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Chapter I11: Ranking Principles*

[11.1 Document Processing & Boolean Retrieval

Tokenization, Stemming, Lemmatization, Boolean Retrieval Models
111.2 Basic Ranking & Evaluation Measures

TF*IDF & Vector Space Model, Precision/Recall, F-Measure, MAP, etc.
111.3 Probabilistic Retrieval Models

Binary/Multivariate Models, 2-Poisson Model, BM25, Relevance Feedback
111.4 Statistical Language Models (LMSs)

Basic LMs, Smoothing, Extended LMs, Cross-Lingual IR
[11.5 Advanced Query Types

Query Expansion, Proximity Ranking, Fuzzy Retrieval, XML-IR

*mostly following Manning/Raghavan/Schutze, with additions from other sources
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111.3 Probabilistic Information Retrieval

* [I1.3 Probabilistic IR (MRS book, Chapter 11)

— 3.1 Multivariate Binary Model & Smoothing

— 3.2 Poisson Model, Multinomial Model, Dirichlet Model
— 3.3 Probabilistic IR with Poisson Model (Okapi BM25)
— 3.4 Tree Dependence Model & Bayesian Nets for IR

IR&DM, WS'11/12 November 8, 2011

1.3




TF*IDF vs. Probabilistic Models

« TF*IDF sufficiently effective in practice but often criticized for
being “too ad-hoc”

» Typically outperformed by probabilistic ranking models and/or
statistical language models in all of the major IR benchmarks:

— TREC: http://trec.nist.qov/
— CLEF: http://clef2011.org/
— INEX: https://inex.mmci.uni-saarland.de/

« Family of Probabilistic IR Models

— Generative models for documents as bags-of-words

— Binary independence model vs. multinomial (& multivariate) models
« Family of Statistical Language Models

— Generative models for documents (and queries) as entire sequences of words
— Divergence of document and query distributions (e.g., Kullback-Leibler)
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“Is This Document Relevant? ... Probably™

A survey of probabilistic models in information
retrieval.

Fabio Crestani, Mounia Lalmas, Cornelis J. Van
Rijsbergen, and lain Campbell

Computer Science Department
University of Glasgow
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Probabilistic IR

Based on generative model:
* probabilistic mechanism for producing document (or query)
« usually with specific family of parameterized distribution

Very powerful model but restricted through practical limitations:

« often with strong independence assumptions among words

» justified by “curse of dimensionality”:
corpus with n docs and m terms has n = 2™ distinct possible docs
would have to estimate model parameters from n << 2™ docs
(problems of sparseness & computational tractability)
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[11.3.1 Multivariate Binary Model

For generating doc d from joint (multivariate) word distribution ¢
« consider binary RVs: X, = 1 if word w occurs in doc d, 0 otherwise
« postulate independence among these RVs

_ X 1-X,,  with vocabulary W
Pld [¢]= H¢W (1~ and parameters (priors)

weW
Oy =
— H¢W H (1—¢,)  Plrandomly drawn word is w]
weD weW ,wgD

However:

» presence of short documents underestimated

» product for absent words underestimates prob. of likely docs

» too much prob. mass given to very unlikely word combinations
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Probabilistic Retrieval with the Binary Model

[Robertson and Sparck-Jones 1976]

Binary Relevance Model:
* Document d is relevant for query q (i.e., R=1) or not (i.e., R=0)

 Ranking based on sim(doc d, query q) =
P[R=1]|d,q] = P [ doc d is relevant for query q |
d has term vector X,,...,X, ]

Probability Ranking
Principle (PRP)

PRP with Costs: [Robertson 1977]
For a given retrieval task, the cost of retrieving
d as the next result in a ranked list for query q Is:
cost(d,q) := C, * P[R=1]d,q] + C, * P[R=0|d,q] (““1/0 loss case”)
with cost constants
C, = cost of retrieving a relevant doc
C, = cost of retrieving an irrelevant doc
For C, < C,, the cost is minimized by choosing
arg maxy P[R=1|d,q]

IR&DM, WS'11/12 November 8, 2011 1.8



Optimality of PRP

Goal:
Return top-k documents
In descending order of P[R=1|d,q] or cost(d,q), respectively.

Bayes’ Optimal Decision Rule: (PRP without cost function)
Return documents which are more likely
to be relevant than irrelevant, i.e.:
Document d is relevant for query q
iff P[R=1|d,q] > P[R=0|d,q]

Theorem:
The PRP Is optimal, in the sense that it minimizes the expected
loss (aka. “Bayes’ risk’”) under the 1/0 loss function.
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Derivation of PRP

Consider doc d to be retrieved next,
1.e., d 1s preferred over all other candidate docs d’

cost(d) :=
C, P[R=1|d] + C, P[R=0|d] £C, P[R=1|d’] + C, P[R=0|d’]
=: cost(d’)

<

C, P[R=1]|d] + C, (1 - P[R=1|d]) £ C, P[R=1|d’] + C, (1 — P[R=1]d’])
<

C, P[R=1]|d] - C, P[R=1|d] < C,; P[R=1|d’] — C, P[R=1|d’]
<

(C, - Co) PIR=1Jd] < (C,-Cp) PIR=1|d"] | 4c, < c,
<:> .

P[Rzlld] > P[R:1|da] by assumption

forall d’
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Binary Model and Independence

Basic Assumption:

Relevant and irrelevant documents differ in their term distribution.

Binary Independence Model (BIM) Model:
* Probabilities for term occurrences are
pairwisely independent for different terms.
« Term weights are binary < {0,1}.

—> For terms that do not occur in query g, the probabilities of such a
term to occur are the same among relevant and irrelevant documents.

—> Relevance of each document is independent of the relevance of
any other document.

IR&DM, WS'11/12 November 8, 2011 .11



Ranking Proportional to Relevance Odds

P[R =1|d]
P[R=0]d]
~ P[d|R=1]xP[R=1]
~ P[d|R=0]xP[R=0]

sim(d,q) =0O(R|d) = (using odds for relevance)

(Bayes’ theorem)

. Pld|R=1 H P[d, |[R=1] (independence or
P[d|R=0] +iP[d|R=0] linked dependence)

-y PR =1 (P[d|R=1] = P[d;|R=0]
L2 P[d. |R=0] for i ¢q)

_rp PIX; =1|R=1]  P[X;=0|R=]]
_gp[xi=1|R=0] QP[Xi:O|R:0]

ieq ieq

d; =1 if d includes term i, X; = 1if random doc includes term 1,
0 otherwise 0 otherwise
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Ranking Proportional to Relevance Odds

T2 1-p with estimators p=P[X.=1|R=1]
ica 0 ea 10 and g;=P[X:=1|R=0]
ieq ieq

1-d,

-T2 Py g Ll with d; =1 iff i < d, 0 otherwise
Ieq q| ieq (1_q|) |

ocz |Og(p' (- p))— g(q' (- CI)) invariant of
- (1-p ) (1-q ) / document d

p 1-q 1-p

=>» d.log—— + ) d. log ~(+ » log——

|Zeq: o p| Izeq: qi 'Zeq: 1_q|
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Probabilistic Retrieval:
Robertson/Sparck-Jones Formula

Estimate p; und g; based on training sample
(query q on small sample of corpus) or based on
intellectual assessment of first round‘s results (relevance feedback):

Let N be #docs in sample
R be # relevant docs in sample
n; be #docs in sample that contain term i
. be #relevant docs in sample that contain term i

—> Estimate: p. _L g _M-h
R " N-R
or: ~L+0.5 N —-r+0.5 (Lidstone smoothing
' =" 9T TRt with 2.=0.5)
+0.5 N—-n—-R+r+0.5
—  sim(d, d. lo + > d.lo ' !
(€.9)= .Zq: g R—r.+0.5 ,Zeq: ) n—r.+0.5

o (r +0.5) (N—n.—R+r. +0.5)
(R-r,+0.5)(n, —r, +0.5)
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Example for Probabilistic Retrieval

Documents d,...d, with relevance feedback:

ot ot t ot | R| Gtttttt
d |1 0 1 1 0 0 1]

d,[1 1 o 1 1 o0 |1 o
.0 0 0o 1 1 o0 |o]f TR

d, /0 0 1 0 0 0|0

nl2 1 2 3 2 0

rl2 1 1 2 1 0

o [5/6 12 12 5/6 1/2 1/

q |16 16 12 12 12 1/6

Score of new document d; (Smoothing omitted):

d:Nq:<110001> —sim(ds, g)= log5+log1+log1/5
+log5+1log5+1log5

using sim(d,q) = >_ d; log p'p + > d, Iogqu'
ieq — M ieq i
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Relationship to TF*IDF Formula

Assumptions (without training sample or relevance feedback):
* p; Is the same for all i

« most documents are irrelevant

» each individual term i is infrequent

This implies:
. Z d. IOg =C Zdi with constant ¢
ieq o p| ieq

- qi=P[xi=1|R=01~%

1-q, N-df, N

q  df,  df

= sim(d,q)=)_ d, Iog P +Zd Iog1 4
leq ' l<q G~ scalar product over

I
~ CZ d + Zdi -Iog idf the product of tf and

dampend idf values
icq icq for query terms
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Laplace Smoothing (with Uniform Prior)

Probabilities p; and g; for term 1 are estimated

by MLE for Binomial distribution

(repeated coin tosses for relevant docs, showing term i with prob. p;,
repeated coin tosses for irrelevant docs, showing term i with prob. q;)
To avoid overfitting to feedback/training,

the estimates should be smoothed

(e.g., with uniform prior):

Instead of estimating p; = k/n estimate:

pi=(k+1)/(n+2) (Laplace’s law of succession)
or with heuristic generalization:

pi=((k+A)/(n+21) withA >0

(e.g., using A=0.5) (Lidstone’s law of succession)

And for Multinomial distribution (n times w-faceted dice) estimate:
pi = (ki +1)/(n+w)
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[11.3.2 Advanced Models: Poisson/Multinomial

For generating doc d

e consider counting RVs: X, = number of occurrences of w in d

» still postulate independence among these RVs

Poisson model with word-specific parameters p,,:

W :e wewW

X |

Pld 1=

e_‘uW .lLl Xw _Z:uw Xw

weW Ww" wed XW I

MLE for p,, Is straightforward but:
* no likelihood penalty by absent words
* no control of doc length

MLE 4, = %ikw
i1=1

for n i1id. samples (docs)
with values k,
(word frequencies)
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Multinomial Model

For generating doc d

e consider counting RVs: X, = number of occurrences of w in d
« first generate doc length (a RV): ¢, =X, X,

» then generate word frequencies X,

PL¢ . {x {0, 1=Pl¢,] PI{x,}| ¢,.{6,}] withword-specific

parameters 0,,

weW

= P[randomly
_ P[Z E ) H@ drawn word is w]

= P[¢,]

wed W
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Burstiness and the Dirichlet Model

Problem:
* In practice, words in documents do not appear independently
» Poisson/Multinomial underestimate likelihood of docs with high tf
e “bursty”” word occurrences are not unlikely:
 term may be frequent in doc but infrequent in corpus
« for example, P[tf > 10] is low, but P[tf > 10 | tf > 0] is high

Solution: Two-level model
* Hypergenerator:
to generate doc, first generate word distribution in corpus
(thus obtain parameters of doc-specific generative model)
« Generator:
then generate word frequencies in doc, using doc-specific model
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Dirichlet Distribution as Hypergenerator
for Two-Level Multinomial Model

o T
Word 1 Ward 1

/% P\ .
o =(0.44, 0.25, 0.31) o =(1.32,0.75, 0.93) o =(3.94, 2.25, 2.81) 0 =(0.44, 0.25, 0.31)
(a) low-scaled DCM (b) mid-scaled DCM (¢) high-scaled DCM (d) multinomial

3-dimensional examples of Dirichlet and Multinomial
(Source: R.E. Madsen et al.: Modeling Word Burstiness Using the Dirichlet Distribution)

MAP of Multinomial with Dirichlet prior
IS again Dirichlet (with different parameter values)
(““Dirichlet 1s the conjugate prior of Multinomial™)
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MLE for Dirichlet Hypergenerator

_ 2-step probability
Pld|a]=| POIaIPId|d]do  ZSh Prve

with independence assumptions:

gd F(Z aw) 1—1()( Ta )
Pld =P fd - ( ]
[ |a] [ ] ({Xw}j 1_‘(Z:W (XW -I-Olw)) ];[ F(Olw)

for further steps for MLE use approximations and
numerical methods (e.g., EM or Newton iterations)

IR&DM, WS'11/12 November 8, 2011

111.22



Practical Adequacy of the Dirichlet Model

, , with MLE ~ with MLE
10 T T —— T 10 T T T T T 10 v T T T T
— 500 common terms — 500 common terms | = 500 common terms
===+ 5000 avera ge terms ===+ 5000 avera ge terms ===+ 5000 avera ge terms
50030 rare terms [ o 50030 rare terms - 50030 rare terms
107 10”7}
o >
'.=: 104 § 104.
s 2
8 g
= o
104 10-8 P
-8
10" 107t 1 Uf
0 5 10 16 20 26 30 0 5 10 16 20 25 30 o s do L N &8 =
Word occurs exactly x times in a document Word occurs exactly X times in a document Word occurs exactly x times in a document

Source: R. Madsen et al.: Modeling Word Burstiness Using the Dirichlet Distribution, ICML 2005

model goodness for data X4, ..., X, also measured by

—Zn: p(x)log, p(X;) —Z freq(x;) log, p(x;)
perplexity = 2 = or 2™

(i.e., the exponential of entropy or cross-entropy)
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111.3.3 Probabilistic IR with Okapi BM25

Generalize term weight w = log PE=0)
Per Yo qd=p)
into W =1log
Gir Po

with p;, g; denoting prob. that term occurs j times in rel./irrel. doc, resp.

Postulate Poisson (or 2-Poisson-mixture) distributions for terms:

) ﬂtf ) ,thf
ptf:eﬂm Qtf:eﬂﬁ

But: aim to reduce the number of parameters p, A that need to be
learned from training samples!

Want: ad-hoc ranking function of similar ranking quality without
training data!
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Okapl BM25

Approximation of Poisson model by similarly-shaped function:

pd-q) ff
qil—p) k, +tf

w = log

Finally leads to Okapi BM25 (with top-ranked results in TREC):
(k, + Dt N —df; +0.5

-log
kl((l—b)-l-b Iength (d) L tf dfj +0.5
avg.doclength ’

w;(d) =

Or in its most comprehensive, tunable form: score(d,q) :=

S log N —df, +0.5 (k, +D)tf, (ks +Datf; qA=ten(@)
. . :
= df; +05 4 (1_b) +blenA(d)) v, Koraf, A+len(d)

with 4=avg.doclength, tuning parameters ky, k,, ks, b,
non-linear influence of tf, and consideration of current doc length
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BM25 Example

BM25 Score

* 3-d plot of a simplified N.DF 2 0
BM25kscoring function
using k,=1.2 as parameter
(DF is mirrored for better W (k, +Dtf; log N —df; +0.5
readability) i '

« scores for df>N/2 are K, + tfi dfi +0.5
negative!
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111.3.4 Extensions to Probabilistic IR

Consider term correlations in documents (with binary X.)
— Problem of estimating m-dimensional prob. distribution
PIX= o AX= oA A X =] =0 R (X, X))

One possible approach: Tree Dependence Model
a) Consider only 2-dimensional probabilities (for term pairs 1,))
0K, X)=P[Xi= . AX=.]=2.. X X . X X .2PXi=..AnXy=.]
.. X1 Xji1 Xj+1 Xj-1Xj+1 Xm
b) For each term pair 1,j
estimate the error between independence and the actual correlation
¢) Construct a tree with terms as nodes and the
m-1 highest error (or correlation) values as weighted edges
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Considering Two-dimensional Term Correlations

Variant 1:
Error of approximating f by g (Kullback-Leibler divergence)
with g assuming pairwise term independence:

g(f,)= ¥ f(X)log (X) y f(X)Iog F(X)

X 0, 3™ 9( X ef0,3™ H gi (X;)
=1

Variant 2:

Correlation coefficient for term pairs:

(X X.)= Cov(X;, X;)

AR 20 JVar(X;) JVar(X;)

Variant 3:

level-a values or p-values
of Chi-square independence test
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Example for Approximation Error
(KL Strength)

m=2.:
given are documents:
dlz(l’l)’ dZ(OvO)’ d3:(1’1)’ d4:(0’1)
estimation of 2-dimensional prob. distribution f:
f(1,1) = P[X;=1 A X,=1] = 2/4
f(0,0) = 1/4, 1(0,1) = 1/4,f(1,0) =0
estimation of 1-dimensional marginal distributions g, and g.:
9,(1) = P[X;=1] = 2/4, 9,(0) = 2/4
0,(1) = P[X,=1] = 3/4, g,(0) = 1/4
estimation of 2-dim. distribution g with independent X;:
9(1,1) = 9,(1)*g,(1) = 3/8,
9(0,0) = 1/8, g(0,1) = 3/8, g(1,0) =1/8
approximation error € (KL divergence):
e=2/41log4/3 + 1/4log2 + 1/41log 2/3 +0
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Constructing the Term Dependence Tree

Given:
Complete graph (V, E) with m nodes X, €V and
m? undirected edges e E with weights € (or p)
Wanted:
Spanning tree (V, E’) with maximal sum of weights
Algorithm:
Sort the m? edges of E in descending order of weights
E =
Repeat until |E’| = m-1
E’:=E U {(1,)) €E|(1,)) has max. weight in E}
provided that E’ remains acyclic;
E:=E-{(i)) €E| (1)) has max. weight in E}

Example:  Web 0.7 Surf Web
0.9 0.7
0.9 05103 ) 970
0.1 Internet Surf
Internet ——Swim 0.3/

0.1

IR&DM. WS'11/12 November 8, 2011 Swim
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Estimation of Multidimensional Probabilities

with Term Dependence Tree
Given is a term dependence tree (V = {X4, ..., X,}, E).

Let X, be the root, nodes are preorder-numbered, and assume that
X; and X; are independent for (i,j) ¢ E’. Then:

P[X,=.A.AX,=.]= P[X,=.]P[X,=.AX,=.|X,=.]  cond. prob.
=IT, P[X;=.] X, =.AX;=.] chain rule

= P[X,] H PLX; | Xi] cond. indep.
(i,])eE’
= P[X,]- H P[Xi’xj] cond. prob.
Example: ipee  PI[Xi]
Web P[Web, Internet, Surf, Swim] =
/\ P[Web] P[Web, Internet] P[Web, Surf ] P[Surf , Swim]
Internet Surf P[Web] P[Web] P[Surf]

Swim
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Bayesian Networks

A Bayesian network (BN) is a directed, acyclic graph (V, E) with
the following properties:
* Nodes < V representing random variables and
 Edges € E representing dependencies.
 For aroot R € V the BN captures the prior probability P[R = ...].
 For a node X € V with parents parents(X) = {P, ..., P,}
the BN captures the conditional probability P[X=... | P, ..., P,].
* Node X is conditionally independent of a non-parent node Y
given its parents parents(X) = {P,, ..., P, }:
PIX| Py ooy P, Y] =P[X | Py, ..., P

This implies: P[X,... X ]=P[ X | X, ... X ]P[X,... X,]

« by the chain rule: =] [PIXi1X gy X, ]
i=1

* by cond. independence: :H P[ X, | parents(X.),other nodes]
=1

:ﬁ PLX; | parents(X,)]

=1
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Example of Bayesian Network

(aka. “Belief Network™)

P[S | C]: w

C|| P[S] |P[-S]
FIl 05| 05
T 01 09

IR&DM, WS'11/12

P[C]-

m | P[C]| P[-C]
05 | 05

P[W | S,R]:

November 8, 2011

P[R | C]:
@ C|| P[R] | P[=R]
FI 02 08
TI| 08| 0.2
S|R ||P[W] | P[=W]
FIF || 00 | 1.0
FITI 09 | 01
TIF| 09 | 01
7171l 099! 0.01
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Bayesian Inference Networks for IR

P[d]=1/N

with P[t; | d;eparents(t;)] =
binary 1if t; occurs in d;,
random 0 otherwise

variables / Pl | parents(q)] =

@ 1 1f Iteparents(q): t is relevant for q,
0 otherwise

Plard;1= > Plaad;|t ..t,1P[t,...t,]

(t..ty )

= Z:P:q/\dj At AALy ]

= ZP:C” d;, A ALAL TP At AL AT, ]

= Z:P:q|t1/\.../\’[,v|]F’[’[l/\.../\'[,\,I |dj]P[dj]
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Advanced Bayesian Network for IR

é . @ with concepts / topics ¢,
(0 Plodtt]=tttd
[t. vt,] df +df —df,

Problems:

» parameter estimation (sampling / training)
» (non-) scalable representation

* (in-) efficient prediction

« fully convincing experiments
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Summary of Section 111.3

 Probabilistic IR reconciles principled foundations
with practically effective ranking
 Parameter estimation requires smoothing to avoid overfitting
* Poisson-model-based Okapi BM25 has won many benchmarks
« Multinomial & Dirichlet models are even more expressive
 Extensions with term dependencies, such as Bayesian Networks,

are intractable for general-purpose IR but interesting for specific apps
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« Manning/Raghavan/Schuetze, Chapter 11
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