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Chapter III: Ranking Principles* 

III.1 Document Processing & Boolean Retrieval 

   Tokenization, Stemming, Lemmatization, Boolean Retrieval Models 

III.2 Basic Ranking & Evaluation Measures 

    TF*IDF & Vector Space Model, Precision/Recall, F-Measure, MAP, etc. 

III.3 Probabilistic Retrieval Models 

    Binary/Multivariate Models, 2-Poisson Model, BM25, Relevance Feedback 

III.4 Statistical Language Models (LMs) 

    Basic LMs, Smoothing, Extended LMs, Cross-Lingual IR 

III.5 Advanced Query Types 

   Query Expansion, Proximity Ranking, Fuzzy Retrieval, XML-IR 

*mostly following Manning/Raghavan/Schütze, with additions from other sources 
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• III.3 Probabilistic IR (MRS book, Chapter 11) 

–  3.1 Multivariate Binary Model & Smoothing 

–  3.2 Poisson Model, Multinomial Model, Dirichlet Model 

–   3.3 Probabilistic IR with Poisson Model (Okapi BM25) 

–   3.4 Tree Dependence Model & Bayesian Nets for IR 

III.3 Probabilistic Information Retrieval 
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TF*IDF vs. Probabilistic Models 

• TF*IDF sufficiently effective in practice but often criticized for 
being “too ad-hoc” 

• Typically outperformed by probabilistic ranking models and/or 
statistical language models in all of the major IR benchmarks:  

– TREC: http://trec.nist.gov/ 

– CLEF: http://clef2011.org/ 

– INEX: https://inex.mmci.uni-saarland.de/ 

 

• Family of Probabilistic IR Models  

– Generative models for documents as bags-of-words  

– Binary independence model vs. multinomial (& multivariate) models 

• Family of Statistical Language Models 

– Generative models for documents (and queries) as entire sequences of words 

– Divergence of document and query distributions (e.g., Kullback-Leibler) 
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Probabilistic IR  

 

 

Very powerful model but restricted through practical limitations: 

• often with strong independence assumptions among words 

• justified by “curse of dimensionality”:  

corpus with n docs and m terms has n = 2m distinct possible docs 

would have to estimate model parameters from n << 2m  docs  

(problems of sparseness & computational tractability)  

Based on generative model:  
• probabilistic mechanism for producing document (or query) 
• usually with specific family of parameterized distribution  
 

w1,...,wm d1,...,dn 
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III.3.1 Multivariate Binary Model 

For generating doc d from joint (multivariate) word distribution  

• consider binary RVs: Xw = 1 if word w occurs in doc d, 0 otherwise 

• postulate independence among these RVs 
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However:  

• presence of short documents underestimated 

• product for absent words underestimates prob. of likely docs 

• too much prob. mass given to very unlikely word combinations 
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Probabilistic Retrieval with the Binary Model 
[Robertson and Sparck-Jones 1976] 

PRP with Costs:  [Robertson 1977] 

For a given retrieval task, the cost of retrieving 

d as the next result in a ranked list for query q is: 

      cost(d,q) := C1 * P[R=1|d,q] + C0 * P[R=0|d,q]       (“1/0 loss case”) 

with cost constants  

C1   = cost of retrieving a relevant doc 

C0   = cost of retrieving an irrelevant doc 

For C1 <  C0, the cost is minimized by choosing  

      arg maxd  P[R=1|d,q] 

Binary Relevance Model:  

• Document d is relevant for query q (i.e., R=1) or not (i.e., R=0) 

• Ranking based on sim(doc d, query q) = 

   P[R=1|d,q] = P [ doc d is relevant for query q | 

                                d has term vector X1,...,Xm ] 

 

Probability Ranking 

Principle (PRP) 
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Optimality of PRP 

Goal:  

  Return top-k documents  

   in descending order of P[R=1|d,q] or cost(d,q), respectively. 

 

Bayes’ Optimal Decision Rule: (PRP without cost function) 

Return documents which are more likely  

to be relevant than irrelevant, i.e.: 

Document d is relevant for query q  

  iff P[R=1|d,q] > P[R=0|d,q] 

 

Theorem: 

  The PRP is optimal, in the sense that it minimizes the expected  

  loss (aka. “Bayes’ risk”) under the 1/0 loss function. 
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Derivation of PRP 

Consider doc d to be retrieved next,  

i.e., d is preferred over all other candidate docs d’ 

cost(d) :=  

    C1 P[R=1|d] + C0 P[R=0|d]   C1 P[R=1|d’] + C0 P[R=0|d’] 

                                                                                        =: cost(d’)  

C1 P[R=1|d] + C0 (1  P[R=1|d])  C1 P[R=1|d’] + C0 (1  P[R=1|d’])  
 

C1 P[R=1|d]  C0 P[R=1|d]    C1 P[R=1|d’]  C0 P[R=1|d’]  
 

(C1  C0) P[R=1|d]    (C1  C0) P[R=1|d’]  
 

 P[R=1|d]    P[R=1|d’]  
 

for all d’ 

as C1 <  C0  

by assumption 
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Binary Model and Independence 

Basic Assumption: 

 Relevant and irrelevant documents differ in their term distribution. 

 

Binary Independence Model (BIM) Model: 

• Probabilities for term occurrences are  

   pairwisely independent for different terms. 

• Term weights are binary {0,1}. 

 

 For terms that do not occur in query q, the probabilities of such a  

  term to occur are the same among relevant and irrelevant documents. 

 

 Relevance of each document is independent of the relevance of 

  any other document. 
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Ranking Proportional to Relevance Odds 
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Ranking Proportional to Relevance Odds 

with estimators pi=P[Xi=1|R=1]  

                  and  qi=P[Xi=1|R=0] 
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Probabilistic Retrieval: 
Robertson/Sparck-Jones Formula 

Estimate pi und qi based on training sample 
(query q on small sample of corpus) or based on 
intellectual assessment of first round‘s results (relevance feedback): 

Let   N be #docs in sample 
        R be # relevant docs in sample 
        ni be #docs in sample that contain term i 
        ri  be #relevant docs in sample that contain term i 

Estimate:  
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Example for Probabilistic Retrieval 
Documents d1…d4 with relevance feedback: 

        t1      t2      t3      t4      t5      t6         R 

d1     1       0       1       1       0      0        1 

d2     1       1       0       1       1      0        1 

d3     0       0       0       1       1      0        0 

d4     0       0       1       0       0      0        0 

ni      2       1       2       3       2       0      

ri       2       1       1       2       1       0 

pi    5/6    1/2     1/2   5/6    1/2    1/6 

qi    1/6    1/6     1/2   1/2    1/2    1/6 

N=4, R=2 

q: t1 t2 t3 t4 t5 t6 

Score of new document d5 (smoothing omitted): 

d5q: <1 1 0 0 0 1>  sim(d5, q) =   log 5 + log 1 + log 1/5 

                        + log 5 + log 5 + log 5 

November 8, 2011 III.15 IR&DM, WS'11/12 

 
 







qi i

i

qi

i

i

i
i

q

q
d

p

p
dqdsim

1
log

1
log),(using 



Relationship to TF*IDF Formula 
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Assumptions (without training sample or relevance feedback): 

• pi is the same for all i 

• most documents are irrelevant 

• each individual term i is infrequent 

This implies: 
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Laplace Smoothing (with Uniform Prior) 
Probabilities pi and qi for term i are estimated 

by MLE for Binomial distribution 
(repeated coin tosses for relevant docs, showing term i with prob. pi, 

 repeated coin tosses for irrelevant docs, showing term i with prob. qi)  

To avoid overfitting to feedback/training, 

the estimates should be smoothed  

(e.g., with uniform prior): 

Instead of estimating pi = k/n estimate: 

 pi = (k +1) / (n +2)    (Laplace’s law of succession) 

or with heuristic generalization:  

 pi = (k +) / ( n +2)  with  > 0  

 (e.g., using =0.5)  (Lidstone’s law of succession) 

And for Multinomial distribution (n times w-faceted dice) estimate: 

 pi = (ki + 1) / (n + w) 
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III.3.2 Advanced Models: Poisson/Multinomial 

For generating doc d 

• consider counting RVs: xw = number of occurrences of w in d 

• still postulate independence among these RVs 
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MLE for w is straightforward but: 

• no likelihood penalty by absent words 
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Multinomial Model 

For generating doc d 

• consider counting RVs: xw = number of occurrences of w in d 

• first generate doc length (a RV): ld = w xw 

• then generate word frequencies xw  
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Burstiness and the Dirichlet Model 

Problem:  

• In practice, words in documents do not appear independently 

• Poisson/Multinomial underestimate likelihood of docs with high tf 

• “bursty” word occurrences are not unlikely: 

• term may be frequent in doc but infrequent in corpus 

• for example, P[tf > 10] is low, but P[tf > 10 | tf > 0] is high 

Solution: Two-level model  

• Hypergenerator:  

  to generate doc, first generate word distribution in corpus 

  (thus obtain parameters of doc-specific generative model) 

• Generator:  

  then generate word frequencies in doc, using doc-specific model 
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Dirichlet Distribution as Hypergenerator 

for Two-Level Multinomial Model 

MAP of Multinomial with Dirichlet prior 
is again Dirichlet (with different parameter values) 
(“Dirichlet is the conjugate prior of Multinomial”)  
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 = (0.44, 0.25, 0.31)  = (1.32, 0.75, 0.93)  = (3.94, 2.25, 2.81)  = (0.44, 0.25, 0.31) 

3-dimensional examples of Dirichlet and Multinomial 
(Source: R.E. Madsen et al.: Modeling Word Burstiness Using the Dirichlet Distribution) 
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MLE for Dirichlet Hypergenerator 

for further steps for MLE use approximations and 
numerical methods (e.g., EM or Newton iterations) 
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with independence assumptions: 
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Practical Adequacy of the Dirichlet Model 
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III.3.3 Probabilistic IR with Okapi BM25 
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But: aim to reduce the number of parameters μ, λ that need to be 

learned from training samples! 

Want: ad-hoc ranking function of similar ranking quality without 

training data! 



Okapi BM25 
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• 3-d plot of a simplified 
BM25 scoring function 
using k1=1.2 as parameter 
(DF is mirrored for better 
readability) 

• scores for df>N/2 are 
negative! 

 

BM25 Example 



III.3.4 Extensions to Probabilistic IR 

One possible approach: Tree Dependence Model 

a) Consider only 2-dimensional probabilities (for term pairs i,j) 

    fij(Xi, Xj)=P[Xi=..Xj=..]= 

b) For each term pair i,j 

    estimate the error between independence and the actual correlation 

c) Construct a tree with terms as nodes and the 

    m-1 highest error (or correlation) values as weighted edges 

   Consider term correlations in documents (with binary Xi) 
       Problem of estimating m-dimensional prob. distribution 
           P[X1=...  X2= ...  ...  Xm=...] =: fX(X1, ..., Xm) 

      
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Considering Two-dimensional Term Correlations 

Variant 1: 
Error of approximating f by g (Kullback-Leibler divergence) 
with g assuming pairwise term independence:  
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Variant 3: 

level- values or p-values 

of Chi-square independence test 
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Example for Approximation Error   
(KL Strength) 

m=2: 
given are documents: 

   d1=(1,1), d2(0,0), d3=(1,1), d4=(0,1) 

estimation of 2-dimensional prob. distribution f: 

   f(1,1) = P[X1=1  X2=1] = 2/4 

   f(0,0) = 1/4, f(0,1) = 1/4, f(1,0) = 0  

estimation of 1-dimensional marginal distributions g1 and g2: 

   g1(1) = P[X1=1] = 2/4, g1(0) = 2/4 

   g2(1) = P[X2=1] = 3/4, g2(0) = 1/4 

estimation of 2-dim. distribution g with independent Xi: 

   g(1,1) = g1(1)*g2(1) = 3/8, 

   g(0,0) = 1/8, g(0,1) = 3/8, g(1,0) =1/8 

approximation error  (KL divergence): 

    = 2/4 log 4/3  +  1/4 log 2  +  1/4 log 2/3  + 0  
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Constructing the Term Dependence Tree 
Given: 
   Complete graph (V, E) with m nodes Xi V and 
   m2 undirected edges  E with weights  (or ) 
Wanted: 
   Spanning tree (V, E’) with maximal sum of weights 
Algorithm: 
   Sort the m2 edges of E in descending order of weights 
   E’ :=  
   Repeat until |E’| = m-1 
       E’ := E’  {(i,j) E | (i,j) has max. weight in E} 
       provided that E’ remains acyclic; 
       E := E – {(i,j) E | (i,j) has max. weight in E} 

Example: Web 

Internet 

Surf 

Swim 

0.9 

0.7 

0.1 

0.3 
0.5 

0.1 

Web 

Internet Surf 

Swim 

0.9 0.7 

0.3 
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Estimation of Multidimensional Probabilities  

with Term Dependence Tree 

Given is a term dependence tree (V = {X1, ..., Xm}, E’). 
Let X1 be the root, nodes are preorder-numbered, and assume that 
Xi and Xj are independent for (i,j)  E’. Then: 

 ..]....[ 1 mXXP





'),(

1 ]|[][
Eji

ij XXPXP





'),(

1
][

],[
][

Eji i

ji

XP

XXP
XP

Example: 

Web 

Internet Surf 

Swim 

P[Web, Internet, Surf, Swim] = 

][

],[

][

],[

][

],[
][

SurfP

SwimSurfP

WebP

SurfWebP

WebP

InternetWebP
WebP

..]|....[..][ 121  XXXPXP m

..]..|..[ 11..1   iimi XXXP
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A Bayesian network (BN) is a directed, acyclic graph (V, E) with 

the following properties: 

• Nodes  V representing random variables and 

• Edges  E representing dependencies. 

• For a root R  V the BN captures the prior probability P[R = ...]. 

• For a node X  V with parents parents(X) = {P1, ..., Pk} 

   the BN captures the conditional probability P[X=... | P1, ..., Pk]. 

• Node X is conditionally independent of a non-parent node Y 

   given its parents parents(X) = {P1, ..., Pk}: 

   P[X | P1, ..., Pk, Y] = P[X | P1, ..., Pk]. 

This implies: 
 

• by the chain rule: 
 

• by cond. independence: 

]...[]...|[]...[ 2211 nnn XXPXXXPXXP 





n

i

nii XXXP
1

)1( ]...|[

Bayesian Networks 
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
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

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ii XparentsXP
1

)](|[
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Example of Bayesian Network  
(aka. “Belief Network”) 

Cloudy 

Sprinkler Rain 

Wet 
S   R    P[W]   P[W] 

F   F      0.0      1.0 

F   T      0.9      0.1 

T   F      0.9      0.1 

T   T      0.99    0.01 

P[W | S,R]: 

  P[C]   P[C] 

  0.5      0.5 

P[C]: 

C    P[R]   P[R] 

F      0.2      0.8 

T      0.8      0.2 

P[R | C]: 

C    P[S]   P[S] 

F      0.5      0.5 

T      0.1      0.9 

P[S | C]: 
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Bayesian Inference Networks for IR 
d1 dj dN ... ... 

t1 ti tM ... ... 

q 

... tl 

P[dj]=1/N 

P[ti | djparents(ti)] =  
1 if ti occurs in dj, 
0 otherwise 

P[q | parents(q)] = 

1 if tparents(q): t is relevant for q, 

0 otherwise  

with 

binary 

random 

variables 

]...[]...|[][ 11

)...( 1

MMj

tt

j ttPttdqPdqP
M

 

]...[ 1

)...( 1

Mj

tt

ttdqP
M

 

]...[]...|[ 11

)...( 1

MjMj

tt

ttdPttdqP
M

 

][]|...[]...|[ 11

)...( 1

jjMM

tt

dPdttPttqP
M

 
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Advanced Bayesian Network for IR 

d1 dj dN 
... ... 

t1 ti tM 
... ... 

q 

... tl 

c1 ck cK ... ... with concepts / topics ck 

Problems: 

• parameter estimation (sampling / training) 

• (non-) scalable representation 

• (in-) efficient prediction 

• fully convincing experiments 

illi

il

li

li
lik

dfdfdf

df

ttP

ttP
ttcP









][

][
],|[
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Summary of Section III.3 

• Probabilistic IR reconciles principled foundations 

  with practically effective ranking 

• Parameter estimation requires smoothing to avoid overfitting 

• Poisson-model-based Okapi BM25 has won many benchmarks 

• Multinomial & Dirichlet models are even more expressive 

• Extensions with term dependencies, such as Bayesian Networks,  

  are intractable for general-purpose IR but interesting for specific apps 
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