion
d[i, j-1]+ 1, // an insertion
d[i-1,j-1]+ 1 // a substitution)
}
}

return d[m,n]

}

